В любом школьном учебнике написано, что вода представляет собой соединение, формула ее H2O. Но действительно ли мы знаем, что такое вода? Правильна ли эта формула? Ясно только одно: формула упрощена, а точнее сказать, вовсе неверна! Нас окружают океаны воды, а мы не знаем, откуда они взялись, что там за вода.

Древние греческие философы видели бесконечные потоки воды и пришли к выводу: вода — это элемент такой же, как земля, воздух и огонь. Из этих четырех элементов составлено все на Земле. Превосходная картина, и она продолжала считаться идеальной до XVII века.

Еще в 1770 году любимым зрелищем был взрыв газовых смесей. Поджигание и сгорание водорода и кислорода есть не что иное, как синтезирование воды, и никто не обращал внимания на некоторое количество влаги, которое при этом возникало. Спорили скорее, не может ли вода превратиться в «землю», притом настолько серьезно, что гениальный французский химик Антуан Лоран Лавуазье (1743–1794) в течение трех месяцев подряд дистиллировал воду, чтобы посмотреть, не произойдет ли это превращение.

Продвижению вперед мешала в те годы освященная большими именами и весьма стройная система, основанная на беспочвенных предположениях, так называемая «теория флогистона». Согласно этой теории из сгорающего материала выделяется вещество, субстанция под названием «флогистон». И хотя тот же Лавуазье обнаружил, например, что алмазы состоят из углерода, и исследовал минеральную воду, он тоже придерживался теории флогистона.

Первым, кто понял, что такое вода, был инженер и изобретатель паровой машины Джеймс Уатт, хотя он и не был химиком и не проводил соответствующих экспериментов, просто он был лишен предрассудков. Джеймс Уатт родился в Шотландии в 1736 году, он не без успеха пробовал себя в различных областях, строил математические аппараты, астрономические приборы, модели паровых машин, его увлекало то направление в технике, которое мы сейчас называем технологией. Уатт смог построить усовершенствованную паровую машину, но о воде он знал разве только то, что из нее можно получить пар. Его не тяготил груз предвзятых мнений, и поэтому Уатт первый понял смысл экспериментов, выполненных его современниками. 26 апреля 1783 года он пишет Дж. Пристли (1733–1804): «Разве нельзя считать, что вода состоит из флогистона (читай: водорода) и дефлогистонизированного воздуха (читай: кислорода)…»

Идею эту подхватили, и уже в июле того же года англичане настолько прониклись новой верой, что молодой ассистент, входивший в состав группы ученых, посетивших Францию, рассказал об этом Лавуазье. Тот повторил основные эксперименты, понял, что означает новое открытие, и немедленно сообщил о нем Французской академии наук, не упоминая об английских исследователях. Так что на континенте он, Лавуазье, считался великим первооткрывателем, и начался спор о приоритете, продолжавшийся десятки лет под названием «спор о воде». Уатт уже давно умер (1819 год), и лишь в 1835 году его приоритет был окончательно установлен.

Между тем Европу сотрясали революционные бури. Как генеральный королевский откупщик Лавуазье был казнен 8 мая 1794 года на гильотине — «чихнул в мешок», по тогдашнему выражению. Завязывались войны, рушились империи, реформировались школы и учебные планы, но в них не появилось ничего нового, кроме того, что открыл Уатт.

И все же вода совсем не такое простое соединение, как представлялось знаменитому изобретателю. Через 250 лет становится ясно, что при нормальной температуре вообще нет отдельных молекул воды и что хотя она, без сомнения, текучее вещество, но имеет и определенную структуру, некоторое количество H2O объединяется в хорошо организованные «сгустки». Вода представляет собой жидкость, составленную из кристаллообразно спеченных друг с другом групп H2O.

Хорошо бы иметь такую жидкость, в которой можно было бы растворить «водные кристаллы», как растворяют сахар или соль, тогда можно было бы повнимательней изучить ее, но никто не знает такого средства, и ученым до сих пор остается гадать, составлены ли эти «кристаллы» из 8 или 12, а может быть, и из 300 отдельных H2O. А может быть, из больших и малых групп? И как это все зависит от температуры воды? Каким методам измерений можно доверять? Все же мы надеемся, что «терпение и труд все перетрут», в том числе и молекулы воды.

В 1970 году в этот спор вмешался еще физикохимик Борис Дерягин, который провозгласил учение о совсем новой поливоде.

Опыты Дерягина как будто ничего особенного собой не представляли: он конденсировал водные пары в воду в тонкой капиллярной кварцевой трубочке. При этом ему показалось, что появляются следы совершенно нового типа воды, которая на 40 процентов тяжелее обычной, не изменяется при 500 °C, а при 700° может расплавиться в «нормальную» воду и, наконец, при –40° застывает в стекловидный лед. Ученые высказали свое мнение: нечистый опыт, ошибка, изъяны в эксперименте. Лишь когда в ежедневных газетах замелькали сообщения о поливоде, открытием ученого заинтересовались.

Теоретикам начало казаться, что поливода находит подтверждение в некоторых теоретических положениях и в расчетах, выполненных на ЭВМ. За эксперименты принимаются и другие, и, смотрите, некоторые обнаруживают, что Дерягин прав! Новый вид воды! И уже целые страницы научных журналов в Западной Европе заполнены сообщениями о поливоде. Находятся ее страстные сторонники и бурные отрицатели.

Поливода, да это ведь элементарно: так же как в пластмассе бесчисленные отдельные кирпичики образуют полимер, скажем, как молекулы этилена образуют полиэтилен, так же и вода составляет поливоду — ведь это так просто! Или все же нет?

Казалось бы, ученым легко разрешить подобный «простой» спор экспериментальной проверкой, но это отнюдь не так. Если вести опыт в точном соответствии с методикой, предложенной Дерягиным, получаются результаты, о которых он сообщил, но когда пытаются видоизменить эксперимент, они получаются совсем иными, а то и противоположными. В отчаянии предлагают компромиссное решение: если вода находится в капилляре, то она образует особый слой толщиной в несколько тысячных долей миллиметра, вот он-то причина своеобразного поведения воды. Но это не так, и достаточно провести тщательное исследование, чтобы в этом убедиться.

Летом 1973 года в Марбурге, небольшом университетском городе, собралась группа ученых из разных стран, чтобы провести дискуссию о воде. Были запланированы научные работы, в специальной литературе появились сообщения других исследователей о новой «воде». И тут вдруг приходит весть из Москвы — Дерягин больше не настаивает на своем открытии, возможно, оно не имеет ничего общего со структурой воды.

Так бывает в науке. На страницах школьных учебников об этих сложных и противоречивых поисках истины не пишут.

Кстати, спор по поводу поливоды на этом не закончился… Остаются необъясненными результаты измерений. Насколько можно судить, исследователи не собираются долго сидеть сложа руки. Уже через три месяца после «дела о поливоде» ученый в Филадельфии дал повод к новой дискуссии: он вспоминает о работах 1895 года, где говорилось о странной структуре, которую обнаруживает вода в мембранах организма. Вместо понятия поливода дискутируются теперь такие понятия, как «структурированная вода» и «поляризованные множественные водяные слои». В данном случае провести более или менее доказательные эксперименты будет еще сложнее, ведь в живом организме нельзя проводить опыты так же свободно, как в стеклянной пробирке.

Наверное, пришло время вспомнить, почему так необходимо побольше узнать о воде: из нее на 75–96 процентов состоит организм животных, растений и самого человека.

Нередко именно нарушения в балансе воды или в обмене солей, содержащихся в воде организма, становятся причиной заболеваний.

Нам известны тысячи вещей о нашем обмене веществ, о различных продуктах питания, о фармацевтических препаратах, витаминах и гормонах, мы можем обеспечивать космонавтов в течение многих недель их полета искусственной едой и все еще недостаточно знаем о воде, составляющей основную массу нашего тела.

Или вот другой пример — наши кости. На 85 процентов они состоят из неорганического соединения — фосфата кальция. И тут химики разводят руками, они лишь весьма неопределенно могут ответить на такие вопросы: какими путями фосфат кальция откладывается в костях, как он образуется, как приобретает прочную структуру. Если у больного «размягчение костей» — остеопороз, то врач не знает толком ни причины его болезни, ни как ее лечить, здесь тоже пора провести фундаментальные исследования.

Подобно тому как для человека и животных кости составляют опорный скелет, для растений такую роль играет лигнин. В них до 33 процентов этого желтоватого порошка.

Но так ли это? Специальные работы о лигнине составляют целые тома. И все же мы знаем разве только химический состав его и имеем очень остроумные гипотезы, как он мог бы появиться в растении. На Земле огромные площади лесов, каждый день в них вырастают тысячи тонн лигнина, а детальная структура этого важнейшего для нашей флоры материала все еще неясна. Некоторые ставят под сомнение вообще его существование в природе. Может быть, тот материал, который химия искусно извлекает из древесины, приобрел свою химическую форму именно в результате этого процесса. При переработке древесины на целлюлозу, например, получают гигантские количества лигнина, до 40–50 миллионов тонн в год. Может показаться невероятным, но мы до сих пор не знаем, что же отделяется от древесины и, что хуже, куда эти миллионы тонн девать. Уже хорошо, когда удается избавиться от них, не нарушая правил экологии.

Мы упомянули о целлюлозе. Она для растений важнее лигнина. Целлюлоза, чаще всего встречающееся в природе органическое соединение, — важный материал, из которого строится скелет растения. Может быть, мы знаем, как это вещество появляется в них? Ничего подобного!

Не хотелось бы, чтобы читатель, основываясь на скудости наших знаний о таких субстанциях, как вода, кости, лигнин или целлюлоза, пришел к заключению, что химия и медицина — отсталые науки. В других областях положение дел не лучше, там тоже горы фундаментальных проблем, которые остаются нерешенными.

Более того, именно в медицине и химии за последние десятилетия наблюдается огромный прогресс. Из животного и растительного сырья выделены важные природные вещества, которые имеют лечебное значение, они исследованы, синтезированы, притом в нескольких вариантах, и нередко улучшены настолько, что относятся к золотому фонду лекарственных препаратов. Если мы потеряли страх перед простудами, воспалением легких, заболеваниями половых органов, даже перед такими тяжелыми болезнями, как диабет и туберкулез, то только благодаря исключительным успехам медиков и химиков, которые нередко выступают единым фронтом. Мы значительно превысили тот запас лекарств, которым снабдила нас природа!

Так же обстоит дело в области продовольствия. Мы сейчас получаем большие урожаи и более здоровые продукты питания от улучшенных и выращенных искусственным путем растений, чем когда-либо. Ими можно накормить гораздо больше людей, чем казалось несколько десятилетий назад. С тех пор как химия, биология и медицина достигли современного уровня, в Европе в мирное время больше не было ни эпидемий, ни голода, и лишь в сказках или в таких названиях на географических картах, как «пустынь», остались упоминания о целых местностях, которые некогда вымирали.

Никогда еще люди не жили так уверенно и беззаботно, как в наши дни, против каждой маленькой хвори есть снадобье. Мы удивляемся, когда таблетка не помогает немедленно, вовсе не удивляясь тому, что она существует. Мы настолько привыкли к тому, что вокруг нас решаются различные проблемы, преодолеваются затруднения, что считаем «чудом», когда какие-то вопросы в данный момент оказываются неразрешимыми. Стоит нам столкнуться с чем-то необъяснимым и странным, как мы немедленно объявляем это «чудом» и нередко спешим приписать его делу рук «сверхъестественных сил» или «космических пришельцев», вместо того чтобы воспользоваться собственным разумом. Культ Денекена, процветавший некоторое время тому назад, не что иное, как попытка профанов прояснить те проблемы, для познания которых не хватает пока опыта и сведений. Две тысячи лет назад, чтобы объяснить молнию и гром, придумали бога Донара, а чтобы уяснить причины восхода и заката солнца — бога света.

Для тех, кому не по душе кропотливые исследования, может показаться приемлемым и приятным нереальный, населенный духами и украшенный хитроумными словесами мир. Оставим в нем мечтателей и лентяев. Тот же, кто принадлежит нашему времени и хотел бы жить в нем, должен попытаться понять мир, даже если это окажется труднее, чем строить воздушные замки. Точные науки смогли объяснить уже так много божественных чудес, что сама наука представляется теперь сказочным великаном, который раньше показывал фокусы, а теперь подробно объясняет зрителям, как они делаются.

Одним из самых распространенных суеверий остается представление, будто прежние поколения жили-де «здоровее». Между тем все археологические и исторические памятники неопровержимо свидетельствуют, что они страдали от болезней, голода, нищеты и грязи.

«Высокая культура» Древнего Египта была эпохой невероятно грязной, люди тесно жались друг к другу в своих лачугах по краю немощеных улиц. Огромные семьи жили вместе со своими слугами, а заодно и со всеми видами «казней египетских»: вшами, мышами, блохами, комарами, мухами, другими паразитами всякого рода, змеями. Вши были распространены невероятно, их яйца обнаруживают даже в волосах мумий «высокопоставленных» персон. Чтобы избавляться от вшей, священники через день сбривали все волосы. Нужду справляли в любом месте, особенно охотно в различных водотоках, и то, что не уносили потоки воды в ручьях, реках и арыках, испарялось на солнце. По земле бродили инфекционные, глистные болезни, а также заболевания, связанные с обменом веществ. Голод был частым гостем, ремесленники понятия не имели о самых простейших способах защиты от ядовитых паров, например, при обработке металлов.

Немногим лучше дело обстояло на Американском континенте во времена мексиканской культуры. Есть, например, свидетельство одного географа: в 1542 году, когда он высадился в бухте Сан-Педро, он хорошо видел две горы, но долину, лежавшую перед ними, полностью окутывал дым от костров, разложенных туземцами. В легких одной мумии на Канарских островах обнаружены толстые отложения сажи… «Загрязнение окружающей среды», ныне притча во языцех, и прежде приобретала весьма заметные масштабы.

Для боевых отрядов древних римлян существовало правило, что даже самые отборные дисциплинированные отряды не должны были задерживаться на одном месте более пяти дней, иначе среди них из-за сопутствовавшей грязи вспыхивали болезни (по-видимому, тиф и дизентерия). Известный полководец киргизов Тамерлан запретил своим солдатам пить некипяченую воду, а Александр Македонский пил воду только из серебряных бокалов, а серебро, как мы теперь знаем, имеет бактерицидное действие. Там, где стояли лагерем армии, свивали гнезда эпидемии, и нередко положение осаждавших становилось настолько тягостным, что осажденные спокойно выжидали за крепостной стеной, когда солдаты, измотанные болезнями, отступят.

Немногим лучше выглядели средневековые города Европы. «Культурный слой» откладывался за «культурным слоем», и нередко посещавшие город пожары были, с медицинской точки зрения, единственным спасением. Запах городов разносился на многие километры от городской стены. И мастерские ремесленников, и крестьянские дворы, и домашнее хозяйство — все они выкидывали отбросы и распространяли отнюдь не ароматные запахи.

Из времен турецких войн осталось описание осады, когда после нескольких бесплодных атак турки начали строить большие осадные башни, чтобы с их помощью преодолеть валы и бастионы. Как только осажденные увидели, что башни выстроены во впадине перед воротами, они начали собирать по городу все нечистоты. Когда турки пошли в атаку, шлюзы открылись и осадные машины действительно застряли в вязкой коричневой жиже.

Когда Генрих V в 1415 году пересек Ла-Манш, чтобы завоевать Францию, его войско насчитывало 15 тысяч человек, а к моменту решающей битвы при Азенкуре он мог выставить только девять тысяч, остальные были поражены дизентерией.

Не так уж радикально изменилась ситуация и в наши дни. С 1 июня 1940 по 1 июня 1941 в итальянской Восточной Африке союзники выставили против немцев 100 тысяч человек; из них заболели 74 250; а было ранено во время военных операций только 834 человека.

Да и сейчас мы нередко еще по уши находимся в собственной грязи, вспомните наши поезда, автобусы, трамваи, которые представляют собой прямо-таки инфекционные отделения на колесах. Наши деревни и города воздвигнуты на старых отбросах, и мы непрестанно пополняем их отходами, сточными водами, фекалиями и разными нечистотами; их увозят подальше от глаз; раз мы их не видим, значит, все в порядке.

Запах поуменьшился, но «хорошего» воздуха почти не осталось в населенных, как военный лагерь, областях планеты. Через некоторое время он, возможно, станет чуть ли не основным жизненным продуктом. Воздушные массы ограничены, в то время как воду еще можно очищать или черпать из океанских запасов. Когда школьникам и студентам рассказывают, насколько мала молекула, не мешало бы рассказать им заодно, насколько ограничены запасы воздуха. Английский химик, лауреат Нобелевской премии 1947 года сэр Роберт Робинсон любил приводить наглядный пример:

«Когда Шекспир написал первую строчку второго акта Гамлета, он вздохнул и выдохнул. С той поры ветер смешал этот воздух с остальным воздухом. Так что, когда вы теперь вдыхаете, вам в легкие попадают две молекулы того воздуха, который некогда выдохнул Шекспир».

В правильности этого расчета не приходится сомневаться. Мы вдыхаем воздух, который уже побывал в человеческих легких, так же как мы пьем воду, которую уже пили другие, как мы принимаем пищу, выросшую на почве, гумус которой образовался из остатков прежних поколений. Земля много раз переживает саму себя, да и мы лишь продукты регенерации прежних поколений.

Задержимся еще на некоторое время на воздухе, нас окружающем, на атмосфере. Своими основными знаниями о воздухе мы обязаны самому чудаковатому ученому, который когда-либо жил на белом свете, Генри Кавендишу. О юности Генри известно немного. Он родился 10 октября 1731 года в Ницце. Его отцом был лорд Чарльз Кавендиш, болезненная мать была дочерью герцога Кентского. Кавендиш учился в школе, посещал Кембриджский университет, но не сдавал в нем экзаменов, стал членом Королевского общества, а потом о нем известно только, что он постоянно работал, не прерываясь даже на воскресенье.

Он унаследовал огромное состояние, но был очень скромным в одежде и еде, охотно приглашал друзей, но и их потчевал простыми блюдами. Его большая научная библиотека была открыта для всех. Если ему нужна была книга, он самому себе выписывал читательскую карточку. По сей день верны, по-видимому, слова из некролога — Кавендиш умер 24 февраля 1810 года: «Он был самым богатым из ученых и ученейшим из богачей». Возможно, он вообще не очень понимал, что такое деньги. Услышав, что один из его бывших библиотекарей оказался в затруднительном положении, Кавендиш, запинаясь, промолвил: «Как бы мне хотелось ему помочь! Как Вы думаете, чека на 10 тысяч фунтов хватит?»

Кавендиш был бы более известен в истории науки, если бы быстрее публиковал результаты своих исследований. Пожалуй, самая важная его работа — это «Эксперименты о воздухе» (1784 г.). За год до нее он описал аудиометр — прибор для определения качества воздуха. В четырехстах экспериментах Кавендиш установил: чистый воздух содержит 20,84 процента кислорода, в наши дни, спустя двести лет, мы приводим количество 20,946 процента — результаты Кавендиша улучшены всего на одну десятую.

На счету ученого еще одно эпохальное открытие: он смог показать правильность предположения Джеймса Уатта, что вода состоит из кислорода и водорода. Именно ассистент Кавендиша Бленджен сообщил в 1783 году Лавуазье этот основополагающий результат.

О воздушной оболочке Земли нам известно очень многое. Мы распределили ее на слои, измерили их химический состав, зарегистрировали температуру, исследовали влияние солнечного света, зафиксировали и использовали явления приливных и отливных течений в воздухе. Казалось бы, мы накопили уйму знаний, чтобы ответить на любые вопросы, но это не так.

Вот, скажем, проблема очистки воздуха, которая чрезвычайно интересует нас. При обсуждении возникают числа с невероятным количеством нулей. Пугает не их число, мы ведь всегда можем найти какой-то эквивалент измерениям, скажем, вместо количества тонн приводить вес соответствующего количества Эйфелевых башен, что резко снизит число нулей. Беда в том, что они показывают, как близки к нулю наши истинные знания.

Считают, что вся природа (сюда включена и деятельность человека) отдает в окружающую атмосферу 1 000 000 000 000 тонн материалов. 500 000 000 тонн из них — продукты техники и хозяйства, то есть нашего непосредственного существования. В общем, это небольшое количество — всего лишь 0,05 процента от той массы газов, которую выбрасывает в воздух природа.

Какими бы числами мы ни оперировали, говоря о веществах, содержащихся в этих 0,05 процента, все они сомнительны. Конечно, воздух в больших городах наполнен зловонными выбросами, это ужасно, но ничего поделать тут нельзя. Пока они существуют, воздух в них расходуется многократно, и от этого не становится лучше. Выхлопные газы у автомобиля в городе те же, что и в пустыне, другое дело, что планирование городов все еще определяется средневековыми представлениями. До тех пор, пока мы хотим жить и работать недалеко от соседа, мы должны смириться с грязью, отбросами, шумом, которые он производит. Вообще говоря, на Земле достаточно места, чтобы быть свободным от всех этих неудобств.

Поверхность суши нашей планеты составляет 148 847 000 квадратных километров. Предположим, что мы будем населять только наиболее благоприятные районы, скажем, половину от этого количества. Даже в этом случае на один квадратный километр приходилось бы всего три-четыре семьи. Если бы были обжиты все пустыня и горы, человеку пришлось бы бродить по Земле в поисках живой души, столь редкой стала бы плотность населения. Перенаселение наступит на Земле вовсе не так скоро. Страдаем мы отнюдь не от недостатка жизненного пространства, а от привычки к удобствам. Каждый из нас ждет в повседневной жизни различных услуг, поэтому приходится мириться с близостью многочисленных соседей.

С другой стороны, было бы ошибкой недооценивать опасности загрязнения окружающей среды. Наш организм очень сложен и, значит, очень чувствителен. Определенные вещества уже в минимальных количествах могут нарушить равновесие жизненных и метаболических процессов, вызвать болезни и преждевременную смерть. Мы, например, плохо переносим такие металлы, как свинец, кадмий, ртуть. Чистая ртуть как жидкий металл практически совершенно безобидна, с ней можно играть, можно делать что угодно. Одна медсестра хотела покончить с собой и ввела себе 10 миллилитров ртути, с ней ничего не случилось, жидкий металл удалось снова вывести из системы кровообращения. Опасны пары ртути. Первым обратил внимание на опасность испарений ее немецкий химик Альфред Шток — он получил в лаборатории ртутное отравление, он же разработал исключительно точные реактивные методы определения паров ртути в воздухе. А вот среди арабских калифов к концу 1-го тысячелетия считалось особенно «шикарным» держать в саду пруды, заполненные ртутью. На серебряной поверхности расстилали подушки и возлежали на них, не задумываясь о том, что загрязняют окружающую среду!

И в наши дни о некоторых видах загрязнений предпочитают помалкивать. Вот уже много лет мы в основном топим углем, превращая его в электрический ток, и никто не хочет задумываться над тем, что мы выбрасываем в воздух. Каменный уголь содержит в тонне до 33 граммов ртути, в среднем же 1 грамм на тонну. Таким образом, только в Соединенных Штатах ежегодно выбрасывается в воздух тысяча тонн ртутных паров, а всего 3 тысячи тонн, и это никак не завышенная цифра. К счастью, не вся ртуть остается в воздухе, она исчезает в конце концов в почве и уходит в воду.

Внимание общественности привлекается только тогда, когда на отдельных участках загрязнение воздуха приобретает избыточно высокие концентрации. Возьмем, к примеру, спор о двуокиси серы SO2. Это бесцветный, резко пахнущий газ, который, в частности, возникает при сгорании угля и нефти, при химических реакциях серы (и ее соединений) с кислородом. В каждом учебнике по химии говорится, что этот газ ядовит. Между тем это отнюдь не единственное ядовитое соединение серы, имеющееся в воздухе! Даже сама природа выбрасывает в атмосферу сероводород и бесчисленный ряд других серных соединений. Если суммировать их все, мы получим 220 000 000 тонн серы в год, то есть в семь раз больше, чем ее производит вся мировая промышленность (приблизительно 30 миллионов тонн). Загрязнение воздуха серными газами наполовину приходится отнести на счет естественного образования сероводорода, а двуокись серы составляет лишь треть от общего количества. Предполагают, будто все эти ядовитые газы остаются в воздухе и их концентрация постоянно возрастает, на самом деле они за несколько дней превращаются в сульфаты, то есть в плохо растворимые соли, которые дождями и снегом заносятся в почву, забираются частично растениями, которые нуждаются в сере, и вновь вводятся в извечный круговорот природы.

Мы точно не знаем, сколько соединений серы находится в верхних слоях земной атмосферы, по-видимому, там имеются лишь незначительные их количества. При попытке набросать схему круговорота серы в природе мы убеждаемся, что относительно некоторых количеств располагаем совершенно недостаточными данными, что естественного круговорота серы мало, и в наши дни мы дополнительно вводим в почву серные соединения в качестве удобрений, особенно для роста трав, а ведь с точки зрения ботаники все наши злаки относятся к травам! В почве не хватает и азота, и фосфора, и калия, чтобы получать достаточные урожаи. Уже в 1970 году один английский ученый озабоченно спросил: «Что произойдет, если мы действительно перестанем „загрязнять“ воздух двуокисью серы? Какими способами нам придется восполнять тогда нехватку серы в почве?»

Желания высказать нетрудно, однако мало кто задумывается о последствиях их исполнения. Уточнить истинное значение выражения «загрязнение воздуха» сложно: с одной стороны, мы имеем дело с очень малыми концентрациями, с другой — земная атмосфера не простая лаборатория. В то же время эксперименты необходимы, одни только умозрительные модели и расчеты не могут решить весь круг проблем. Нельзя не учесть влияния поверхности суши и моря. Взаимовлияния давления воздуха, влажности, температуры, движения воздуха столь многообразны, что трудно воспроизвести их в лабораторных условиях.

Можно составить бесконечные списки желательных исследований, вместо этого назовем лишь некоторые из принципиальных вопросов, на которые пока не дано исчерпывающих ответов:

1) Какие «загрязнения воздуха» переходят в морские воды и в каких размерах?

2) Похоже, что окислы азота в атмосфере возникают в результате окисления аммиака. Как оно детально проходит и какое количество окислов дает процесс?

3) Мы знаем, откуда берется в атмосфере метан (болотный газ), а откуда берутся прочие углеводороды? Какая часть от них выработана лесными массивами Земли?

Нет смысла обвинять машины и бензоколонки в загрязнении воздуха углеводородами, если неизвестно, ни откуда берутся огромные количества природных углеводородов, ни где они остаются, если мы не можем утверждать, что они не играют важной роли в поддержании баланса веществ в природе, подобно тому как этилен, вырабатываемый растениями, уже в минимальных количествах способствует созреванию фруктов. И вновь остается только качать в изумлении головой. Может быть, мы преступно мало занимались фундаментальными исследованиями в угоду прикладным наукам, результаты которых позволяют нам легче устраиваться в жизни, их следовало бы назвать «науками удобства»?

Нет такой области знаний, в которой конец исследованиям был бы близок. Несмотря на все трудолюбие и пот, мы живем в мире, в котором с трудом ориентируемся. Труднее всего для нас постигнуть время и его прохождение.

Немецкий физик лауреат Нобелевской премии Манфред Айген однажды составил таблицу, в которой зафиксированы временные величины и события, в них происходящие. В качестве единицы времени он взял секунду, а события представил в логарифмической шкале. В таком виде она производит впечатление на физика, но для читателя, не имеющего специальной подготовки, она понятна не более, скажем, чем физическое представление о секунде как о единице времени, в 9 192 631 770 раз превышающей длительность колебаний атома цезия (Cs113).

Внимательны мы или невнимательны, но время проходит, это было известно с незапамятных времен. Намного больше нам нечего к этому добавить и сейчас. В шкале Айгена для нас самое интересное — это «средний интервал между двумя войнами», откуда видно, что войны всегда следовали одна за другой и что человеческая жизнь длиннее, чем этот интервал. То есть каждый из нас, наверное, переживает хотя бы одну войну, но, с другой стороны, имеет право и на мирное время. Вообще же, длительность нашей жизни лишь тонкая черточка на столбике времени.

Если течение времени нам трудно понять, мы хорошо понимаем, что угрожает нашему миру. Каждый знает: мы живем благодаря существованию энергетического равновесия. Солнце дает энергию Земле, Земля возвращает ее в мировое пространство. Если Солнце внезапно станет отдавать больше или меньше энергии, Земля сможет оставить себе тоже увеличенное или уменьшенное количество, а мы умрем.

Это настолько хорошо известно, что мы не задумываемся над этим. А суть дела в том, что нашим жизненным пространством является отнюдь не Земля, а тонкая оболочка вокруг нее! Вместе с растениями и животными мы населяем очень тонкий пограничный слой между земным шаром и вселенной. Когда мы говорим, что живем на Земле, то в этом выражается наша мания величия: Земля-де принадлежит нам, она наша, мы ее хозяева. А это ерунда. Наш мир — тончайший слой вокруг земного шара высотой около семи километров, глубиной, где море, пять — в общем двенадцатикилометровый слой. Это и имел в виду сэр Роберт Робинсон: мы вдыхаем воздух, выдохнутый предшествующими поколениями потому, что другого воздуха в этой тонюсенькой оболочке и нет! Если мы и говорим о «девственно чистом» воздухе, то только из-за того, что газовые молекулы глазом не увидишь.

А как обстоит дело с другими веществами, которые дает нам природа? Тонкая оболочка вокруг Земли все время используется заново, вовлекаясь в вечный круговорот: почва — растения — животные и человек, а дальше гниение и назад в почву, в сырье.

Там, где цветет жизнь, почва давно превратилась в «гумус», в плесневеющие остатки живого организма. Мы живем не столько на Земле, сколько на гигантском кладбище! То, что мы видим вокруг себя в виде живых организмов, уже было красивым или безобразным, полезным или бессмысленным живым существом, имело различные органы, было отторгнуто и превратилось после смерти в тлен.

Этому нужно только радоваться. Хорошо, что органические вещества так быстро распадаются и превращаются в отдельные элементы, именно поэтому они предстают все время новыми и кажутся неисчерпаемыми, давая миллиарды лет необходимое сырье для новой жизни.

Совсем иначе обстоит дело с неорганическими, относительно которых мы ошибочно полагаем, что их «несчетные количества». Такое впечатление возникает при виде громадных гор, сложенных из минералов, при мыслях о недрах Земли и исходит из эгоцентрической схемы, где сердцевину составляет человек, а вся огромная планета кружится вокруг него. Но запасы минералов, например руд, возникают очень медленно, оборот их, если он вообще существует, длится миллионы лет.

Долгое время человек не интересовался положением дел в этой области, прежде всего потому, что его потребности были минимальными. Ситуация изменилась, когда он начал обрабатывать землю.

Новый способ хозяйствования, принципиально отличный от добывания пищи охотой или собирательством, дал возможность существовать людям, которые сами не создают средств питания, а занимаются ремеслом. Они образовывали общины, из которых впоследствии развились города. И первые появились именно там, где имеется благоприятный климат, — по берегам Евфрата и Нила, на Инде, на Желтой реке в Китае.

Теперь камни, глина и руды начали перерабатываться в довольно больших количествах, стали строить дома, сооружать памятники, символом того времени становится Вавилонская башня. Время от времени города тонут в собственной грязи — на радость археологам, которые теперь с восторгом обнаруживают один «культурный» слой за другим. Насыпные холмы, буквально горы глины, обработанного камня, обожженной керамики и стекла свидетельствуют о расходовании неорганических, нераспадающихся материалов. Серебра и золота хватит, а вот исходное сырье для предметов повседневной жизни становится все дороже.

Как ни странно, первым металлом, который начали разбазаривать, оказалась медь. Дело в том, что медные руды обнаружить довольно трудно, но, видимо, замечательный, медно-красный, истинно металлический цвет ее, а также ковкость и низкая температура плавления привлекали внимание первых металлургов. Медь становится предметом первой необходимости, и вскоре месторождения, лежавшие неподалеку от больших городов, оказались истощены. Уже на довольно ранних этапах развития государства египтяне были вынуждены привозить медную руду издалека.

Но тут открывается новая возможность. Доменные печи улучшенной конструкции позволяют теперь выплавлять из железной руды железо. До этого его знали только как «небесное железо богов», поскольку оно встречалось людям в метеоритах, где оно сплавлено с никелем. Замечательный металл! У него серебристый цвет, он намного тверже и прочнее меди, а что касается его месторождений, то они, кажется, встречаются повсюду. Вскоре получение металла стало настолько простым, что его можно было уже использовать для изготовления пахотных плугов. Это резко увеличило расход металла. А если он ржавеет или портится каким-либо другим путем, его восстановить невозможно.

Но амортизация неорганических материалов была еще относительно небольшой, пока не начали сводить с Земли леса. В течение многих сотен лет в дереве видели подходящий и доступный источник энергии, но, когда лесов стало мало, древесина вдруг оказалась редкой и дорогой. Можно ли ее чем-нибудь заменить? Страной, уничтожившей особенно много собственного леса, оказалась Англия. И англичане научились получать железо с помощью угля. Этот прогресс был достигнут не столько потому, что производство железа возрастало, сколько из-за того, что уголь позволял получать более высокую температуру, давал бóльшую энергетическую плотность, чем дерево.

Солнечная энергия, которая использовалась, например, для получения соли из морской воды, ветряные мельницы, водяные колеса, дрова — все они давали недостаточное количество энергии на единицу времени, а уголь давал значительно больше — достаточно, чтобы приводить в действие паровые машины! Уголь, железо и пар заложили основы нового времени. Изобретательский гений, побуждаемый как необходимостью, так и стремлением к более комфортабельной жизни, вновь преодолел границы, о которых прежде и не подозревали. Нельзя всерьез строить прогнозы, не учитывая способностей пытливой человеческой мысли (как это легкомысленно делает Римский клуб).

В 1870 году на американских фермах почти все работы в поле и в хозяйстве выполнялись с помощью лошадей и мулов, вот уже много лет при расчете потребностей энергии для производства продуктов питания для четырех человек брали за единицу одну лошадь или одного мула. Толковый экономист, рассуждая о перспективах, ответил бы, что к 1975 году в США будет 50–55 миллионов лошадей и ослов. Но в том же, 1870 году инженер бы уже предвидел, что со временем паровые машины будут внедрены всюду, в том числе и в фермерские хозяйства; в его прогнозе не говорилось бы об увеличении «парка» лошадей и ослов, а скорее об его исчезновении! Однако ни экономист, ни инженер не подозревали того, что через несколько лет будет изобретен двигатель внутреннего сгорания, который заменит и паровые машины, и лошадей.

Технико-экономические прогнозы, составляемые на срок более пяти лет, обычно оказываются несостоятельными. «Нефтяной кризис» 1973 года показал нашему поколению, насколько смехотворными могут оказаться прогнозы, как резко меняет реальная жизнь некоторые инженерные расчеты.

За углем вскоре последовали нефть и газ, которые облегчили эксплуатацию месторождений минералов в такой степени, о какой средневековый горняк не имел ни малейшего представления. Стало возможно не только удовлетворить самые смелые желания людей, но оказалось необходимым пробуждать новые, чтобы потребить все, что производится промышленностью. Вот в этом-то и заключается подлинная опасность: ведь все неорганические минеральные вещества, которые мы забираем из доступной нам оболочки Земли, из биосферы, и затем расходуем, теряются для человека на весь срок его существования на планете! Вопрос о том, как должны обходиться люди запасом сырья, имеющимся на Земле, является фундаментальным, и наука многократно пыталась ответить на него. Самый пессимистический ответ принадлежит одному английскому пастору; его старая почтенная гипотеза и в наши дни используется как пугало. Этим пастором, который, следуя своей концепции, сейчас пришел бы к совершенно иным выводам, был родившийся 17 февраля 1766 года Томас Роберт Мальтус. Результаты своих размышлений он опубликовал в 1798 году под впечатлением «злодеяний» французской революции, от которых он, как добропорядочный англичанин, был в ужасе. Вот его основной тезис: нельзя принять оптимистической точки зрения, что человечество может стать лучше, а то и совсем избавится от нищеты и пороков, потому что число людей увеличивается быстрее, чем возможности обеспечивать им достаточное пропитание.

И в наши дни находятся люди, которые верят в тезис Мальтуса и предвидят наступление ужасной эры всемирного голода. Но правы ли они? Пастор Мальтус оперировал чисто статистическими данными роста: справа — растущее население, слева — ограниченное производство ресурсов питания. Но он и не подозревал тех изменений, которые принесло ближайшее будущее, не подозревал, что прерии Северной Америки станут обширными областями производства пшеницы, что выведут новые, гораздо более плодородные сорта растений и новых видов животных. Он не думал, что могут измениться образ жизни и питание. Новая техника для обработки полей и искусственные удобрения — разве это могло прийти в голову Мальтусу? Будь у него побольше фантазии, он не впал бы в такой пессимизм. Или стал бы еще больше бояться будущего? Когда жил Мальтус, люди умирали очень рано, в особенности молодые матери, новорожденные, маленькие дети, искусство врачей было весьма несовершенным. В наши дни медицина спасает жизни в таких размерах, какие Мальтус и предвидеть не мог. И еще в одном его прогнозы полностью не оправдались: он не верил в «моральное сдерживание», как он это называл, в ограничение тенденции человечества к размножению, а теперь, напротив, врачи боятся, что использование противозачаточных пилюль может совсем приостановить рост народонаселения.

От Мальтуса остается лишь образ человека, который глубоко задумывался о будущем, но он же убеждает нас, какими ложными могут быть долгосрочные прогнозы.