Необычайно широк круг проблем, которые рассматривает в книге известный западногерманский ученый и публицист Фридрих Л. Бошке. Космос, происхождение жизни на Земле, океан, глубины Земли, причины возникновения вулканов, торнадо, циклонов и т. д. Как из рога изобилия сыплются на читателя гипотезы, взаимоисключающие и опровергающие друг друга, давно забытые и только что появившиеся… Автор откровенно полемичен, нарочито гиперболизируя и сталкивая некоторые гипотезы и прогнозы. И всякий раз один и тот же вывод: мы еще мало знаем, мы не можем ответить на этот вопрос, нам не удалось пока объяснить то или иное явление. И всякий раз один и тот же призыв: идти дальше, идти в глубь научных проблем, идти в поиск с открытыми глазами, не успокаиваясь благодушно, принимая то или иное положение как нечто незыблемое, а четко представляя нынешнее состояние науки о космосе и о Земле.
Действительно, если говорить о космосе, то наука о нем еще совсем молода, но какой путь уже пройден! И постепенно мы узнаем все больше. Так, например, говоря об окружающем Землю мировом пространстве, уместно вспомнить популярное изложение данных о положении нашей планеты в космосе по материалам одного из лучших популяризаторов астрономии — советского академика В. Фесенкова, специалиста в области астрофизики, атмосферной оптики и космогонии.
В. Фесенков в книге «Космогония солнечной системы» (Каз. филиал АН СССР, 1965) предлагает рассматривать окружающее нас мировое пространство по отдельным квадратам, увеличивая сторону каждого последующего квадрата в 100 раз. В первом из таких квадратов со стороной 15 · 103 километров может разместиться только наша Земля и Луна. Вся солнечная система попадает в четвертый квадрат со стороной в 15 · 103 километров, а наша Галактика — Млечный Путь в восьмой квадрат со стороной 15 · 1017 километров.
В настоящее время в пределах, доступных астрономическим наблюдениям, находится пространство, превышающее площадь десятого квадрата со стороной 15 · 1012 километра. Повсюду в пределах этого пространства можно видеть сотни миллионов галактик различной формы (спиральной, шаровой и пр.). По современным представлениям все эти галактики комбинируются в крупное скопление — метагалактику, размеры и форму которой можно будет увидеть в следующих квадратах.
Постепенно мировая наука накапливает факты. Существует много методов проникновения в глубины космоса. Один из прогрессивных методов (сегодня) — это радиоастрономия. Длительное время развитию радиоастрономии мешали размеры размещения радиотелескопов, ограниченные пространством нашей планеты. В 1979 году десятиметровая антенна радиотелескопа была вынесена на орбитальный комплекс «Салют-6» — «Союз-34». Космонавты Владимир Ляхов и Валерий Рюмин провели ряд совместных наблюдений с земным радиотелескопом с 70-метровой антенной. Они, пишет профессор А. Герасимов, «провели измерения радиоизлучения Солнца и дискретного источника Кассиопея А… состоялось несколько циклов регистрации излучения пульсара 0329. Сделана серия работ по радиокартографированию Млечного Пути» и пр. Конечно, это только начало нового качественного скачка в изучении космоса. Дальнейшее не за горами.
Постепенно уточняются и расстояния до планет. В этом заслуга космических кораблей, запускаемых в СССР и США. Часть кораблей была запущена к планетам Венера, Марс, Меркурий. Например, станции «Венера-3, -4, -5, -6, -7», пролетев расстояние свыше 350 миллионов километров, доставили на эту планету плавно спускаемые капсулы с передатчиками, давшими ряд ценнейших сведений об атмосфере Венеры и ее поверхности.
Каждый день приносит нам новые данные не только о космосе, но и о Земле. Автор не ставит своей целью, да это и невозможно, рассказать обо всех последних достижениях науки в области изучения Земли. Выдвигая на первый взгляд простые, общеизвестные явления, Бошке показывает, как много непознанного даже в них. Он привлекает интерес к самым серьезным, фундаментальным проблемам науки о Земле, не забывая напомнить при этом каждый раз, что их решение необходимо прежде всего людям, для того чтобы они могли чувствовать себя спокойно и безопасно на Земле, могли жить так, чтобы пользоваться природой, не нанося ей ущерба. И в этом отношении Бошке, безусловно, прогрессист. Он смеется над утверждениями типа «раньше люди жили лучше», полагает преувеличенными многие страхи, высказываемые в настоящее время борцами за экологию, показывает несостоятельность теории Мальтуса. Он верит в прогресс науки, остроумно высмеивая выдуманные Денекеном легенды об обитании в прошлом пришельцев на Земле из других миров и попытки таким образом объяснить непонятные пока явления. «Для тех, кому не по душе кропотливые исследования, — пишет он, — может показаться приемлемым и приятным нереальный, населенный духами и украшенный хитроумными словесами мир. Оставим в нем мечтателей и лентяев. Тот же, кто принадлежит нашему времени и хотел бы жить в нем, должен попытаться понять мир, даже если это окажется труднее, чем строить воздушные замки».
Автор явно сгущает краски, но верит в то, что наука найдет ответы на поставленные им вопросы. Приблизить это время, побудить молодых ученых, людей самых различных специальностей работать сегодня, не успокаиваться, не откладывать на завтра поиск, не утешать себя тем, что нам многое известно, — вот его цель.
Порой полемический задор, можно было бы даже назвать это своего рода приемом, заводит Бошке слишком далеко. И его выводы и суждения не бесспорны.
Разберем подробнее только один из вопросов. В руководствах по геологии, петрографии и вулканологии принято рассказывать об удивительной закономерности, объясняющей свойства вулканов. Оказывается, эти свойства зависят от химического состава магматических очагов, питающих их. Решающее значение при этом имеет содержание двуокиси кремния (SiO2). Принятая ныне в науке классификация вулканов разработана двумя советскими исследователями — В. Обручевым и профессором В. Влодавцем (первым директором Камчатской вулканологической станции), основана на химическом составе магм.
По данным этих исследователей, выделяется шесть типов вулканов: гавайский, стромболианский, везувианский, вулканский, пелейский, катмайский (и близкий к нему бандансайский), названные так по имени некоторых типичных вулканов. Посмотрим кратко эту классификацию.
В лаве гавайского типа фиксируется наименьшее содержание двуокиси кремния. В связи с этим лава в вулканах этого типа чрезвычайно жидкая. В ней почти отсутствуют газы, вследствие чего истечение лавы спокойное. Она просто переливается через край кратера. При таком типе извержения не возникает ни пепла, ни вулканических бомб. Лишь на поверхности лавового озера можно наблюдать небольшие фонтанчики из лавы.
Близок к гавайскому и стромболианский тип. Лава в нем довольно подвижная, так как количество двуокиси кремния хотя и небольшое, но несколько увеличенное по сравнению с предыдущим типом. Газы в такой лаве имеются в небольшом количестве. Они-то и обеспечивают эффектные выбросы небольшого количества пепла к бомб. Очевидцы рассказывают, что во время извержения вулкана можно относительно спокойно стоять на краю кратера. Известный исследователь вулканов, создатель фильма об этих явлениях природы — Гарун Тазиев получил весьма эффектные кадры, снимая вулканы именно этого типа.
Лава вулканов везувианского и относительно близкого к нему вулканского типов благодаря увеличенному содержанию двуокиси кремния обладает средней вязкостью и повышенным содержанием газов. Такая лава часто закупоривает жерло. Накапливающиеся газы обеспечивают взрывы и создание большого количества пепла и раскаленных вулканических бомб.
В лавах пелейского типа содержание двуокиси кремния весьма повышено. Это создает значительной мощности пробки в жерлах таких вулканов. Накапливающиеся при этом газы сильно перегреты и обогащены тяжелыми компонентами, вследствие чего вырвавшиеся газы устремляются не вверх, а вниз.
Наибольшее количество двуокиси кремния содержится в лавах катмайского и близкого к нему бандансайского типов. Для всех вулканов такой группы характерны сильнейшие разрушения, производимые во время грандиозных взрывов. Во время извержения вулканов этих типов лава вспенивается и поднимается из жерла в виде раскаленной пыли и песка. К извержению вулкана бандансайского типа относится катастрофа, происшедшая 7 сентября 1883 года на острове Кракатау, в Индонезийском архипелаге. Взрывом снесло почти треть острова. Морская волна, возникшая при взрыве, достигла берегов Африки и Австралии и докатилась по Тихому океану до берегов Америки и ощущалась в Атлантическом океане.
Все перечисленные типы вулканов могут быть встречены при извержениях подводных вулканов.
Приведенные данные о типах вулканов, зависящих от химического состава питающих их очагов, дают в руки исследователей не только объяснение кажущихся непонятными явлений природы, но и право на четкие прогнозы. Таким прогнозам содействует статистика извержений и ряд других данных, которые получаются в результате кропотливой работы на вулканологических станциях.
Другое направление, развиваемое автором книги, сводится к катастрофизму. Почти в каждой главе Ф. Л. Бошке подчеркивает те события, которые приводят или могут привести к катастрофе. Так, излагая популярную в ФРГ гипотезу А. Вегенера, он говорит о возможном «геологическом спектакле» — катастрофе, которая разыграется при отчленении Африки от Азии. Описание такого «спектакля» дано весьма красочно. Подобные этой катастрофы описываются (порой слишком подробно) и в других главах.
Идеи катастрофизма в естественных науках близки к идеалистическим представлениям, сближающим процессы развития Земли (и особенно жизни на Земле) с библейскими актами творения, следовавшими после катастроф. Особенно ярко эта концепция проявилась во взглядах Ж. Кювье, считавшего, что во время переворотов (катастроф) якобы уничтожалось, а затем вновь зарождалось все живое. Развивая взгляды Кювье, некоторые исследователи насчитывали в геологической истории Земли 27 таких катастроф.
Лишь благодаря Ч. Дарвину идеи катастрофистов были отброшены и заменены представлениями о ведущем значении эволюции в развитии органической жизни на Земле.
В тектонике идеи катастрофизма возрождались и в XX веке. Неокатастрофисты говорили о единовременности на всем земном шаре эпох горообразования, связанных с катастрофическими событиями во вселенной. Эти идеи нашли убедительное опровержение в трудах советского тектониста академика Н. Шатского.
Особенно красочно описывает Ф. Л. Бошке катастрофы, связанные с динамикой жизни суши и моря. Явления погружений (или поднятий) отдельных участков суши и дна моря (таких, например, как в районе залива Зюдерзее в Голландии) известны для многих участков земной поверхности издавна. Такие движения, называемые колебательными или эпейрогенетическими, происходили и в далеком прошлом. Отчетливо это показал в своих «Очерках геологического прошлого Европейской России» крупнейший русский и советский геолог академии, президент Академии наук СССР А. Карпинский. Он начертал стройную картину распределения суши и древних морей на Русской платформе. Последующие исследования подтвердили общую схему, начертанную этим ученым.
Те катастрофические явления, которые описаны Ф. Л. Бошке для Голландии, связаны не только с колебательными движениями, но и с недостаточной прочностью плотин, не выдержавших напора морских волн во время одного из сильнейших штормов.
К сожалению, Ф. Л. Бошке не всегда достаточно точен при изложении фактов. Особенно это относится к истории тех или иных открытий. Так, например, говоря о предыстории открытия атомной бомбы, он пишет, что оно стало возможным благодаря работам немецких химиков Отто Гана, Фрица Штрасмана и физика С. Флюгге, сотрудников института имени кайзера Вильгельма в Далеме — Берлин.
На самом деле история открытия расщепления атома более сложна. Она была подготовлена учеными и философами многих стран. В этой истории надо видеть и натурфилософский атомизм древности, и этап механических представлений от атоме XVII–XVIII веков, и ряд разработок химического направления XIX века, и, наконец, современный этап. Перечисленные этапы пестрят именами философов древности, а также физиков и химиков Англии, Германии, США, России и многих других стран. Здесь, по-видимому, должны были бы звучать имена М. Кюри, Д. Менделеева, А. Эйнштейна, Н. Бора, П. Дирака, Э. Резерфорда, Дж. Чедвика и многих, многих других.
И конечно, говоря об атомизме, следует подчеркнуть значение философских обобщений, сделанных Ф. Энгельсом и В. Лениным.
Неточности подобного рода встречаются и в некоторых других главах книги. Особенно это относится к изложению гипотезы Альфреда Вегенера, трактующей о причинах тектонических процессов.
Об этих явлениях в науке высказано не менее пятисот гипотез (включая и гипотезу Вегенера). Все они могут быть сведены в три труппы: 1) гипотезы, признающие в качестве основных причин кинематические изменения, те, которые возникают в результате различных причин: замедления или ускорения вращения нашей планеты вследствие колебания оси вращения Земли, в результате приливо-отливных движений под влиянием притяжения Луны или Солнца и других подобных явлений; 2) гипотезы, связывающие движения земной коры с изменением нагрузки на отдельные участки поверхности Земли; 3) гипотезы, связывающие тектонические процессы с изменениями внутреннего состояния Земли. Последняя из названных групп наиболее обширна. Она включает гипотезы, основанные на разогреве или охлаждении отдельных участков или всей Земли в целом, на перераспределении вещества внутри планеты, на движении подкорковых масс, на роли перекристаллизации вещества внутри Земли и пр.
Большинство этих гипотез имеет исторический интерес. Некоторые из них окончательно забыты, некоторые то принимают общепризнанное значение, то забываются, то вновь «вспыхивают». Это, в частности, случилось с гипотезой А. Вегенера. Высказанная в начале нашего века, она привлекла внимание своей простотой (каждый может взять географическую карту, разрезать ее на отдельные куски и передвигать их в разных направлениях). Затем под влиянием критики гипотеза была забыта и вновь возводилась в шестидесятых годах в связи с новыми фактами, полученными палеомагнитологами.
В СССР имеется много сторонников этой гипотезы, получившей в наши дни название гипотезы «глобальной тектоники». Сведения об этом опубликованы в трудах советского академика А. Пейве и его сторонников.
Мобилистическим идеям А. Вегенера принято противопоставлять взгляды фиксистов, сторонников учения о незыблемости (фиксировании) положения континентов, о преобладающем значении вертикальных движений в тектонике Земли.
Обобщает материалы многих гипотез, высказанных в прошлом столетии теория геосинклиналей, рассматривающая процесс горообразования как сложный комплекс явлений, связанных вначале с прогибом (под влиянием накопленных осадков) отдельных крупных участков Земли, а затем с дальнейшим сжатием (смятием в складки) накопленных осадков. Последние этапы жизни геосинклиналей связаны с орографическим оформлением хребта.
Ф. Л. Бошке утверждает о «явной безнадежности» бурения сверхглубоких скважин. Но еще на 12-й Генеральной ассамблее Международного геодезического и геофизического союза в 1960 году в Хельсинки советской делегацией был предложен проект достижения верхней мантии и изучения земной коры с помощью сверхглубоких скважин. Всем очевидно, что сорока-пятидесятикилометровая толща земной коры не может быть пробурена одной скважиной. Но это не означает бесперспективности исследования нижних зон земной коры и верхней мантии. Согласно проекту советской делегации задача может быть расчленена на ее составные части. Бурить можно сверхглубокие скважины (15–18 километров глубиной) в местах наибольшего развития отдельных зон земной коры.
В СССР утвержден и принят к исполнению проект бурения пяти сверхглубоких скважин таким путем, чтобы осветить строение главнейших зон земной коры, как известно, расчленяемой на три зоны: осадочную, «гранитную» и «базальтовую». Исходя из этого, верхний слой (осадочный) должна осветить прикаспийская скважина, где общая толщина осадочных пород (по сейсмическим данным) достигает 18 километров. Средний слой — «гранитный» — лучше всего представлен на Кольском полуострове; нижний «базальтовый» — в двух участках: в Закавказье и на Урале. Верхняя мантия может быть достигнута на Курильских островах, где толщина земной коры достигает 12–15 километров.
В настоящее время бурятся две из запроектированных скважин: кольская и закавказская. Выбрана точка заложения уральской скважины.
Летом 1979 года в советской прессе были опубликованы данные о достижении кольской скважиной рекордной глубины в 9670 метров. Такой глубины не достигала ни одна скважина в мире. Принято решение добурить кольскую скважину до проектной глубины в 15 километров.
Вопросы, связанные с проектом сверхглубокого бурения, были освещены автором послесловия в специальной книге «Под покровом мантии» («Молодая гвардия», 1964 и 1965 гг.). О первых результатах бурения кольской сверхглубокой скважины говорится в статье министра геологии СССР Е. Козловского в журнале «Наука и жизнь» № 11, 1977 г.
Ф. Л. Бошке почти не дает сведений о работах русских и советских ученых, а также об исследователях, работающих в социалистических странах. Тем не менее нельзя воспринимать науку без знания фактов, полученных естествоиспытателями СССР. Отсутствие этих материалов значительно обедняет содержание этой в общем-то полезной и интересной книги.
Среди работ русских и советских ученых особенно большое значение имеют разработки философского плана. Это относится к современным представлениям о происхождении Земли, солнечной системы, возникновении жизни на Земле, об эволюции человека и пр.
Так, одна из наиболее обоснованных (и математически рассчитанных) гипотез о происхождении солнечной системы принадлежит советскому геофизику академику О. Шмидту.
Ученый считал, что планеты образовались путем объединения большого числа мелких частиц, до этого самостоятельно обращавшихся вокруг Солнца. Эти первичные элементарные частички были твердыми (пыль и более крупные); они являлись ядрами конденсации для газа. Каждая из частичек обращалась вокруг Солнца самостоятельно, под влиянием его притяжения, причем одно из направлений преобладало. Эволюция роя частиц шла при непосредственном участии Солнца, вблизи которого количество материи уменьшалось за счет падения некоторых частиц на Солнце и удаления из-за нагрева и светового давления летучих компонентов вдаль от Солнца (в удаленных частях происходило даже вымораживание газа на пылинках). Этим объясняется большая плотность планет, расположенных вблизи от Солнца, и малая плотность, но большой объем планет, удаленных от Солнца (начиная с Юпитера).
В процессе эволюции рой частичек, вращавшихся вокруг Солнца, стал уплощаться и уплотняться, а при достижении некоторой критической плотности началось образование сгущений, которые, сталкиваясь и дробясь, объединялись, сливаясь в планеты.
Возникающее при столкновении частиц тепло рассеивалось в мировом пространстве. При столкновении элементарных частичек туманности суммировался момент количества их движения. В механике моментом количества движения называют особую меру механического вращательного движения тел, представляющую произведение массы тела на ее расстояние от центра вращения и на скорость. Это означает, что частицы, удаленные от Солнца, расположенные за земной орбитой, имеют больший момент количества движения, чем частицы, расположенные внутри земной орбиты. Падая на Землю, частицы передавали ей свою массу и момент количества движения. Частички, падающие на ночную сторону Земли (справа по направлению движения), обладали большим моментом количества движения, слева — меньшим. Суммирование моментов количества движения способствовало вращению Земли, справа налево, то есть против часовой стрелки. В солнечной системе возможны были случаи падений частиц на другие небесные тела с другим преобладающим направлением; в этих случаях возникли иные направления вращения этих тел. Так О. Шмидт объяснил возникновение прямых и обратных движений планет и их спутников.
О. Шмидт вывел также законы планетных расстояний. Он рассчитывал, на каком расстоянии от Солнца должна располагаться каждая из планет. Мы видели, что момент количества движения, рассчитанный на единицу массы планеты, возрастает при удалении от Солнца. Это возрастание идет в арифметической прогрессии. Отсюда легко было рассчитать и закономерные расстояния, на которых располагаются планеты от Солнца. О. Шмидт доказал, что если бы даже и возникли планеты между закономерно расположенными участками, то такие небесные тела должны были бы либо распасться под влиянием ближайших планет, либо отодвинуться на свое «законное» место.
Несомненно, что идеи О. Шмидта не освещают всех аспектов образования планет, но в них заложены основные пути для разработки и дальнейшего углубления наших представлений по этому вопросу. Так, шведский физик X. Альвен в 1956 году предложил учитывать электромагнитные силы при образовании планет. По В. Попову (1964 г.) рождение планет и Солнца связано с термоядерными реакциями, происходившими в электромагнитных полях и пр.
Другая философская проблема связана с происхождением жизни на Земле. Вначале эта проблема решалась с позиций двух представлений: 1) заноса жизни на Земле из космоса, 2) случайного возникновения единичной «живой молекулы».
Лишь с 1924 года в Советском Союзе вопрос о происхождении жизни на Земле был поставлен на научную основу академикам А. Опариным, развившим тезис Ф. Энгельса о том, что жизнь на Земле возникла в результате синтеза белка. Ф. Энгельс говорил, что подтверждение этой идеи может быть получено в результате синтеза живого белка.
По данным А. Опарина, жизнь возникла в водной оболочке в начальные стадии развития Земли. При повышенной температуре в природных условиях мог быть осуществлен синтез углерода, водорода, азота и кислорода — основных компонентов белка. В начальные, или абиогенные, стадии этого синтеза возникали углеводороды за счет воздействия воды на раскаленные карбиды металлов. Азот, вступая в реакцию с водородом, образовывал аммиак. Углеводороды, аммиак и пары воды, взаимодействуя между собой, объединялись в первичные молекулы органической материи. В результате таких реакций в природных условиях возникали сложные органические соединения, из которых позднее, в биогенную стадию эволюции, сформировались белковые молекулы. Считается, что стимуляторами таких реакций были грозовые разряды, ультрафиолетовое и радиоактивное облучение и пр.
Образование органической массы, возникшей из неорганической материи, представляло качественный скачок в развитии вещества. Воссозданная таким путем масса имела и новые свойства, отличавшие ее от элементарных скоплений неорганической материи.
«Прошли, вероятно, тысячелетия, — писал Ф. Энгельс, — пока создались условия, при которых стал возможным следующий шаг вперед и из этого бесформенного белка возникла благодаря образованию ядра и оболочки первая клетка».
Процесс образования клетки, или биогенный процесс, прошел, по А. Опарину, стадию предварительной концентрации вещества в виде желеобразных капелек белковой массы, названных им коацерватами, в которых молекулы не были случайно разбросанными, а соединялись в известном порядке. А. Опарин обращает внимание на то, что коацерваты плавали не в воде, а в растворе разнообразных органических веществ. Они улавливали эти вещества, присоединяли их к себе и таким образом росли. Но скорость роста отдельных капелек была неоднозначна. Она зависела от внутреннего строения каждой капельки. Различные коацерватные капельки были построены по-разному. Одни из них вбирали в себя органические вещества быстро, другие медленно. Понятно, что те капельки, строение которых было более приспособлено к улавливанию органических веществ, росли быстрее, другие же, с менее совершенным строением, росли медленнее, отставали от своих товарищей. Некоторые из них должны были совсем исчезать, распадаться.
Понятно, что каждая отдельная коацерватная капелька не могла постоянно расти, как одна целая масса. Рано или поздно она под влиянием внутренних сил распадалась на дочерние капельки, которые, в свою очередь, начинали расти дальше. Благодаря этому происходило постоянное увеличение количества этих коацерватов.
Из коацерватных капель в процессе эволюции были созданы первые белковые молекулы, основными функциями которых были обмен веществ и размножение. Дальнейшее развитие их подчинялось законам эволюционного развития, установленным Ч. Дарвином.
Следующая важнейшая проблема, вскрываемая в философии естествознания, связана с эволюционным учением, основы которого были заложены Ч. Дарвином. Движущими силами эволюции любых организмов являются: изменчивость, борьба за существование (в которой гибнут наименее приспособленные организмы) и естественный отбор.
Доказательства истинности эволюционного учения наука черпает в данных, получаемых в палеонтологии — науке об ископаемых организмах. Современное эволюционное учение, основанное на дарвинизме и палеонтологии, получило новые теоретические основы в материалах по генетике, науке, в которой подробно разбираются законы наследственности и изменчивости организмов.
И еще одна философская проблема связана с происхождением человека. Несомненно, что в развитии человека играли большую роль те законы, которые управляют изменчивостью и наследственностью организмов. Но главное, что отличает эволюцию человека, — это изготовление орудий труда.
Советские антропологи, анализируя эволюцию человека, различают в его развитии три стадии: антропоидных предков приматов, древнейших и древних людей и людей современного физического строения. Начало первой стадии удалено от нас на 2–3 миллиона лет; второй — около 1 миллиона лет и третьей — на 40–50 тысяч лет.
Несомненно, что первой стадии предшествовала длительная стадия эволюции высших обезьян. Прослежена их эволюция на 25–30 миллионов лет назад.
Рассмотрим иной путь формирования наших представлений о мире. Возьмем только одну науку — геологию. После своего зарождения эта наука прошла большой путь развития, и сегодня она представляется комплексом более чем ста отдельных научных дисциплин, в нее входящих. Можно показать этот комплекс в виде «древа», с большим количеством «ветвей» и «веточек» отходящих от него, тянущихся и соединяющихся с «ветвями» других «деревьев». Картина дифференциации геологических наук может быть осложнена, если мы представим на этом «древе» многие сотни различных методов и частных методик, которыми располагает каждая из «ветвей» этого «древа».
Геология не одинока. «Древо» ее располагается в густом «лесу» подобных же «деревьев», на которых показаны «ветви» современной физики, химии, биологии, географии, математики, медицины и многих, многих других наук.
Если мы не можем принять все суждения Фридриха Бошке, то с главным его тезисом мы не можем не согласиться; «нам нужно гораздо подробнее и серьезнее изучать Землю, ту планету, которая несет нас на себе».