Вот ведь что странно. Когда физик пишет популярную книгу об элементарных частицах, от него никто не требует начинать с объяснения того, что такое молекула, атрм, атомное ядро. Считается, что все это и так знают. Но любая попытка писать о современных проблемах генетики, не объяснив сначала, что такое гены и хромосомы, решительно пресекается редактором и рецензентами.

Нет, — говорят они, — так непонятно.

Но как же, ведь и устройство ДНК, и законы Менделя учат в школе!

Это ничего не значит. Мало ли чему учат в школе. Вот я, например, — говорит редактор, — понятия не имею о том, что такое гетерозигота и чем она отличается от гомозиготы.

Но ведь чтобы это все объяснить, — начинаю оправдываться я, — нужно написать отдельную большую книгу вовсе не о том, о чем хочу написать я.

А вы коротенько, в первой главе объясните все фундаментальные понятия, а потом уж пишите, что хотите про ваших кошек. Тогда народу будет понятно.

И они, видимо, правы. О том, что такое гены, приходится объяснять еще и еще раз. Мы, действительно, больше знаем о сигма-минус-гиперонах, которые никак не влияют на нашу повседневную жизнь, чем о генах, от которых она, наша жизнь и жизнь наших котов, полностью зависит. Необходимо, чтобы о них на самом деле знали все. Незнание в этой области слишком дорого нам обходится. Мы платим за нашу неграмотность по самому высокому счету: здоровьем и счастьем наших детей, нашим семейным благополучием.

Простой и не самый драматичный пример из моей практики.

Много лет назад я принимал участие в учебной телевизионной передаче о законах Менделя. Там я показывал, таская за хвосты перед камерой черных и белых мышей, как наследуется окраска шерсти. Прошло два года с момента съемок. Передача уже несколько раз вышла в эфир, и вот мне пришло письмо.

«Уважаемый ведущий передачи по общей биологии! Мы с мужем смотрели конец вашей передачи о том, когда рождаются светлые и темные потомки. Мой муж сделал вывод, что от темноволосого отца может родиться только темный потомок. У него волосы темно-русые, я сама блондинка, и сын мой родился светловолосым. И вот теперь мой муж утверждает, что это не его сын. О рождении второго ребенка я и думать боюсь: вдруг он будет темным. Как я тогда объясню, почему первый светлый? Помогите мне, пожалуйста».

Вот такое письмо, и пустой конверт приложен с обратным адресом. И все это после передачи, где я полчаса доказывал, что при скрещивании двух гетерозиготных черных мышей вероятность рождения белого потомка равна 25%! А от скрещивания гетерозиготы с гомозиготой по альбинизму половина потомков будут белыми!

Тогда я написал этой женщине подробное письмо, в котором со ссылкой на учебник биологии для 9 класса объяснял, почему ребенок родился светловолосым. Через две недели я получил ответ с «огромным спасибо». Мне кажется, я не так уж мало сделал в своей жизни, если благодаря моему письму — благодаря моей науке — восстановился мир хотя бы в одной семье. Но, наверное, я могу сделать больше, если еще раз объясню законы наследования тем, кто хочет прочесть эту книжку.

Да, я раскрываю карты: я использую котов как приманку, чтобы вы прочитали о том, что важно для вашего благополучия не меньше, чем для благополучия потомков вашего кота. Ибо законы наследования, принципы организации генетического материала одинаковы и для человека, и для кота, и для гороха. Вы в этом убедитесь, если последуете за мной.

Итак, начнем.

Тонкая и такая, казалось бы, непрочная связь между поколениями осуществляется через половые клетки. Эта эстафета жизни началась в незапамятные времена и не прерывалась ни разу. На это указывает тот простой факт, что мы с вами живы. И живы наши коты. И мы, и они получили эту эстафету от наших далеких предков, которые бегали по лесам 100 миллионов лет назад.

Сперматозоид и яйцеклетка содержат всю информацию, необходимую для построения нового организма со всей его сложнейшей анатомией, физиологией, поведением. Вы, конечно, слышали, что носителем этой информации является молекула дезоксирибонуклеиновой кислоты (ДНК). К ней мы еще вернемся.

А сейчас возьмите на руки вашего кота. Взяли? Посмотрите на него внимательно. Какой он у вас — черный, серый, рыжий? Будем надеяться, что не белый. Нет, в белом коте нет ничего плохого. Просто я сейчас хочу поговорить о том, почему шерсть вашего кота окрашена. Потому что в специальных клетках его организма — меланоцитах — синтезируется пигмент меланин. Он образуется из тирозина — аминокислоты, которую кот получает с пищей, — в результате длинной цепи последовательных превращений. Каждое из этих превращений катализируется своим белком — ферментом. Один из них, наиболее важный, называется тирозиназой.

Откуда берется этот белок? Мы знаем, что белки — это сложные последовательности относительно простых органических молекул — аминокислот. Именно набор аминокислот и последовательность их объединения в белке определяют его биологическую активность. Точно так же, как смысл тех слов, которые я сейчас пишу, определяется набором и последовательностью букв в них. В нашем алфавите 33 буквы. Белковый алфавит состоит из 20 аминокислот. Замена одной из аминокислот в белке на другую часто приводит к таким же серьезным последствиям для его функции, как замена одной буквы в слове для его смысла. Так, если заменить одну аминокислоту в тирозиназе — белке, о котором мы только что говорили, — он окажется неспособным превратить тирозин в меланин, и кот будет белым. Такие замены называют мутациями, и к ним мы еще не раз будем возвращаться. В общем-то, вся эта книга — о мутациях у кошек.

Пока же продолжим анализ нашего белка. Что задает последовательность аминокислот в нем? Откуда меланоцит знает, что ему нужно сшивать именно эти аминокислоты именно в такой последовательности, чтобы получилась тирозиназа?

В каждой клетке есть специальные устройства для синтеза белков — рибосомы. Это своего рода станки с программным управлением. Роль программы выполняет информационная рибонуклеиновая кислота (иРНК). Это длинная молекула, состоящая из азотистых оснований. Их четыре: аденин (А), гуанин (Г), цитозин (Ц) и урацил (У). Азотистые основания соединены друг с другом в длинную цепь. Роль звеньев в цепи РНК выполняют рибоза и фосфатные остатки. Последовательность оснований в РНК и служит программой для кодирования набора и последовательности аминокислот в белке. Но что же получается? Аминокислот 20, а азотистых оснований всего четыре. Как регулируется их соответствие? Почти так же, как соответствие 33 букв алфавита с двумя знаками — точкой и тире в азбуке Морзе.

У всех живых организмов определенной тройке (триплету — так научней) оснований в иРНК — соответствует определенная аминокислота в белке. Триплет УУГ соответствует лейцину, ГАГ — глутаминовой кислоте, и так далее. Сейчас генетический код — то есть порядок соответствия аминокислот триплетам азотистых оснований — детально расшифрован, и вы можете найти его в любом учебнике.

Этот код универсален: принципы кодирования одинаковы и у нас с вами, и у наших котов, и у всех прочих обитателей Земли. Из этого следует, между прочим, что если вы подсунете кошачьей рибосоме человеческую РНК, то она (кошачья рибосома) без тени сомнения построит в кошачьей клетке человеческий белок. И наоборот. Хорошо это или плохо? Ответ диалектический: когда как. Но к этому мы тоже еще вернемся.

Теперь же зададим следующий вопрос. Что определяет последовательность оснований в РНК? Ответ вы знаете из школьного учебника. РНК синтезируется на ДНК.

Именно ДНК является главным носителем генетической информации. Гены — это фрагменты ДНК, ответственные за синтез определенных молекул РНК, которые в свою очередь участвуют в синтезе определенных белков или любым другим путем регулируют биохимические процессы в клетках. Поскольку же все признаки любого организма — это, в конечном счете, результаты биохимических превращений веществ, то справедливо будет утверждение, что гены кодируют развитие признаков.

Информация, закодированная в генах, называется генотипом, а результат ее воплощения в признаках — фенотипом.

ДНК, как и РНК, состоит из азотистых соединений. Отличия, казалось бы, минимальные: вместо рибозы в состав ДНК входит дезоксирибоза, вместо урацила (У] — тимин (Т). Главная особенность этой молекулы, которая ставит ее в привилегированное положение среди биологических молекул, — это ее способность к самокопированию. Одна нить ДНК может синтезировать дополнительную, комплементарную себе цепь, присоединяя азотистые основания по строго определенным правилам: Т к А, Г к Ц, и наоборот.

Этот процесс создания комплементарной молекулы называется репликацией. Именно он обеспечивает изумительную точность самовоспроизведения живых систем в длинной череде поколений и клеточных делений. К этому великому и важному процессу мы еще вернемся на страницах нашей книги.

А сейчас нас интересует другой процесс: транскрипция. Так называется синтез РНК. Он базируется на том же принципе комплементарности. Цепь ДНК присоединяет У к А, Г к Ц, Ц к Г, А к Т, а специальные ферменты транскрипции — РНК-полимеразы — сшивают их друг с другом. Этот первичный транскрипт — информационная проРНК — отделяется от ДНК, покидает клеточное ядро и уходит в цитоплазму, где достигает рибосомы и работает в роли программы трансляции — синтеза белка. Вернее, не он работает, а то, что от него останется после того, как с ним поработают клеточные редакторы.

Транскрипция — процесс синтеза информационной РНК на матрице ДНК

Как вы думаете, какой путь прошла эта книга от рукописи до того, что сейчас у вас в руках? Вы, наверное, думаете, что все было так.

Я написал все, что хотел написать, и мне все это так понравилось, что я, как А. С. Пушкин в аналогичной ситуации, забегал по комнате, приговаривая:

Ай да Бородин, ай да сукин сын! Ведь как здорово написано!

Потом я сгреб рукопись и побежал в редакцию. А там все, от главного редактора до корректора, как ее увидели, так сразу страшно обрадовались и закричали:

Ах, Павел Михайлович! Да как же замечательно Вы все написали, да какой же шедевр Вы сотворили!

И сразу все побежали в типографию и велели мою книгу немедленно и слово в слово напечатать в 200 000 экземпляров.

Увы, увы... Все было вовсе не так. Когда я кончил писать эту книжку, мне стало страшно и стыдно. Много было темных и вовсе бессмысленных мест. Многие абзацы не стыковались. Многие мысли, которыми я поначалу гордился, теперь показались совершенно неудобоваримыми, и их следовало разделить. Я выбрасывал, переставлял, соединял и разделял куски моей рукописи. И занимался этим чуть ли не дольше, чем писал.

Потом я отнес отредактированную мною рукопись в издательство. А там мне сказали:

Вот здесь невнятно, здесь не ясен смысл. Это надо выбросить, это переставить. Вот здесь вас неправильно поймут. Вычеркнуть. А это могут воспринять как намек, ну вы понимаете.

Прежде чем покинуть ядро, молекула вновь синтезированной иРНК подвергается редактированию. Из нее вырезаются незначащие части (нитроны), значащие участки (экзоны) сшиваются в определенной последовательности. Молекула снабжается сигналами начала (шапочкой) и конца (хвостом). В таком виде она готова для трансляции и уходит в цитоплазму клетки.

Тоже выбросить.

Так и сделали. И только потом поставили гриф издательства и назначили цену (я тут не при чем"). Именно так из моего черновика получилась та книга, которую вы держите в руках.

Я это не к тому говорю, что после всех этих упражнений она стала шедевром. Я сам вижу, как она уязвима для критики. А все это рассказал вам для того, чтобы привлечь ваше внимание к проблемам редактирования, общим «на всех уровнях».

Итак, после окончания транскрипции молекулы информационной РНК подвергаются «редактированию». Специальные ферменты удаляют из них незначимые участки Синтроны"), сшивают друг с другом значащие райойы ("экзоны"), приделывают к такой перекроенной молекуле шапочку и хвост. Шапочка эта нужна для установления контакта с рибосомой, а хвост защищает смысловую часть молекулы от разрушения. В таком виде молекула иРНК yxoflHt из ядра в цитоплазму клетки, где и служит матрицей для синтеза белка.

Есть две компании клеточных «редакторов». Об одной из них я только что рассказал вам. Она работает над редактированием РНК. Есть и другая компания, которая занимается редактированием, а вернее, корректированием ДНК.

Чем отличается редактор от корректора? Редактор вникает в смысл текста. Корректор в смысл вникать не обязан, его задача —

борьба с опечатками.

От опечаток не гарантирован ни один процесс тиражирования информации. Репликация — удвоение ДНК — в этом смысле исключением не является. В процессе тиражирования ДНК — построения комплементарной копии на одной из нитей ДНК — редко, очень редко, но, все же, случаются опечатки.

Это может быть и замена одного азотистого основания на другое, и потеря фрагмента, и вставка лишнего куска молекулы, и разворот фрагмента, и перенос его с одной молекулы на другую. Такие события — опечатки в генетических текстах — называются мутациями.

Если эти события приводят к грубым изменениям формы молекулы, они привлекают внимание клеточных «корректоров»

ферментов репарации. Эти ферменты поступают просто: они вырезают участок в одной из двух нитей в двойной спирали ДНК, вновь застраивают его согласно информации, записанной на второй, неповрежденной нити ДНК, и сшивают концы встроенного фрагмента со свободными концами корректируемой молекулы.

Постоянная бдительность клеточных корректоров обеспечивает поразительную точность тиражирования ДНК, недостижимую в издательском процессе. Но у них есть один недостаток: они устраняют только те ошибки, которые грубо меняют форму молекулы. Если же ошибка никак не сказывается на этом параметре, она не будет замечена и исправлена ферментами репарации.

Гены, несущие такие, негрубые, с точки зрения клеточных корректоров, ошибки, затем сами будут реплицироваться, их дочерние копии будут еще раз копироваться, размножая ошибку

мутацию — в бесчисленном множестве экземпляров.

В тех клетках, где по законам развития происходит считывание информации с данного гена, измененные последовательности будут транскрибированы в молекулы РНК. Эти РНК будут, конечно, отличаться от тех, что считываются с неизмененного мутацией гена. Соответственно на этой, отличной от нормы, матрице РНК будет затем построена измененная белковая молекула. В ней может быть встроена иная, чем в норме, аминокислота, или потеряна часть аминокислот, или их последовательность будет перевернута. Очень высока вероятность того, что такая структурно измененная белковая молекула изменит и свою функцию. Это может привести к тому, что окажется измененным и признак, в формировании которого участвует молекула.

Вот так по цепочке распространяется эффект изменений в молекуле ДНК: от гена к признаку. Молекулярное изменение гена превращается в изменение организма, созданного по ошибочному рецепту. Последствия зависят от того, насколько серьезной была ошибка.

Если вы, готовя торт, вместо вишневого варенья добавите клубничное, это будет уже другой торт, либо более, либо менее вкусный, чем тот, что пекся по стандартному рецепту. Но если вы вместо вишневого варенья положите горчицу, боюсь, что он б!удет совсем несъедобным и вам придется его выбросить. Так и с мутациями. Может возникнуть организм, отличающийся от исходного в лучшую или худшую сторону, но может возникнуть и совершенно нежизнеспособное создание.

Теперь давайте вернемся к тому примеру, с которого мы начали свои рассуждения. Если мутация происходит в гене, кодирующем последовательность аминокислот в ферменте тирозиназе, то тирозиназа оказывается измененной. К чему это приведет? Это может привести к тому, что будет нарушен синтез пигмента. Меланоциты не смогут его вырабатывать, и кот, получивший такую мутацию от обоих родителей, будет белым. Почему вдруг такое условие: чтобы быть белым, кот должен получить мутантный ген от обоих родителей?

Дело в том, что в ходе эволюции еще на самых ранних ее стадиях возникло очень важное приспособление, позволяющее организмам защититься, застраховаться от вредного действия мутаций: все многоклеточные организмы имеют каждый из своих генов в двух экземплярах.

Отдельные экземпляры называются аллелями. Мутации ведут к возникновению новых вариантов генов — новых аллелей.

Одинарный набор всех генов организма мы будем дальше называть гаплоидным геномом, а двойной — диплоидным.

В чем преимущества диплоидности, дублирования всех генов? В обеспечении большей надежности системы. Не зря говорят: «Ум хорошо, а два лучше». Вот, например, мой ум может ошибиться в том или ином вопросе, но тогда другой ум, редакторский, эту ошибку исправит. В принципе, наверное, может быть, и наоборот. Но в моей практике такого не случалось. Если в одном аллеле записана ошибочная информация и это приводит к синтезу дефектного белка, то другой аллель содержит правильную информацию и контролирует синтез нормального белка.

Клетку или организм, который содержит два разных аллеля одного гена, будем называть гетерозиготой, два одинаковых (оба мутантные или оба нормальные) — гомозиготой.

Каков будет результат наличия в клетке двух форм ферментов? Здесь что-либо предсказать заранее трудно. Может быть так, что того количества нормального белка, которое есть у гетерозиготы, достаточно, чтобы катализировать зависимый от него метаболический процесс. Тогда организм будет иметь такое же проявление признака, какое характерно для гомозиготы по нормальному аллелю.

Аллели, которые в гетерозиготе (будучи в одном экземпляре) дают то же проявление признака, что и в гомозиготе, называются доминантными.

Аллели, которые проявляют свое действие только в гомозиготе, а в гетерозиготе незаметны, ибо подавляются действием другого, доминантного аллеля, называются рецессивными.

Как правило, нормальные аллели доминируют над мутантными. Но из этого правила есть множество исключений, с которыми мы с вами дальше познакомимся.

Теперь, введя эти определения, давайте рассмотрим эффекты взаимодействия аллелей на молекулярном уровне. Если один из аллелей производит дефектный, неработающий фермент, то активности фермента, синтезированного по рецепту, считанному со второго аллеля, может не хватить для полноценного обеспечения того метаболического процесса, за который эти ферменты отвечают. Тогда у гетерозиготы исследуемый признак будет проявляться слабее, чем у гомозиготы по нормальному аллелю, но сильнее, чем у гомозиготы по мутантному. Такое тоже встречается. Тогда оба аллеля называются полудоминантными.

Вы знаете, что вещества, поступающие в клетку, претерпевают целый ряд последовательных превращений до того, как станут готовым продуктом. В том же синтезе пигмента окраски шерсти меланина участвует не одна тирозиназа, а несколько разных ферментов. В генах, кодирующих любой из этих ферментов, могут возникать мутации.

Рассмотрим начальный и конечный этапы этого процесса. Вначале происходит превращение тирозина в промежуточный продукт. В конце, когда пигмент уже готов, важно равномерно распределить его по волосу.

За два этих процесса отвечают два разных гена. В каждом из них возможны мутации. Возьмем гомозиготу по мутации в гене, контролирующем распределение пигмента. У такого кота пигментные гранулы не распределяются равномерно, а образуют локальные скопления. В итоге шерсть его будет не серой, а голубоватой.

Какого цвета будет кот, гомозиготный по мутациям в обоих генах, отвечающих за начало и конец процесса формирования окраски? Конечно, белым. Если пигмента нет вообще, то неважно, как он мог бы быть распределен по волосу. И гомозиготы по аллелю, нарушающему распределение, и гетерозиготы и гомозиготы по нормальному аллелю, — все они будут белыми, если у них из-за гомозиготности по дефектному аллелю синтеза тирозиназы вообще не синтезируется пигмент.

Такое взаимодействие между аллелями разных генов — межаллельное взаимодействие — называется эпистазом. Еще один термин. Уж чего-чего, а терминов в генетике предостаточно. В одной только этой главе мы уже ввели такие, как аллель, гомозигота, гетерозигота, доминантный, рецессивный, эпистаз. А сколько еще впереди...

Если ваши возможности к восприятию новых слов еще не исчерпаны, я рискну продолжить. Если по ходу моих рассуждений вы почувствуете, что уже забыли смысл тех терминов, которые я ввел раньше, можно обратиться к Словарю биологических терминов, который помещен в конце книги.

Итак, продолжаем. Возвратимся к синтезу пигментов. Меланин продуцируется в двух формах: черный, который называется эумеланином, и желтый — феомеланин. Характерная окраска кота дикого типа (диким типом генетики называют тот вариант признака, который характерен для большинства особей данного вида) — серая — обусловлена тем, что эти две формы пигмента распределены в волосе в виде чередующихся колец черного и желтого цвета. Именно такое сочетание дает характерную серую (она же агути) окраску. Есть мутация, которая приводит к резкому уменьшению желтых зон и расширению черных. Кот, гомозиготный по такой мутации, будет черным. Если же он при этом будет гомозиготен еще и по мутации, вызывающей сгущение пигментных гранул, то его волосы будут более прозрачны и он будет выглядеть голубым.

Это тоже пример воздействия разных, неаллельных генов. Называется оно комплементарным, дополнительным действием генов. Эффект одной мутации дополняется эффектом другой. Я специально не даю пока названий мутаций, этому будет посвящена следующая глава.

Выше мы рассматривали случаи, когда за каждый этап формирования признака отвечает только один ген. Однако есть много примеров, когда один и тот же продукт синтезируют разные гены. Мутации в таких повторенных генах также могут увеличивать или уменьшать количество или активность синтезируемого продукта. Результат такой совместной активности генов будет зависеть от того, сколько в генотипе каждого конкретного организма усиливающих и сколько тормозящих аллелей.

Гены, каждый из которых вносит небольшой вклад в формирование признака, называются полигенами, в отличие от олигогенов, или генов главного действия, о которых мы говорили выше. Под контролем полигенов находятся количественные признаки, то есть такие, по которым различия между особями носят не качественный, а количественный характер: не есть — нет, а больше — меньше.

На один признак может действовать много генов. Но может быть и обратная ситуация: один ген действует на много признаков. Обратимся опять к примеру с тирозиназой. Нарушения в синтезе пигмента сказываются не только на цвете шерсти, но и на цвете глаз, поскольку и там, и там есть районы, которые должны быть специфическим образом окрашены. Если же процесс образования пигмента нарушен, то измененными оказываются оба признака. У настоящих альбиносов белая шерсть сочетается с красными глазами, ибо экранирующий пигмент в них отсутствует, и становятся заметными кровеносные сосуды. Так мутация в одном гене сказывается на проявлении двух признаков. Такое множественное действие гена называется плейотропией.

Сколько их - генов у кошки?

Двадцать лет назад я считал, что у кошки 50 000 генов. И был неправ. Тогда генетики сильно переоценивали количество генов у млекопитающих. При этом оценка в 50 000 считалась очень низкой. Многие говорили о 150 000 генов. Разочарование пришло после расшифровки генома человека. Оказалось, что у человека всего около 30 тысяч генов, кодирующих белки. Это гораздо меньше, чем ожидалось.

Когда были расшифрованы геномы других организмов, таких как нематода и плодовая мушка дрозофила, оказалось, что у человека не просто мало, но оскорбительно мало генов: всего в полтора раз больше, чем у нематоды и в два раза больше, чем у дрозофилы. В 2007 году появились первые результаты расшифровки генома кошки. Пока расшифровано примерно 65% кошачьих генов. Сравнение последовательности нуклеотидов в геноме кошки с хорошо исследованными геномами человека, шимпанзе, собаки, коровы, мыши и крысы позволило выявить у кошки 20285 генов. Следовательно, общее число генов кошки, по- видимому, равно числу генов человека - 30 000.

Нужно помнить, однако, что речь здесь идет о генах в традиционном понимании этого слова: то есть об участках ДНК, которые кодируют белки. Применение методов молекулярной генетики к анализу хромосом показало, что они содержат огромное количество многократно повторенных и, по-видимому, не кодирующих белки последовательностей ДНК.

Вы, конечно, знаете, что гены, не болтаются в клетках по отдельности, но организованы в хромосомы.

У кошки 19 пар хромосом. Мы говорили с вами о том, что для обеспечения надежности у всех высших организмов каждый ген представлен как минимум в двух экземплярах, а поскольку гены организованы в хромосомы, то, следовательно, и каждая хромосома должна быть в двух экземплярах. Хромосомы, несущие аллели одних и тех же генов, называются гомологичными хромосомами, или гомологами.

Хромосомы - это сложные комплексы ДНК с различными белками, которые служат для упаковки ДНК. Эти белки выполняют функцию регуляции активности генов: закрывают и плотно упаковывают те гены, которые не должны считываться в данной клетке [зачем нервной клетке печеночные белки?], и наоборот, открывают для считывания те гены, которые несут информацию о строении белков, нужных данной клетке в данный момент.

Плотно упакованные участки легко отличить от свободно лежащих при специфическом окрашивании гистологическими красителями. Поскольку в разных хромосомах находятся разные гены, то и окрашиваются разные хромосомы по-разному. Кроме того, хромосомы отличаются друг от друга по количеству находящихся в них генов, то есть по количеству ДНК, что находит свое цитологическое выражение в разных размерах хромосом.

Легко заметить, что каждая пара, гомологичных хромосом имеет совершенно специфичный рисунок полос. Именно по этому рисунку ее легко отличить от остальных. Вы видите, что каждая хромосома представлена в двух экземплярах. У кошек каждой отдельной хромосоме вы можете найти ее пару. У котов 18 хромосом имеют гомологов, а еще две хромосомы оказываются разными и по размеру, и по характеру полосатости. Это так называемые половые хромосомы. У самок они одинаковые — гомологичные — и называются Х-хромосомами, а у самцов разные. Одна из них Х-хромосома, а другая, гораздо меньшего размера, — Y-хромосома. О роли половых хромосом в определении пола мы поговорим позже. Сейчас же отметим, что остальные хромосомы, кроме половых, называются аутосомами.

Получение наибольшего количества полос, выявление более мелких полос в пределах более крупных позволяет повысить надежность идентификации не только отдельных хромосом, но и районов внутри хромосом. Последнее очень важно, поскольку дает возможность следить за судьбой этих районов при их перемещении по кариотипу (так называется хромосомный набор] в ходе эволюции. Сама эта работа — получение максимальной полосатости — во многом остается искусством. Поэтому тот, кто получит больше полос, считает себя чемпионом и очень этими полосами гордится.

Довольно любопытно было бы узнать, в какой хромосоме и в каком участке ее находится тот или иной ген. Оставим пока в стороне вопрос, зачем нам это знать. (Я вообще считаю этот вопрос глупым. Что значит, зачем знать? Затем, что это неизвестно!]. Разберемся сначала с тем, как это можно узнать.

По распределению полос вы можете легко опознать конкретные хромосомы в гибридных клетках. Например, в клеточных гибридах хомяка с кошкой. Нет, конечно, кошку с хомяком никто не скрещивал. Речь идет именно о клеточных гибридах. Как их получить? Нужно взять культуры фибробластов (активно делящихся клеток соединительной ткани) обоих видов и смешать их. Существуют методы, облегчающие слияние этих клеток друг с другом. Из этого слияния и получаются гибриды клеток, содержащие хромосомы обоих видов: кошки и хомяка. В процессе клеточных делений при культивировании гибридных клеток в питательной среде происходит постепенная утеря тех или иных хромосом. Чьи (кошачьи или хомячьи) и какие именно (первая, вторая или десятая) хромосомы теряются, мы можем установить по специфическому рисунку полосатости оставшихся хромосом.

Что это дает для решения задачи картирования? Допустим, мы обнаружили, что в гибридном клоне №1232 (клоном мы называем группу клеток, которая возникла в результате деления одной- единственной клетки) утеряна Л1-хромосома кошки. Проведя биохимический анализ клеток этого клона, мы установили, что в них присутствует только хомячий вариант фермента эстеразы D, а кошачий утерян. Тогда логично сделать вывод, что именно в Al- хромосоме локализован ген, кодирующий структуру этого фермента.

В последнее время получил распространение и другой подход к картированию. Были выделены или искусственно синтезированы фрагменты ДНК, соответствующие тем или иным генам. Показано, что гены, выполняющие одинаковые функции у разных видов, имеют идентичную или чрезвычайно сходную последовательность оснований в ДНК. Такие гены называют гомологичными. Как можно проверить гомологию двух фрагментов ДНК? Довольно просто. Нам не нужно расшифровывать последовательность каждого' из них. Если последовательности гомологичны, то они в подходящих условиях будут гибридизоваться друг с другом: образовывать двойную спираль гибридной молекулы ДНК. Более того, оказалось, что эти фрагменты могут гибридизоваться и с гомологичными участками ДНК в фиксированных хромосомах прямо на предметном стекле. Именно на этой особенности базируется метод картирования хромосом гибридизацией с генами, мечеными радиоактивными изотопами.

Хромосомные карты домашней кошки.

Слева — схемы хромосом кошки, справа — списки генов, для которых определено место их локализации на хромосомах.

Пусть у нас есть человеческий ген, например, коллагена. Мы метим его изотопом водорода - тритием, и затем наносим на препарат фиксированных хромосом кошки. Этот фрагмент ДНК будет преимущественно гибридизоваться с теми районами ДНК кошки, где находятся гомологичные последовательности. По засвечиванию фотоэмульсии над местом связывания нашего меченого фрагмента мы можем картировать интересующий нас ген в совершенно определенном районе совершенно определенной хромосомы кошки.

В последние годы метод картирования генов, основанный на гибридизации фрагментов ДНК с ДНК хромосом, получил очень широкое распространение. Только вот радиоактивными изотопами для этого уже практически не пользуются. Их заменили безопасные и гораздо более красивые флуоресцентные метки. Фотографии препаратов хромосом, полученных с использованием флуоресцентных красителей, можно увидеть на сайте Института цитологии и генетики СО РАН

С помощью этих и других методов на сегодняшний день Савгуст 2008) на генетической карте кошке локализовано 1793 гена. Показать их на одном рисунке абсолютно невозможно. Если вас интересует положение того или иного гена, вы можете найти его в базе данныхпо генам кошки по адресу

Хромосомная организация наследственного материала обеспечивает его точную передачу от материнских клеток дочерним. Как вы помните, каждая из нитей ДНК достраивает себе комплементарную копию. В результате из одной «двойной молекулы ДНК образуются две двойных. Каждая из них отдельно одевается в белковые одежды.

При делении клеток тела — соматических клеток — происходит точное распределение дочерних хромосом по дочерним клеткам, так что каждая сестринская клетка получает по одной из сестринских хромосом. Этот процесс, который называется митозом, обеспечивает полную идентичность генетической информации во всех соматических клетках одной особи.

В процессе формирования половых клеток (в мейозе) происходит не одно, а два деления удвоенных хромосом. В ходе подготовки к первому делению гомологичные пары хромосом сближаются и выравниваются по длине. При этом они могут обмениваться гомологичными участками. Этот процесс обмена называется кроссинговером. Чем ближе друг к другу на хромосоме находятся два гена, тем реже между ними происходит кроссинговер. На этом принципе строится метод генетического картирования. Именно этим методом было определено положение на хромосомах кошки генов, определяющих ее окраску.

После завершения кроссинговера наступает первое деление мейоза, в ходе которого, в отличие от митоза, в дочерние клетки расходятся не сестринские, а гомологичные хромосомы. Между первым и вторым делением мейоза удвоения ДНК (и, следовательно, хромосом) не происходит. Во втором делении мейоза в дочерние клетки расходятся уже сестринские хромосомы. Благодаря такой организации мейоза, сформированные половые клетки — гаметы — получают гаплоидный, одинарный, набор хромосом.

Каждая из гомологичных хромосом и, значит, каждый из аллельных генов находится в половой клетке не в двух, а в одном- единственном экземпляре. Диплоидность вновь восстанавливается после оплодотворения. Оплодотворенная яйцеклетка содержит уже диплоидный набор генов и хромосом и будет в ходе митотических делений передавать всем соматическим клеткам совершенно одинаковый набор наследственных инструкций, по которым и будут строиться тело и душа вновь возникающего организма.

Случайное расхождение гомологичных хромосом при первом делении мейоза имеет глубокий биологический смысл.

Все половые клетки самок несут Х-хромосому, половина половых клеток самца — Х-, половина Y-хромосому, Объединение XX дает самку, XY — самца.

Рассмотрим, например, расхождение половых хромосом. Вы помните, что у самцов они разные, X и Y, а у самок одинаковые - обе X. Но и у самцов, и у самок половые хромосомы объединяются друг с другом в ходе подготовки к первому делению мейоза, а затем расходятся обязательно в разные дочерние клетки. В результате все половые клетки самки — яйцеклетки — несут по одной Х-хромосоме. У самцов половина сперматозоидов содержит Х-хромосому, а половина — К-хромосому. При оплодотворении происходит слияние половых клеток самца и самки. Оплодотворенная яйцеклетка называется зиготой. В результате в половине случаев X встречается с Л’, а в другой половине X встречается с К В первом случае зигота даст начало самке, во втором — самцу.

Однако, как и процесс копирования информации, процесс

расхождения хромосом иногда дает сбои. В одну из дочерних клеток в первом делении мейоза отходит не один из гомологов, а оба. В другую дочернюю клетку в таком случае не попадает ни одного. При встрече такой клетки, имеющей или избыточное, или недостаточное количество хромосом (и, следовательно, генов), с нормальной гаметой противоположного пола формируется зигота также с избыточным или недостаточным хромосомным набором.

Это довольно серьезное нарушение, которое, как правило, плохо сказывается на развитии. Известное врожденное заболевание у человека — синдром Дауна — обусловлено именно такого рода нарушением расхождения хромосом. Дети, страдающие этим заболеванием, имеют еще одну 21-ю хромосому.

К дефектам развития приводят и нарушения в расхождении половых хромосом. В норме все люди имеют 46 хромосом. Из них 2 хромосомы относятся к половым. Иногда из-за нарушения в расхождении хромосом в процессе созревания половых клеток рождаются мужчины с хромосомным набором не ХУ, a ХХУ. Такая хромосомная конституция приводит к группе нарушений, которая называется синдромом Кляйнфельтера. Мужчины, имеющие добавочную Х-хромосому, как правило, стерильны и имеют измененное поведение.

Аналогичное нарушение наблюдается изредка и у котов. Его можно установить по внешнему виду кота, если его мать или отец имели рыжую окраску шерсти. Дело в том, что ген рыжей окраски локализован в Х-хромосоме, Поскольку У-хромосома не имеет гомологичного гена, то мутация у котов проявляется полностью, и они оказываются рыжими. Если у самки в одной из Х-хромосом находится мутантный ген, а в другой — его нормальный вариант, то рыжая окраска проявляется не полностью, не на всей поверхности шкурки, а частично, пятнами. Такая окраска называется черепаховой. Более подробно мы будем разбирать наследование рыжей окраски в следующей главе. Сейчас же нас этот ген интересует только как маркер Х-хромосомы.

Итак, черепаховая окраска может быть только у особи с двумя Х-хромосомами. Если это кошка, то тут проблем нет. Если же это кот, то, следовательно, кроме штатных X- и У-хромосом он имеет еще лишнюю Х-хромосому, и его хромосомная конституция будет обозначена как ХХУ.

Один из таких котов по кличке Люцифер удостоился подробного жизнеописания. Он имел черепаховую окраску и, как показал цитогенетический анализ, дополнительную Х-хромосому. Был он стерилен, что неудивительно. Удивительно то, что он, как и ХХУ-мужчины, было до глубокой старости инфантилен в поведении. Эту его особенность заметил не только ученый, который за ним наблюдал. Ее заметили и коты. Они не били Люцифера, не орали на него страшными голосами, как это принято между взрослыми котами, а трогательно ухаживали за ним, вылизывая его как маленького котенка.

Но недавно были обнаружены черепаховые коты, имеющие, однако, не две, а одну Х-хромосому. Как нам следует это понимать? Ведь если X -хромосома одна и несет при этом ген рыжей окраски, то все пигментные клетки должны иметь ген и нарабатывать только желтый пигмент. Откуда тогда берутся нежелтые участки

шкурки у такого кота?

А не думаете ли вы, что сам мутантный аллель в части клеток мог измениться, превратиться в нормальный? Недавно было высказано предположение, что такие изменения действительно происходят, и повинны в них так называемые прыгающие гены.

Прыгающие, или мобильные, генетические элементы обладают способностью перемещаться по геному, менять места локализации. Они, внедряясь в район функционально активного гена, способны изменять его проявление, усиливая или подавляя его активность. Такие мобильные фрагменты ДНК были обнаружены у микроорганизмов, дрозофилы, мыши. Кстати, у мыши такой прыгающий фрагмент часто выбирает местом посадки район гена рыжей окраски, также приводя к 9 нестабильности последнего.

Все эти нарушения имеют генетическую природу и привлекают наше внимание потому, что они являются исключениями из нормального процесса передачи информации от поколения к поколению. А гарантируется этот процесс, как мы уже говорили, точным копированием наследственной информации и точным расхождением гомологов в мейозе. Что касается половых хромосом, то они в 9999 клетках из 10000 расходятся правильно, и в результате такого расхождения все яйцеклетки имеют по одной Х-хромосоме, а половина сперматозоидов несет Х-хромосому, половина — Y.

Благодаря такому механизму определения пола соотношение полов у млекопитающих (и у кошки тоже) оказывается в среднем 1:1. Я подчеркиваю, в среднем. Если оценить расщепление по полу в одном помете, там вы можете обнаружить и отличия от идеального расщепления. Скажем, у вашей кошки из пяти потомков может быть четыре кота и одна кошечка. Опровергает ли это общую закономерность? Ни в коем случае. Ведь речь у нас идет о статистической закономерности, которая выполняется на большом числе особей. Если вы играете в орлянку, вероятность выпадения решки или орла одинакова в каждом бросании и равна 50%. Но эти 50% выполняются при большом числе испытаний, и чем больше это число, тем более точное совпадение с ожидаемой вероятностью будет наблюдаться. А из трех бросаний у вас может все три раза выпасть, допустим, орел, и в этом не будет никакого нарушения законов природы.

Законы вероятности играют очень большую роль в нашей жизни и в жизни наших котов. От вероятностных событий зависит их и наша судьба. Неслучайно поэтому мы часто, принимая судьбоносные решения, бросаем жребий, то есть полагаемся на случай, надеясь, конечно, что он будет для нас счастливым.

Обратимся к кошачьей судьбе. Пусть у нас есть кот и кошка, гетерозиготные по дефектному аллелю тирозиназы. Вспомним, что это значит. Это значит, что у каждого из них в одной из двух гомологичных хромосом находится нормальный аллель, а в другой — мутантный. В ходе подготовки к первому делению мейоза гомологи сближаются, а затем расходятся в разные гаметы. Поэтому половина яйцеклеток получит хромосомы с нормальным аллелем, а половина — с мутантным. То же произойдет и при формировании сперматозоидов. Половина из них будет нести нормальный аллель, а половина — мутантный. При оплодотворении соединение гамет происходит случайно. Яйцеклетка, несущая нормальный аллель, может встретиться со сперматозоидом, в котором находится хромосома с мутантным аллелем. Может быть и по-другому: встретятся два нормальных аллеля или, наконец, два мутантных.

Как оценить вероятность образования зигот каждого типа? Из теории вероятности следует, что возможность каждого сочетания равна произведению частот гамет каждого типа. Поскольку и мутантные, и нормальные аллели содержатся в половине яйцеклеток и в половине сперматозоидов, то вероятность их встречи будет х/г х 1/г = Такова же вероятность всех остальных сочетаний. Но поскольку в сочетании нормального аллеля с мутантным неважно, от кого — от отца или от матери — получен тот или иной аллель, то суммарная частота гетерозигот будет 1/гх1/г + V2XV2 = 1/2- Итоговое расщепление по генотипам в таком скрещивании будет 1:2:1 или 25%:50%:25%. Запомните его, мы еще к нему вернемся при рассмотрении законов Менделя.

Здесь следует отметить еще одну особенность расхождения хромосом в первом делении мейоза. На расхождение одной пары гомологов никак не влияет то, как разошлись другие пары гомологов. Они расходятся в дочерние клетки независимо. Это настолько важный момент, что он заслуживает подробного разбора.

Мы с вами уже говорили о том, что при оплодотворении каждый из родителей передает будущему ребенку по одной хромосоме из каждой пары. Следовательно, мы можем говорить о хромосомах отцовского и материнского происхождения. Зависит ли как-нибудь расхождение хромосом в мейозе от их происхождения?

Может ли быть так, что в одну из дочерних клеток уходят все хромосомы отцовского происхождения, а в другую — материнского? Поскольку каждая хромосома делает выбор независимо от всех остальных, теоретически возможно образование гаметы, в которую ушли только гомологи отцовского происхождения. Но вероятность возникновения ее очень низка.

Действительно, у кошки 19 пар хромосом. Для каждой хромосомы вероятность попасть в одну из дочерних клеток равна V2 • Тогда вероятность того, что в одну дочернюю клетку попадут все 19 хромосом, равна произведению вероятностей попасть в нее для каждой хромосомы f1/2)19 . Так что попадание всех хромосом одного происхождения в одну дочернюю клетку практически невероятно. Хорошо, а хотя бы двух из них? Это вы можете рассчитать сами. Если для каждой вероятность V2, то для двух — вероятность */4- То есть в четвертой части гамет будут именно эти две хромосомы.

Все эти расчеты вас, наверное, утомили. Но они будут необходимы нам, когда мы обратимся к рассмотрению законов Менделя и их применению к кошке.

Но для того чтобы это рассмотрение было более привязано к кошке, мы прежде познакомимся с полным списком мутантных аллелей, известных сейчас в генетике кошки, и с тем, как эти мутантные аллели влияют на процесс развития.