«Лед тает при 0°, вода кипит при 100 °C» — это утверждение столь же простое, сколь и ложное, столь же многозначительное, сколь и ошибочное. Прежде всего оно касается лишь «нормальных условий», что само по себе смехотворно, но даже и при этом школьная мудрость не выдерживает серьезной критики, недаром ученики нередко делают ошибку, излагая «великую истину», и говорят: как только лед увидит, что дошел до нуля, так начинает таять, а вода — кипеть, как доберется до ста градусов.

Цифры 0 и 100 завораживают своей определенностью, и мы забываем, что сто градусов, лежащих между ними, всего-навсего маленькое поле из десяти, взятых десять раз.

С не меньшим успехом можно было установить температурную шкалу, взяв дюжину двенадцать раз. Таким образом, единица, обозначенная одним градусом, совершенно произвольная, и миллионы тщательно замеренных температур плавления и кипения, приведенные в научных трудах, только относительные величины.

Если бы в мире нашла наибольшее распространение не температурная шкала шведского астронома Андерса Цельсиуса (1701–1744), а стеклодува Габриэля Даниеля Фаренгейта из Данцига (1686–1736), которая до сих пор широко используется в Англии и США, или если бы мы приняли деление на градусы, предложенное французским дворянином Рене-Антуаном Фершо де Реомюром (1686–1757), знакомое еще нашим дедушкам, то для точек плавления и кипения мы нашли бы совсем другие цифры. Кстати сказать, через несколько лет все показатели температур будут обозначаться иначе, потому что физики решили для разнообразия в будущем использовать шкалу Кельвина. Зачем? Разве лишь для того, чтобы отдать должное на этот раз уже англичанину, точнее шотландцу.

Лорд Кельвин из Ларга (1824–1907) был физиком и еще больше инженером. Его шкала начинается с «абсолютного нуля», в градусах Цельсия это 273,2° ниже нуля. В соответствии с законами физики более низких температур не бывает, так что логично принять 0 градусов Кельвина за начало температурной шкалы, но дальнейшее приращение в градусах осуществляется не по Кельвину, а по старому знакомцу Цельсию. Теперь ученики будут учить: лед тает при температуре +273,2° К, а вода кипит при +373,2° К (физики решили писать не 0 К-градус Кельвина, а просто К — по Кельвину). На нашем комнатном термометре будет стоять теперь не 20 °C, а 293° К, при температуре 300° К нам не угрожает изжариться, это всего лишь теплый летний день, что же касается минусовых температур, градусов мороза, то они вовсе отменяются, и это большое утешение на случай холодной зимы.

Больше не будем распространяться на эту тему, а зададим простой вопрос: что же такое кипящие источники — гейзеры?

В 1847 году один охотник обнаружил в Северной Америке местность, которая показалась ему воротами в ад, так гласит предание. То, что испугало этого бравого человека, в настоящее время считается одним из самых больших чудес природы: гейзеры Иеллоустонского парка в США. Здесь из трещин в почве с шипением и свистом вырывается горячий с резким запахом пар, вздымаются вверх водные струи, на высоту до 60 метров извергаются прозрачные трубы кипящей воды, на земле чмокают пузырями грязевые скважины.

В наши дни область гейзеров — излюбленный туристский маршрут. Вот, например, «Старый верный гейзер»: с точностью часов он каждые 50 минут подбрасывает вверх кипящий водяной столб высотой 30–60 метров. Почему, какой механизм скрыт за этим? Вот уже более ста лет, с 1870 года, пытаются ответить на этот вопрос.

В 1935 году удалось опустить в кипящую трубу гейзера на глубину 40 метров термометр, но он ничего интересного не обнаружил, больший успех принесли современные приборы, установленные в 1968 году. На глубине 30 метров температура обнаружила любопытные колебания. При первом извержении температура воды составляет 110°, а через три минуты 93°. Затем температура колеблется между 93 и 105 °C до нового скачка, а именно 112° при следующем извержении. На больших глубинах, а гейзерная трубка, по-видимому, длиной более 175 метров, температуры были более равномерными, хотя и здесь не обошлось без скачков.

Область, где находится «Старый верный гейзер», лежит на высоте 2204 метра над уровнем моря. Вода на такой высоте кипит обычно, в связи с уменьшением давления, уже при 93°. Поскольку в гейзерной трубке ее температура значительно выше 100°, то, значит, в ней большое давление водяного столба. Но само по себе оно не может служить поводом для странного колебания температур. Если исходить из того, что вода в глубине трубки постоянно подогревается вулканическим теплом, то что же это за таинственный механизм, который включается в пульсирующем режиме, как запрограммированной автомат для стирки белья? Право же, здесь не обошлось без электронного реле времени!

Некоторые ученые полагают, что под землей есть система трубок, трещин и расщелин. Холодная вода с поверхности земли проникает в пещеру. Достигнув определенного уровня, она через систему сифонных трубок попадает в гейзерную трубку, где внизу уже стоит горячая вода. Холодная вода заливает горячую и смешивается с ней до тех пор, пока давление водяного пара внизу в гейзерной трубке не увеличивается настолько, чтобы поднять все водное содержимое и выбросить из жерла.

Вся эта система слишком обременена всякими «если», «но», и ее истинность весьма сомнительна. Однако ученые считают этот хитроумный механизм возможным — за неимением, видимо, другого объяснения.

Если природе удалось создать сотни и тысячи гейзеров, неужели нельзя изготовить нечто подобное искусственным путем? Несколько лет назад случайно — не преднамеренно! — такой эксперимент удался. В американском штате Орегон пробурили скважину через водопроницаемый слой и вставили трубу толщиной 15 сантиметров на 35 метров в глубь твердой лавовой породы. Это было сделано для того, чтобы экономично использовать геотермальные силы. А в результате получили гейзер, который через каждые 8–10 часов выбрасывал водяной столб высотой 20–40 метров!

Через несколько минут после каждого большого выброса следует меньший второй, а то и третий столб. В этом случае было заранее точно известно, что мы имеем дело с элементарным гейзером, и все же, когда начали измерять температуру внутри трубки и регистрировать ее, появились непредвиденные затруднения. И гейзер, который назвали «крамп велл», — «фугас», никак не хочет выдать свою тайну.

Наука мало что может сообщить о гейзерах. В очень большом словаре по геофизике (1971 год) вообще нет упоминания об этом феномене природы. О вещах, которые не укладываются в схемы, проще «забыть». Тоже самое было некогда с метеоритами. Еще в 1803 году солидная Французская академия наук отрицала их существование, и это в то время, как метеоритное железо уже столетиями использовалось для изготовления разных поделок и некоторые частные коллекционеры собрали целые музеи метеоритов. Почему? Да только потому, что падение железных и каменных обломков с неба не поддавалось объяснениям, не укладывалось в систему известных законов природы.

И та же история с гейзерами. Пусть ученые не знают, как объяснить этот феномен, практики, инженеры, давно уже используют энергию тепла горячих источников. В Исландии, Италии, Новой Зеландии, Японии, Советском Союзе, в Мексике, а также в США давно уже топят вулканической «геотермальной» энергией.

Конечно, когда в 1904 году итальянские инженеры отважились на первое бурение на поле с парящими фумаролами (фумаролы — это места, где выходит свистящий перегретый пар) близ Лардерелло к юго-западу от Флоренции, это была рискованная затея. Насколько велик был риск, показали позднейшие бурения в США, где внезапно из скважины с ревом вырвалось около трех тысяч тонн камней, перемешанных с горячим паром и кипящей водой; все попытки закрыть отверстие оказались безуспешными. В Лардерелло на кипящей, окутанной резкими испарениями почве инженерам повезло, они смогли даже поставить небольшую паровую турбину, а затем мощность геотермальной электростанции была увеличена до 135 тысяч киловатт, этой энергии достаточно, например, чтобы питать три таких атомных судна, как «Отто Ган». В войну электростанция была разбомблена, а построенная вновь давала уже более 300 тысяч киловатт.

Положительный опыт в этом отношении имеется и у исландцев. Столица Рейкьявик обогревается вулканическими горячими источниками (что очень хорошо и с экологической точки зрения), в других местах этим теплом поддерживают нужную температуру в оранжереях. Само собой разумеется, горячие источники используются и в банях, в таком качестве они известны со времен Римской империи, и как целебные ванны.

В пятидесятых годах новозеландцы увидели в гейзерах неисчерпаемый источник энергии для себя и начали осваивать область гейзеров Вайракей, которая вскоре давала уже 200 тысяч киловатт.

Большие планы имеет и Советский Союз. Советские геологи считают, что в Сибири, к востоку от Урала, имеется область горячих источников с температурами между 60 и 160 °C на территории, превосходящей Средиземное море. Они говорят о целом океане горячих вод, в котором к тому же могут содержаться в растворенном виде минералы, представляющие большой интерес для экономики страны.

Разработана специальная технология использования теплых вод. Вместо того чтобы подавать воду на поверхность, в этот океан горячей воды предлагается опустить на десятиметровую глубину гигантские бойлерные станции; пар, который будет возникать в котлах, станет крутить турбины и генераторы тока. Преимущество такой технологии в том, что она дает чистую, без минералов воду, условие, необходимое для электростанций.

В Соединенных Штатах, где имеются большие запасы естественных термальных вод, например в районе Сан-Франциско и Лос-Анджелеса, до 1970 года дело никак не продвигалось. И виновато в этом было… законодательство. Речь шла о том, являются ли запасы термальных вод ограниченными и таким образом могут быть исчерпаны, как месторождения нефти или руды, или же они «неисчерпаемы» вроде таких источников воды, как моря, озера, реки.

Наконец в декабре 1970 года в США был принят «закон о геотермальном паре», открывший дорогу использованию этой энергии в стране. Электростанция «Гейзеры», работающая на подземном тепле, уже удовлетворяет половину потребности Сан-Франциско в энергии, причем этот ток дешевле получаемого от сжигания нефти или от ядерной энергии. Город Мехико собирается получать энергию за счет «потухшего» вулкана Керро Прието.

На острове Лансароте я встретил человека, который заливал холодную воду в железную трубу, вкопанную в землю, и всякий раз искренне радовался, когда эта вода, разогретая вулканическим теплом, выбрасывалась в виде пара. Этот естествоиспытатель, похоже, полностью разрешил свои геотермальные вопросы.

Наших знаний не хватает даже для того, чтобы объяснить те шутки с гейзерами, которыми забавляются в Исландии: если в жерло гейзера бросить добрую порцию жидкого мыла (можно и стирального порошка, только это дороже), фонтан вскоре становится особенно мощным и высоким. Высокоученое объяснение — при этом-де снижается поверхностное натяжение воды, — немногим лучше того, что говорят дети: гейзерам мыло не по вкусу. «Великий гейзер» Исландии, кстати сказать, настолько «перекормлен» жидким мылом, которое центнерами швыряют в него американские туристы, что он «расклеился» и по меньшей мере пока отказывается демонстрировать свой аттракцион.

Если наши представления о происхождении Земли верны, то на заре своего существования она должна была потерять свою газовую оболочку, по меньшей мере слой легких газов. Самый легкий газ, водород, улетел куда-то в пространство. Если это так, то уместно спросить, откуда взялся водород, который в настоящее время, сгорая, превращается в воду: 2H2 + O2 → 2H2O, ту воду, что заполняет реки, озера, гейзеры, облака, растения, животных и прежде всего океаны и дает им жизнь? Земля должна была бы быть такой же сухой, безжизненной и голой, как ее соседка Луна. Вопрос, откуда взялась вода на Земле, один из самых загадочных. Конечно, кое-какие объяснения у ученых есть, но это не ответы, а лишь размышления на тему. Назовем два из этих вариантов:

1. Позднее из глубины Земли поднялся новый водород, и из него получилась вода.

2. Солнце посылало на Землю атомные ядра водорода — протоны, их теперь часто называют «солнечным ветром», здесь они трансформировались в воду.

Не будем сейчас обсуждать, какое предложение правильное, для нас важно одно: огромные количества воды — океаны — для ученых представляют объект исследования, к которому они только подступают. Возьмем, например, феномен приливов и отливов.

Конечно же, обитатели побережья Северного моря, пролива Ла-Манш или те, кто жил на берегу Атлантики, издревле наблюдали подъем и отход морской воды. Однако западная наука узнала о приливах только после походов Александра Македонского в Индию, ведь в Средиземном море приливы и отливы почти не выражены. Поэтому воины Александра, достигшего в 320 году до н. э. берегов Индийского океана, стояли, изумленные, и наблюдали за загадочными превращениями моря, следовавшими каждые двенадцать часов.

Наряду с солдатами Александра об этом странном явлении сообщил один торговец из Марселя. Звали его Пифей, и он рассказал о поразительном волнении моря, вернувшись из путешествия в Британию. Он даже смутно подозревал, что тут может быть как-то замешана Луна. А через сто лет географ Эратосфен (273–192 год до н. э.) уже зафиксировал, что приливы и отливы следуют друг за другом планомерно, два раза в сутки. В те времена умножению естественнонаучных знаний нередко способствовали солдаты и купцы, остается только сожалеть, что Александр не прошел дальше в глубь Индии, где в долине Инда жили хараппы. Вот уже две тысячи лет, как хараппы занимались мореплаванием. Им хорошо были известны океанские просторы, и за две с половиной тысячи лет до нашей эры они не только были знакомы с муссонами, но и умели использовать их во время плавания.

Самое поразительное, что они использовали отливы в огромном сухом доке близ Лотала. Вначале здесь был вырыт бассейн длиной 219 и шириной 38 метров. Стены высотой 4,15 метра были сложены из огнеупорного кирпича. Через 12-метровый широкий канал в бассейн во время прилива можно было шлюзовать большие суда. При отливе док становился сухим и можно было производить ремонт судов. Когда канал обмельчал, индийские инженеры вырыли новый, достаточно глубокий, длиной в два километра. В наши дни от Лотала остались только впечатляющие руины. Если бы док не разрушился, он вполне мог бы выдержать сравнение с современными доками в Бомбее и Визакхапатнаме.

В Европе приливами и отливами всерьез начали заниматься около 1700 года, то есть на 3700 лет позднее хараппов, а до этого времени, даже опытные мореплаватели довольствовались двумя-тремя примитивными правилами. Правда, в 1687 году Ньютон создал теорию, которая связывала приливы и отливы с орбитами Луны и Солнца, но теория осталась теорией. Горько признавать, но европейцы в отношении наук стали довольно поздно развиваться, и, право же, наши достижения не так уж велики, как нам кажется.

Только в июне 1711 года в нескольких портовых городах Франции начали точно регистрировать время наступления приливов и отливов, материалы пересылались во Французскую академию наук. Эти измерения продолжались пять лет, до 1716 года.

Результат же оказался мизерным прежде всего потому, что самые лучшие замеры, проведенные в гавани Брест, лежащей в открытой Атлантике, вначале попросту «исчезли». Их обнаружили лишь в 1781 году, да и то не полностью. К тому же выяснилось, что наблюдатели не всегда были надежны, что наступление приливов давалось по местному времени, да и записывалось оно неправильно.

На основе этих данных через 74 года высчитали, что масса Луны должна составлять 1/59 массы Земли. Мало того, эти неверные данные о приливах и отливах были положены в основу дальнейших измерений. В 1824 году (более чем столетие спустя) появилась новая цифра, согласно которой Луна была в 75 раз легче Земли. Это было уже ближе к истине, сейчас мы знаем, что это значение составляет 1/81,3.

Теперь существуют отличные таблицы, по которым можно определить время прилива и отлива для каждого места, достаточно ли высоко будет стоять вода и может ли пройти по ней судно. И каждый школьник знает, что причина этих явлений Луна. (Солнце также прикладывает руку, особенно при так называемом «скачке прилива».) Здесь особенно отчетливо проявляется взаимное притяжение масс Земли и Луны, сила тяжести, гравитация. Максимальное значение силы притяжения приходится на прямую линию, соединяющую Землю с Луной, поэтому на стороне, обращенной к Луне, вздымается целая гора воды, под которой один раз в сутки осуществляется вращение Земли. В том темпе, в каком Луна обращается вокруг Земли, эта гора смещается, поэтому наступление прилива неточно укладывается в 24 часа. На самом деле прилив наблюдается не каждые 24, а каждые 12 часов, точнее, каждые 12 часов 25 минут. Отчего это происходит?

Если бы у Земли было две Луны, которые находились бы на противоположных и на равных расстояниях от нее, все было бы ясно, логика подсказывала бы, что под действием гравитации водные толщи Земли сливаются в две огромные водяные горы. Поскольку, однако, второй Луны у нас нет, объяснение этого явления не такое уж простое. Иногда по поводу второго прилива дают самые странные толкования, вроде того, что на одной стороне Земли приливная волна наступает, потому что активно действует сила лунного притяжения, а на другой стороне происходит то же самое именно потому, что сила притяжения ослабевает. Если океаническая вода собирается в направлении Луны, то на «обратной стороне» Земли должен быть, наверное, отлив?

Для упрощения ситуации вспомним, почему Земля и Луна, собственно, не падают друг на друга, ведь они взаимно притягиваются. Этого, к счастью, не происходит потому, что между вращающейся Луной и нашей планетой имеется также и центробежная сила, компенсирующая гравитацию. Вращающаяся система Луна — Земля имеет общую точку тяжести, и именно относительно этой точки рассчитываются все действующие силы.

Определяя точку тяжести общей системы, находим, что она расположена от центра Земли на расстоянии, равном примерно 1/80 расстояния между Землей и Луной. Именно к этой точке и прилагаются силы гравитаций! Нам следует обращать свое внимание не на центр Земли, а на точку, удаленную от планеты в направлений Луны на расстоянии 3/4 земного радиуса. Прямая линия, соединяющая Луну с центром тяжести системы и с Землей, ведет к тому концу Земли, где наблюдается вторая приливная волна и где, как мы теперь понимаем, сила притяжения настолько велика, что здесь обязательно также должны притянуться водяные массы.

Другое дело на полюсах. Здесь силы притяжения и центробежные силы почти уравновешены, остается только небольшая сила притяжения, действующая в направлении к центру земного шара.

Все это, конечно, огрубленные модели, определенное воздействие оказывает и Солнце, да и ось вращения Земли направлена неперпендикулярно к направлению Земля — Луна, но все же нам понятно, отчего в сутки дважды наступает прилив и дважды отлив.

Земля вращается под этими двумя водяными горами. Каждое место на земной поверхности (за исключением полярных областей, где, по логике, нет истинных приливов и отливов) один раз за сутки обращено к Луне и один раз отвращено от нее. Если в этом месте имеется вода, притяжение увлекает приливную волну, если суша, она также поднимается на 30 сантиметров. Потом следует отлив, при котором вода ли, суша ли опускаются.

На пути приливной волны встают континенты, поэтому приливные водяные горы бушуют у берегов, водные массы врываются в бухты, высоко вздымаясь в них. В заливе Фундибей в Канаде приливная волна поднимается на 21 метр. Эффект приливов и отливов рассчитать непросто, потому что на них влияют и меняющееся расстояние от Земли до Луны, и стояние Солнца, и ветер, и различная глубина моря, и многое другое.

Постепенный подъем приливной волны, заливающей, скажем, белый песок атлантического пляжа или лижущий все более высокие отметки на скальных утесах Ирландии, представляет собой завораживающее зрелище. Вода подступает, оставляя следы на только что бывших сухими полосках песка или камня. Мы стоим и считаем, будет ли особенно высокой седьмая или двенадцатая волна, что, пенясь, набегает на берег. Замечательный, вечный спектакль, навевающий грезы и создающий настроение безмятежного отдыха и в то же время будоражащий, беспокойный вопрос: откуда, собственно говоря, берутся волны?

Наука, прочтя многочасовую лекцию по этому предмету, заключит ее кратким резюме: механизм возникновения волн пока не нашел удовлетворительного объяснения. Резюме это ясное и честное, оно гораздо лучше, чем набор терминов, дефиниций и даже математических выкладок.

А между тем для тысяч, даже миллионов людей жизненно необходимо побольше знать о возникновении, распространении и энергии волн. Вода для нас не только вещество, необходимое для поддержания жизни, но и одна из самых коварных стихий.

Не учитывая великие геологические наводнения, те прорывы моря, которые затопляли то одну, то другую часть Европы, даже в фиксируемой истории человечества насчитывается немало катастроф.

Начнем с 6-го тысячелетия до нашей эры, когда большие области нынешнего Северного моря были сушей; может быть, здесь были болота, но наверняка уж не море. В наши дни в 45 километрах от берега был обнаружен торф, а в нем оружие для охоты на зверя, сделанное из оленьего рога! Образование торфа свидетельствует о скоплении высоких почвенных вод. Хроника событий вырисовывается следующим образом:

6 тысяч лет до н. э.: уровень воды поднимается; затопляются большие области суши.

5500 лет до н. э.: торфяной горизонт этого времени лежит на 24 метра ниже уровня моря. Море быстро наступает.

4 тысячи лет до н. э.: тогдашняя суша лежит теперь на 10 метров ниже уровня моря.

3 тысячи лет до н. э.: наступление моря приостанавливается. Уровень моря на три-четыре метра ниже современного.

1300 лет до н. э.: уровень моря все еще на два метра ниже современного состояния.

Жители побережья были вынуждены строить дома на искусственных холмах. Эти холмы насыпали из земля и грязи, они представляли защиту от наводнений. Разница в уровне прилива и отлива в 7,55 метра, которая наблюдается в наши дни в Хузуме, тогда вряд ли была меньшей, так что насыпи приходилось делать немалые. Еще и теперь многие такие насыпные холмы обитаемы, например, в Халлигене в Северной Фризии. Когда прилив затопляет пастбища Халлигена, от него спасаются на холмах.

В конце концов приходит момент, когда оказывается недостаточно насыпать земляной холм, который во время прилива превращается в остров, ведь и пахотную землю надо иметь. В XI–XII веках люди начинают сооружать плотины, противостоящие наступлению моря. Но и они обеспечивают недостаточную защиту. Острова, лежащие перед ними, затопляются, волны перехлестывают через участки суши, приливы захватывают значительные территории Восточной Фризии у устья Эмса. В не меньшей опасности Голландия: 14 декабря 1287 года вода затопляет Зюдерзее, 50 тысяч человек утонули во время этого наводнения. В 1421 году были затоплены 72 деревни. «Антоново наводнение», случившееся 16 января 1511 года, до сих пор в памяти всех фризов.

Воспоминания о великих наводнениях живут в древних преданиях, украшенных поразительными подробностями. Существует, например, предание о гибели сказочно богатого торгового города — крепости Винеты, — который был наказан Балтийским морем за распущенность нравов. Место, где находилась Винета, не установлено точно, может быть, она лежала в устье Одера, может быть, на западном конце острова Узедом. Во всяком случае, город существовал и был «проглочен» штормовой волной; по-видимому, это произошло 1 ноября 1304 года. Как утверждают специалисты, морю достались при этом лишь руины покинутого поселения.

Богатым торговым городом был и Рунгхольт в Северной Фризии. Теперь можно говорить о нем с большей определенностью: весной 1921 года два туриста, бродившие по побережью, обнаружили следы семи насыпей и пахотной земли. Здесь и там поднимались прогнившие столбы, на которых некогда стояли дома, нашлись и остатки колодцев. А потом откопали заржавевшие мечи, топоры, наконечники копий и иное оружие, горшки, миски, прочую утварь. Археологические находки позволяют судить, что здесь жило до тысячи человек. Вполне возможно, что они занимались и торговлей, скажем, торговали солью. Имеются грамоты, свидетельствующие о существовании Рунгхольта, например, документ от 19 июня 1361 года. Жителям оставалось жить в родном городе еще полгода: 16 января 1362 года гигантская волна Северного моря — «Марцеллово наводнение» — унесла с собой в море не только Рунгхольт, но с ним еще 30 деревень. А в 1354 году был основан город Хузум, который стал преемником Рунгхольта.

Чем больше строится плотин, тем больше становится защищаемых ими участков суши, лежащих ниже уровня моря. Если плотины прорывает, помощь обычно приходит слишком поздно. 31 января 1953 года, это было воскресенье, на плотину в Голландии при сильном ветре и высоком приливе обрушилась чрезвычайно высокая волна, она прорвалась более чем на пятидесяти участках, и вода разлилась по обширной территории, лежащей ниже уровня моря. Три тысячи домов были уничтожены, 40 тысяч зданий повреждено, 72 тысячи человек остались без крова, а 1835 человек почти мгновенно утонули.

Легко искать виновных и спрашивать: как же проглядели такую волну, почему отсутствовали программы экстренной помощи, почему плотины оказались недостаточно высокими и прочными, чтобы противостоять даже самой высокой волне? Главное — выяснить природу таких процессов.

Когда говорим о катастрофах от наводнений, нельзя забывать и о реках. В период дождей разливы больших речных систем Северной Америки, например Миссисипи, могут стать поистине грандиозными. Но и они ничто по сравнению с наводнениями Хуанхэ — Желтой реки, вот уже 4 тысячи лет, как изменения ее русла и уровня воды угрожают Китаю.

Название «Желтая река» говорит само за себя — это гигантские потоки воды, несущие с собой грязь и глину; подсчитано, что за год Хуанхэ выносит в море количество почвы, в шесть раз превосходящее объем земляных работ, выполненных при строительстве Панамского канала. С тех пор как существуют карты реки, она восемь раз меняла свое русло, иногда уходя в сторону за сотни километров! Этой же реке принадлежит, по-видимому, рекорд по человеческим жертвам: осенью 1887 года она поднялась больше чем на двадцать метров, затопила 300 поселений, около двух миллионов человек лишилось крова и около миллиона утонуло.

При таких природных катастрофах как не вспомнить библейский потоп. Потоп этот — исторический факт. При раскопках в Уре археологи натолкнулись на слой глины толщиной более трех метров, намытый наводнением. Для современников это было нечто вроде конца света, но христианство напрасно пытается построить на этом свою концепцию страдания человечества за грехи.

Кстати сказать, легенды, в которых отразилось воспоминание о больших наводнениях, имеются почти у всех народов; в зависимости от местных условий причиной их могут быть ливень, гроза, морские волны или расплавленные ледники. Не будем уточнять, что же было причиной потопа, упоминаемого в Ветхом завете. Лютеровская Библия в этом месте явно нуждается в уточнении. Вместо «Я наведу на землю потоп водный» (книга I Моисея, глава 6, стих 17) следовало бы добавить «из моря», и тогда все стало бы на свои места: библейский потоп не что иное, как сильное наводнение, вызванное штормом или землетрясением, которое нагнало воду Персидского залива, прокатившуюся волнами по плоской равнине.

Есть и еще одно место, говорящее о том, что поводом для потопа стало землетрясение. «Разверзлись все источники великой бездны», — говорится в I книге Моисея (глава 7, стих 11), и именно такая картина — подъем и падение уровня воды в источниках — чрезвычайно типична для землетрясения. При этом мог пролиться и дождь, но того, что нужно Библии — потока воды размером с «потоп», — дождь обеспечить не в состоянии. Нигде еще осадки не проливались за сутки больше чем на 60 сантиметров (этот рекорд принадлежит местечку Нью-Смирна во Флориде). Правда, за пресловутые «сорок дней и ночей» это дало бы уровень в 24 метра, но лишь если бы вода никуда не уходила. Даже в этом случае гора Арарат, вершина которой имеет высоту 5156 метров, едва «замочила бы ноги». Потоп был не чем иным, как наводнением местного значения в нижней части Евфрата, а причиной его стало землетрясение в Персидском заливе.

1 сентября 1923 года сдвинулись слои горных пород, слагающие дно бухты Сагами к югу от Токио, после чего пришлось поправлять карту моря, составленную в 1912 году, ведь на ней указывалась глубина более 1800 метров, между тем как теперь морское дно в одних местах поднялось до 240 метров, в других опустилось еще на 466 метров. Вызванная движением земли приливная волна с огромной скоростью двинулась на японское побережье, достигая высоты от пяти до десяти метров, и побежала по суше, смывая деревни и маленькие городки; в одном месте волна обрушилась на поезд с 200 пассажирами, который как раз прибыл на вокзал Небукава, и откинула его вместе с потоком грязи толщиной 15 метров назад в бухту, не забыв прихватить с собой и все селение; от поезда, вокзала и селения и позднее не нашли ни следа. Такие приливные волны называют японским словом «цунами». Защититься от них практически невозможно, о цунами мы знаем слишком мало.

Правда, имеется один признак, последний сигнал предупреждения природы, который она посылает в большинстве случаев. Он описан людьми, которые находились на берегу или в гавани в тех местностях, которые были поражены цунами: за несколько минут до того, как огромная волна кинется на берег, вода в море внезапно отступает. Почему? Кто даст ответ на это? Однако фактом остается внезапное отступление воды, кратковременный отлив, неожиданный и никак не связанный со временем нормального отлива. В этих случаях лозунг один: спасайся кто может, нужно немедленно покинуть побережье и удалиться от него как можно дальше — цунами иногда достигают скорости до 800 километров в час.

Шансы выжить имеются лишь при «маленьких» цунами, когда водяной вал достигает высоты 65 метров, вроде того цунами, что потряс мыс Лопатка на Камчатском полуострове 6 октября 1737 года, спешить уже некогда.

Так повезло тем, кто оказался в мае 1960 года на западном берегу США и на Гавайях. Сигналом стала серия сильных землетрясений в Чили. У жителей Гавайев было в распоряжении пять часов. Спасение жителей, которых на машинах и автобусах перевозили в горы, — регулировалось по радио и транслировалось по телевидению, и когда вода, как и ожидалось, сначала отступила от берега, а затем бросилась на штурм островов, то она принесла большие разрушения портовым сооружениям и зданиям, но человеческих жертв было мало.

Гораздо хуже обстояло дело во время наводнения в Восточном Пакистане в ноябре 1970 года, по-видимому, самого большого наводнения нашего века. Приливная волна высотой 6 метров, подстегиваемая вихрем, неожиданно обрушилась на плоскую равнину в месте впадения Ганга и Брахмапутры, жертвы — 300 тысяч утонувших и миллионы оставшихся без крова.