Те положения науки, которые мы изучаем в школе, просты, упорядочены и лишены противоречий. Нас обучают системе правил и законов, мы полагаем, что они и отражают сущность природы. Позднее мы узнаем: они были упрощены или обобщены. Нам приходится основательно пересмотреть свои знания по многим дисциплинам, просто учиться заново. Наконец, мы узнаем о гигантском научном прогрессе, о явлениях, которым больше изумляемся, чем понимаем. Складывается впечатление, что мы живем в эпоху уникального научного прогресса.

У нас почти не остается времени поразмыслить, действительно ли новые познания увеличиваются в такой поразительной прогрессии и действительно ли все это так уж здорово. Нас подавляет обилие новых фактов, и мы присоединяемся к восторженному хору. В нашей памяти таятся остатки школьных истин и отдельно почерпнутые факты, своим грузом они заталкивают вглубь сомнения. Сейчас трудно точно установить, когда началось «массовое производство» естественных наук, однако мы знаем, кто произнес зажигательную фразу и дал новое направление исследованиям: «Нужно измерять, что может быть измеренным, и сделать доступным для измерения то, что пока неизмеримо». Это был итальянец Галилео Галилей.

Время Галилея также было отмечено обилием поразительных открытий. В Северном море обнаружили Шпицберген и остров Медвежий, Испания завладела Калифорнией, стали известны огромные просторы Канады. Был уже заселен остров Манхэттен, где позднее поднимется Нью-Йорк. При исчислении денег, размеров и весов переходят на метрическую систему. Изобретен микроскоп, который открывает мир мельчайших существ, перемещение крови в организме впервые понято как система кровообращения. Кеплер рассчитал законы, по которым движутся по орбите планеты. В Риме построен собор святого Петра. Франс Гальс, Рембрандт, Рубенс создают свои полотна, знаменуя новый расцвет искусства. Восстания крестьян в России, Франции, Австрии и даже в Китае потрясают устои существующего строя, идет Тридцатилетняя война, в истории появляются такие имена, как Густав Адольф Валленштейн, Ришелье и Кромвель.

Эти исторические вехи приходятся на время жизни математика Галилео Галилея, родившегося в Пизе. Талантливый молодой человек решает различные проблемы физики, не привлекая пока что внимания широкой публики: определяет законы падения предметов, развивает науку укрепления крепостей, увлекается астрономией. Но он хорошо знает, когда надо выйти на авансцену, и излишней скромностью не страдает. Его час пробил, когда он услышал о новом изобретении — подзорной трубе. Вскоре и в руках Галилея появляется простая, составленная из двух частей подзорная труба. Ее-то он и демонстрирует потрясенному совету города Венеции — с большим эффектом с колокольни собора святого Марка. Завернутая в красно-белую материю длинная труба очень нравится горожанам, и Галилей не упускает возможности наглядно разъяснить значение этого изобретения для флота и армии представителям могучей морской державы. Более того, он дарит инструмент совету, и теперь он знаменитость: становится пожизненным профессором, а его оклад удваивается, не говоря уже о разных почестях.

Что это — игра на публику? Конечно же, не Галилей изобрел подзорную трубу, но разве в этом дело? Главное, он был в курсе новейших открытий, увидел возможности, которые они давали, и позаботился об их реализации. В настоящее время мы знаем, что сочетание этих трех компонентов само по себе — достижение.

До определенного момента, а именно до 21 августа 1609 года, ни один астроном не наблюдал небо в подзорную трубу! Ни Тихо Браге, ни Кеплер, ни даже Коперник! Эта заслуга целиком принадлежит Галилею. Что же он увидел? На Луне есть горы и долины, вокруг Юпитера вращаются четыре спутника, существует значительно больше звезд, чем мы знали до сих пор.

Коперник был прав, Земля действительно вертится вокруг Солнца.

Галилей и в дальнейшем сделал целый ряд значительных открытий, но главная его цель остается прежней: подтвердить правильность той картины мироздания, которую построил Коперник; сегодня мы назвали бы его усердным пропагандистом достижений современной астрономии.

А в 1633 году ответный удар наносит противник — инквизиция. Галилей арестован, один за другим следуют четыре допроса, ему угрожают пытками, а ученый знает, что это такое: в этой же церкви, куда его посадили, 33 годами раньше приговорили к смерти еретика Джордано Бруно, и он был сожжен живым на костре. Конечно, Галилей известный ученый, но он уже немолод, ему 69 лет. Ладно уж. И вот произносится во всеуслышание клятва верности теории (все присутствующие знают, что она ложна), согласно которой Земля есть неподвижный центр системы планет.

Остается добавить еще две даты: 1835 год (то есть спустя 202 года), когда основной труд Галилея вычеркивается наконец из списка запрещенных работ, а через 335 лет (в 1968 году) на конгрессе лауреатов Нобелевской премии по физике в Линдау на Боденском озере кардинал Кениг сообщил, что церковь рассматривает вопрос о «реабилитации» Галилея. Однако в этой «реабилитации» уже никто не нуждается, идеи Коперника о вселенной и без того уже признаны всем миром.

Но гораздо более важным с нынешней точки зрения оказался призыв Галилея подвергнуть измерениям все, что есть в природе. С того времени на нас выливается поток все новых, все более уточняющих результатов, бесконечное количество фактов, ведь легче и проще вычислять, чем постигать сущность явлений. Если раньше полагали, что суть вещей можно понять благодаря нескольким экспериментам и глубокому их осмыслению, то теперь нередко предпочитают собрать побольше различных данных, а пусть кто-нибудь другой попробует их осмыслить. Эта точка зрения, как правило, ошибочна. Постепенно мы убеждаемся, что огромная масса накопленных измерений остается мертвым грузом, не имеющим значения для естествознания. Ниже мы увидим, как мало знаем о повседневных явлениях природы, несмотря на прилежную регистрацию их.

Начнем с того, чего мы не знаем о космосе, о мире вокруг нас. Когда датский астроном Тиге Браге, имя которого, как правило, известно нам в латинизированной форме — Тихо Браге, в 1576 году построил обсерваторию, то в его «Замке неба» на острове Хвен в Зунде имелись только большие «квадраты» — приборы для измерения углов. С их помощью определяют направление движения созвездий. Если Браге без всяких инструментов собрал достаточно данных о вселенной, чтобы составить близкое к идеям Коперника представление о нашей солнечной системе, то этим можно только восхищаться. После смерти Браге Кеплер по этим данным сможет вывести названные его именем законы движения планет! Но чего мы этим достигли? Немногим больше, чем древние люди, которые поэтично выразили свое представление о происхождении нашего мира в легендах и мифах. Чтобы понять явление, необходимо знать, как оно возникло, а об этом нам ничего не говорят ни законы движения планет Кеплера, ни наблюдения Галилея.

Наука владеет тремя путями, позволяющими ответить на вопрос о происхождении вещей.

Первый заключается в том, что мы изучаем объект во всех возможных аспектах. Если его нынешняя форма и состав — следствие имевших место ранее событий (если здесь применим закон причины и следствия), то мы можем проникнуть в прошлое объекта исследования. Пример: на поле с глинистой почвой мы нашли камень. Он явно занесен сюда. Камень плоский и округлый. Он имеет отшлифованные края. Его отшлифовал песок или вода. Но поскольку камень плоский, значит, песок, которым он отшлифован, принесен водой, а не ветром. Внутри камня обнаруживаются остатки маленьких раковин, значит, камень возник в те времена, когда эти существа еще жили. Камень из известняка, значит, он возник в меловой период истории нашей Земли, то есть ему около 185 миллионов лет. Остатки раковин позволяют установить и то, насколько теплым (или холодным) было море, где жили раковины и образовалась каменная масса. Таким образом, мы узнаем причины возникновения камня, а поскольку перечисленные факты сами имеют определенную причину, мы узнаем нечто и о других событиях. Как раз такой метод — попытки разгадать историю происхождения по нескольким каменным осколкам — используется в последние годы на Луне, и не без успеха.

Если попытка измерить возможно большее количество деталей, по которым делаются важные выводы, не дает результатов, следует попробовать второй путь: с максимально допустимой точностью измеряют детали на возможно большем количестве объектов исследования. Суммируя результаты, можно сделать выводы, позволяющие понять строение, становление и историю объекта исследования. Пример подобных исследований — постоянный поиск астрономами новых звездных миров.

Оба метода исследования идеальны, однако на практике ни один из них не оказывается достаточным. Наука всякий раз сталкивается с тем, что первый путь страдает неточностью измерений, а для второго не хватает подходящих объектов. Большинство исследователей принимают компромиссные решения, используя оба метода. Но совместить их не всегда оказывается возможным, а подчас и просто невозможно объединить друг с другом.

Задаваясь вопросом о происхождении мира, мы никак не можем воспользоваться третьим методом. Им часто пользуются химики: они пытаются искусственно создать исследуемый объект и проверить таким образом наши представления о его происхождении и свойствах. К сожалению, а может быть, к счастью, мы не можем пока создать новой вселенной в наших ретортах. (Правда, астроном может объявить о предстоящей лекции на университетской доске: «Упражнения по строению вселенной. Только для студентов старших семестров», а шутник подпишет внизу: «Не натворите бед», но здесь речь идет лишь о математических расчетах физики звездных систем.)

Таким образом, через три с половиной века после Галилея мы все еще задаем себе вопрос: как возникла наша вселенная? Предлагаются две взаимоисключающие теории. Одна из них гласит:

Вначале весь космический материал представлял собой нечто целое, затем произошел взрыв, в результате которого и был создан звездный мир.

Другая теория утверждает:

Вселенная с самого начала была такой, какой мы ее видим: звезды, их плотность, их перемещения в пространстве.

Приверженцы первой теории говорят об «изначальном хлопке» (big bang по-английски), об огненном шаре, который содержал частицы нашего мира и антимира, в котором материя превратилась в излучение и из которого возник известный нам космос. Согласно этой теории уже через две секунды после взрыва при температурах порядка 10 миллиардов градусов образовались протоны и нейтроны, из которых в последующие 11 минут (время распада свободных нейтронов) за счет захвата этих частиц образовались атомные ядра тяжелых элементов. Примерно через 10 тысяч лет возникли атомы водорода и гелия. Если принять время расширения вселенной равным примерно 10 миллионам лет, то за это время отдельные участки газа, который вначале равномерно заполнял мир, начали объединяться. Из этих газовых облаков образовались системы туманностей или звездные системы. В ходе развития нашей туманности большая часть первоначального газового облака трансформировалась в звезды; часть массы, связанной притяжением звезд, вновь распалась и была возвращена в межзвездную материю.

Некоторые исследователи осмеливаются даже предположить, что когда-нибудь весь процесс начнет протекать в обратном порядке, что восстановление и распад сменяют друг друга, что вселенная осциллирует.

Малоутешительная картина! Само представление о том, что наш мир возник с изначального взрыва и когда-нибудь прекратит свое существование в обратном процессе, не очень-то приятно, а уж идея, что этот процесс повторяется снова и снова, и вовсе напоминает кошмарный сон: это ведь значило бы, что Земля начинает и вновь прекращает свое существование и род человеческий вместе с ней. Может быть, и каждый из нас рождается заново на новой Земле.

Более человечной представляется вторая теория, которая говорит о вселенной, существующей постоянно (steady state по-английски). К этим симпатичным теоретикам относится английский астроном Фред Хойл (он родился в 1915 году). До 1972 года был директором Института теоретической астрономии в Кембридже (Англия), один из самых выдающихся исследователей, которые работали в обсерваториях Маунт Вильсон и Маунт Паломар в США. Его называют британским профессором телескопии. Хойл приобрел всемирную известность как автор научных монографий и отличных фантастических романов. Однако мало кто из писателей умеет и обуздывать свою фантазию так, как Хойл. Например, в предисловии к роману «Черное облако», где говорится о некоем черном облаке — живом космическом существе, угрожающем Земле, Хойл пишет:

«Я надеюсь, что мои коллеги-ученые славно посмеются над подобными бреднями. Одновременно я должен указать на то, что лишь малая часть описанного не укладывается в границы возможного».

Хойл, как и некоторые другие астрономы, все время пытается дать обзор всему многообразию космических событий, он пытается их расклассифицировать: звезды, астероиды, метеориты, космическая пыль, туман, источники радиосигналов, пульсары, квазары, межзвездные газовые массы. Такого человека, как Хойл, увлекала идея, что все эти образования находятся в постоянном равновесии сил и масс, что, скажем, где-то звезды гибнут, однако в другом месте непременно возникает что-то новое, так что в общем наблюдается «steady state» — постоянное состояние. В защиту этой теории он приводит все новые аргументы, доступные ему как астроному, физику и математику. Хойлу удалось убедить в своей теории многих своих коллег, и даже несведущий человек вдохновляется ею. В картине огромной вселенной, порождающей из себя новые миры, но в то же время вечно упорядоченной, есть нечто подкупающее. Однако, несмотря на элегантные формулы и выразительные математические построения, убедить подобные доказательства могут лишь специалиста. Ведь основная закавыка обеих теорий заключается в том, что они показывают нам мир, который никак нельзя назвать ни окончательно готовым, ни находящимся хотя бы во временном покое.

Профану хотелось бы услышать солидное мнение, простое и доходчивое, как на уроках физики в школе. Беда в том, что ученые никак не хотят преподнести нам такой раз и навсегда отработанной гипотезы, которая должна не только показать, как мир развивался изначально, но и вместить в себя дальнейшую историю развития космоса. Она должна объяснять каждое новое открытие, каждый космический феномен и в конечном счете предсказывать те феномены, которые мы еще не обнаружили, но которые должны существовать в звездном мире.

Обратимся к происхождению нашего Млечного Пути, нашей Галактики. Это ведь относительно небольшая часть звездного мира, так сказать, «ближний подступ» космоса, который нас окружает.

Для начала мы вынуждены констатировать, что не можем даже приблизительно сказать, сколько подобных Млечных Путей насчитывается в космосе. И это не удивительно: прошло всего полвека (!), как человек узнал, что, помимо нашей Галактики, существуют и другие. С относительной уверенностью можно утверждать только, что мы окружены многими миллионами Млечных Путей, причем некоторые из них, пожалуй, изрядно превосходят по размерам нашу Галактику. Так, может быть, мы отвлечемся от этих миллионов чужих галактик и будем задавать вопросы только относительно нашей собственной? Увы, и здесь нас ждет изрядное разочарование. Прежде всего мы еще не знаем достаточно полно и достоверно размеров нашей Галактики. В популярных книгах она описана как «диск» толщиной в тысячу и диаметром в сто тысяч световых лет, не забывают упомянуть, что один световой год — это расстояние, которое проходит свет за год при скорости 300 тысяч км/с, то есть это 9 406 500 000 000 км = 9,4065 · 1012 км.

Для наглядности можно добавить, что световой год — расстояние, в 60 тысяч раз превышающее расстояние от Земли до Солнца, однако все равно нам трудно понять эти цифры, если не найти какой-либо материал для сравнения. Пожалуйста: свет проходит от Солнца до Земли за 8 минут, другими словами: когда край солнца уходит за горизонт, это значит, что на самом деле солнце закатилось восемью минутами раньше. А когда нас будит утром первый солнечный луч, солнце уже 8 минут, как несет свою вахту на небе.

Чтобы достичь ближайшей звезды от нашего Солнца (это Проксима Центавра), свету нужно 4,3 года, а до яркого Сириуса ему добираться около 9 световых лет. В окружности 16 световых лет у нас около 40 звезд. Звезда Вега, особенно часто упоминаемая в литературе, находится от нас на расстоянии 27 световых лет, чтобы достичь созвездия Плеяды, свету нужно уже 300 лет. Но с точки зрения астрономии это все еще ближний мир. Ригель, яркая голубая звезда в созвездии Орион, светящая примерно в 20 тысяч раз ярче Солнца, удалена от нас на 540 световых лет. Если бы на Ригеле, скажем, жил астроном, который мог бы регистрировать слабый свет Земли и преобразовывать его в картины сиюминутной истории, то он увидел бы в наши дни, как сжигают Орлеанскую деву, или узрел бы пожар, в котором сгорела столица государства майя в Мексике, ведь до него свет бы шел от Земли 540 лет.

Но что эти световые годы по сравнению со ста тысячами, которыми измеряется поперечник нашего галактического звездного мира? Подобные расстояния непостижимы для нас, и если мы скажем, например, что расстояние до первой ближней галактики, так называемой Туманности Андромеды, составляет 2 миллиона 200 тысяч световых лет, то мы не составим никакого представления о расстояниях и о пустоте мира вокруг нас. Иногда хочется сказать: к счастью, ведь тот, кто поверит в абсолютность этих величин, впадет в большую ошибку. Большинство расстояний в космосе, приводимых астрономами, весьма неточно. Даже расстояния нашего Млечного Пути даются с точностью, составляющей всего 20 процентов!

Пусть мы не знаем, сколько звезд в звездном скоплении, где мы живем, мы удовлетворились бы на худой конец знанием формы нашей Галактики. В мировом пространстве разбросано множество разных звездных систем подобного рода. Мы видим их сбоку, сверху или снизу, если мы можем позволить себе такую вольность — рассматривать мировое пространство «сверху» или «снизу». Существуют галактики, в которых нельзя различить какой-либо упорядоченной структуры, они видны лишь как туманные светлые поверхности круглой или продолговатой формы. Совсем другое дело галактики, которые не без выдумки названы «спиральными туманностями». Они выглядят примерно так, как заводная пружина часов: относительно плоские и больше всего напоминают по форме диск. Сравнение со спиральной пружиной возникает вследствие «отростков» диска — двух, трех или более искривленных продолговатых скоплений звезд. Иногда эти «отростки» настолько короткие, что их трудно различить. Вся эта штука вращается, как фонтанчики для орошения газона: внутренние участки быстро, а чем ближе к краю, тем медленнее. Наша солнечная система, скажем, вращается вокруг центра Млечного Пути со скоростью 250 километров в секунду.

Если ты житель подобного звездного семейства и смотришь вдоль своего диска, то видишь много звезд, светлый Млечный Путь, а если взглянуть вверх или вниз, то видишь темное ночное небо.

Как выглядит наша Галактика, наш Млечный Путь, наша спиральная туманность из космического далека? Вряд ли нам представится шанс когда-нибудь сфотографировать ее со стороны. Для этого пришлось бы на космическом корабле покинуть пределы нашей Галактики, а так далеко мы никогда не сможем летать. Нам остается лишь путем бесчисленных измерений с помощью оптических и радиотелескопов изнутри Галактики создать картину того, как она выглядит снаружи. Вот к какому результату пришли астрономы: наша солнечная система находится в одном из отростков спирали Млечного Пути, по направлению к середине и к краю Галактики имеются еще два отростка вокруг нас. В общем, результаты всех ухищрений довольны скромные. В нашей Галактике имеется, очевидно, несколько спиралей, но утверждать, что она организована по такой же элегантной схеме, как некоторые другие галактики, которые нам удается наблюдать, у нас нет оснований.

С относительной уверенностью можно сделать еще одно утверждение: Млечный Путь не только движется, не только выбрасывает во внешний космический мир отдельные периферические зоны, но и сам целиком летит по вселенной. Куда же мы летим, мы, Земля, Солнце и все 30 миллиардов звезд?

Еще несколько лет назад астрономам казалось, что они довольно точно могут ответить на этот вопрос: мы летим со скоростью 150 километров в секунду в направлении звезды Сириус, однако теперь мы не так уж уверены в этом. Откуда эта неуверенность? Дело в так называемом «красном смещении» линий спектра света звезд, феномене, заключающемся в том, что цвет света от далеких звезд смещается в направлении красной части спектра тем дальше, чем быстрее звезда удаляется от нас. Единственное достоверное объяснение этого феномена заключается в том, что чем дальше от нас, тем с большей скоростью разлетается вселенная. Лауреат Нобелевской премии в области физики Р. Месбауэр описал обратный процесс, при котором наблюдатель быстро движется по направлению к источнику света. В этом случае длина световой волны кажется короче, чем она есть на самом деле. Это значит, что если двигаться к «красному» светофору с достаточно большой скоростью, он будет казаться «зеленым». (Шоферы! Не пугайтесь и не экспериментируйте: эта скорость, для машин недостижимая.) Если это и так, нам относительно безразлично, куда же летит наша Галактика.

В свете последних данных ситуация представляется еще более запутанной. У нас не только нет ответа на ставший уже классическим вопрос относительно конечной цели нашего путешествия, по ходу дела возникли и новые затруднения. Надо найти ответ на то, что такое радиогалактики и квазары? Как вписать в нашу систему представлений так называемые галактики Зейферта? (Американец К. Зейферт открыл их в 1943 году, это как раз была тема его диссертации.) Может быть, это звезды, окруженные гигантскими раскаленными массами газов? Какова структура «компактных галактик» — звездных систем, открытых швейцарцем Ф. Цвики в 1961 году, а также других галактик, описанных в современной астрономической литературе?

Вопросов много, сносные ответы можно пересчитать по пальцам.

Наш Млечный Путь ничтожен по сравнению с размерами всей вселенной. Если где-нибудь в бесконечных просторах иных миров живут иные астрономы, они могут совсем не заметить исчезновения нашего Млечного Пути или заметят не скоро. Мы ничем не лучше и вряд ли спохватимся, если в мире пропадет миллион-другой галактик.

Тот же результат получим, сравнивая размеры Млечного Пути с нашей солнечной системой: если она сгинет куда-нибудь, другие обитатели галактики навряд ли это заметят, и уж никто не станет по нас убиваться. Как привлечь внимание космической общественности к нашему существованию? Для этого необходимо, чтобы неподалеку от Солнца возникла, например, сверхновая. Вот по-настоящему волнующее событие для астрономии. В истории человеческой науки подобное событие регистрировали китайские астрономы в 1054 году. Тогда на небе появилась новая звезда, она была такой яркой и сияющей, что в течение 23 дней ее можно, было наблюдать даже при свете дня. Китайцы назвали ее «звездным гостем», в Европе ее не зарегистрировали, однако можно предположить, что индейцы Северной Америки были более внимательными наблюдателями. В пещере в Северной Калифорнии найдено изображение, показывающее относительное положение звезд и Луны. Если обсчитать это положение, то можно прийти к выводу, что скопление светящихся газов, которое мы называем теперь Крабовидной туманностью, было тогда ослепительно сияющей сверхновой, обозначенной одной из точек среди звезд. По крайней мере, такое предположение вероятно.

Для нас солнечная система кажется важной по двум соображениям: прежде всего это наша родина, а во-вторых, хотя бы об этой части космоса мы знаем много важных вещей. Дело прежде всего в том, что солнечная система представляет собой пространство с четкими границами: центральное солнце, вокруг которого кружат по относительно стабильным орбитам планеты. Здесь нет никакой расширяющейся, никакой вновь создаваемой материи, нет и сколько-нибудь заметных потерь вещества. И к тому же солнечная система имеет обозримые размеры: если вспышке света, чтобы достичь ближайшей звезды, нужно 4,3 года, то до самой отдаленной планеты своей системы она доберется всего лишь за 6 с половиной световых часов. Астрономы знают так много о нашей солнечной системе, что этими знаниями забиты целые библиотеки. Все это вселяет в нас приятную уверенность во всемогущество знания и безусловный исследовательский прогресс.

Но и тут почва, на которой мы стоим, оказывается не столь уже твердой. Достаточно вспомнить, что Кеплер, Коперник и Галилей знали всего шесть планет, и сколько же теорий и различных гипотез было создано на этой почве? А каково в наше время?

Седьмая планета, Уран, была первой планетой, открытой с помощью подзорной трубы. Ее — чисто случайно! — открыл в 1781 году астроном Вильгельм Гершель, значит, эту планету мы знаем меньше двухсот лет. Сам Гершель был, собственно говоря, музыкантом, отец его играл в полковом оркестре в Ганновере, откуда Вильгельм бежал в Англию от тягот войны. Здесь он стал самым известным астрономом своего времени. Вначале он был чистым любителем в области астрономии, этаким музицирующим звездочетом, который сам конструировал свои оптические приборы. Позднее Гершель получил должность «королевского астронома», дворянский титул и стал зваться «сэром Уильямом». При этом он обнаружил и немалый купеческий талант: он настолько успешно продавал телескопы, что мог безбедно жить от одной их продажи.

Открытие Гершеля, сделанное им 13 марта 1781 года, — вначале он думал, что видит комету, ведь со временем, когда в древней Вавилонии появилась астрономия, новых планет не находили! — дало развитию астрономии мощнейший толчок. (Кстати, сына сэра Уильяма, Джона Фредерика Уильяма Гершеля, также захватила любовь к этой науке, необходимо упомянуть и сестру Гершеля, Каролину, первую женщину-астронома, которой наука обязана открытием восьми комет и доброй сотни звезд.)

Выяснилось, что расчет орбиты Урана оказался неточным. Уран перемещался совсем не так, как этого требовала теория, оставалось предположить, что где-то существует еще одно космическое тело, влияющее на его траекторию. И действительно, в 1846 году удалось обнаружить соответствующую планету, получившую имя Нептун. А траектория Урана все еще не отвечала расчетной. И вот наконец в 1930 году (!) была открыта новая планета — Плутон, так что теперь нам известны девять планет солнечной системы, но это отнюдь не означает, что мы их знаем. Мы даже не знаем массы Плутона, данные колеблются от массы в 10 раз (0,11) меньше Земли до величины, равной Земле!

Исследование ближайшего окружения нашей Земли отнюдь не закончено. Вот еще пример: с 1895 по 1961 год 15 раз делались попытки измерить среднее расстояние между Солнцем и Землей. Результаты каждого из измерений настолько разнятся, что не укладываются даже в пределы ошибок, допустимых для каждого метода. Определенные успехи принесли лишь измерения с помощью радара, они откорректировали «самые точные» измерения примерно на 50 тысяч километров, а расстояние до ближайшей к Земле планеты Венера были уточнены еще на 300 километров.

До открытия Урана мы знали всего четвертую часть планетной системы, ведь если взять за единицу расстояние от Земли до Солнца, то до Сатурна уложатся 9,52 такого расстояния, а до Плутона — 39,4.

Что касается массы планет, то приведем их в мерах относительно массы Земли: Меркурий — 0,06, Венера — 0,81, Земля — 1, Марс — 0,11.

Это значит, что Венера и Земля имеют примерно одинаковую массу, в то время как Меркурий и Марс меньше, Меркурий всего в 5 раз больше по массе, чем Луна. Дальше следуют две гигантские планеты: Юпитер — 318, Сатурн — 95.

Юпитер — невероятно большая планета. Его масса в 318 раз больше Земли, а поперечник в 11. Имея 12 лун, две из которых больше нашей, Юпитер представляет собой нечто вроде отдельной планетной системы. Он излучает в межпланетное пространство больше тепла, чем поглощает его, и в этом отношении напоминает Солнце. О Сатурне нам известно, что и он отдает тепло; что же касается его колец, то они задают нам слишком много загадок, нам слишком мало известно об их происхождении, материале, из которого они состоят, их прочности, их функции по отношению к самой планете.

Затем: Уран — 14,3. Нептун — 17,5. Эти планеты также очень велики по сравнению с Землей. Просто удивительно, что они были открыты так поздно. Теперь Плутон — 0,2 (?). Об этой планете у нас очень мало надежных сведений, настолько мало, что астрономы иногда высказывают предположение, что речь идет не о «настоящей» планете нашей солнечной системы, а о луне, которую однажды потерял Нептун.

Никто не может с уверенностью сказать, что больше планет не существует. Десятую планету много раз пытались разыскать, пока безуспешно. И все же, может быть, она существует.

По другую сторону от Марса имеется еще кольцо, состоящее из каменных обломков — астероидов. Их суммарная масса значительно меньше массы Луны. Однако некоторые из них вращаются вокруг Солнца, представляя собой крупные острогранные объекты со своими именами: Церес диаметром около 700 километров, Паллас — 500 километров, Веста — 400 километров, Юно — 200 километров.

Это почти настоящие маленькие планеты. В большинстве же своем астероиды состоят из маленьких каменных обломков величиной чуть ли не с пылинку. Траектории движения некоторых более крупных астероидов очень причудливы, они долетают почти до Земли.

Может быть, метеориты, каменные и металлические, падающие на Землю и Луну, — посланцы из этого пояса астероидов? Но наши сведения о космических скитальцах столь скромны, что вполне можно согласиться с обеими гипотезами: с тем, что метеориты — остатки прежних эпох сотворения мира, или с тем, что они следы одной или нескольких планет, где-то потерпевших катастрофу.

А может быть, верно и обратное предположение, что из материала астероидов создана планета, например с массой Меркурия! Возможно, мы узнаем о происхождении астероидов лишь тогда, когда будем больше знать о нашей солнечной системе, об ее образовании, величине, возрасте, движении в мировом пространстве.

Великие загадки нашей солнечной системы отнюдь не исчерпаны поиском дальних планет на внешних орбитах или тайнами астероидов и метеоритов. Время от времени появляются сообщения, что недалеко от Солнца обнаружены и сфотографированы планетоподобные космические образования. Может быть, речь идет об одной или даже о нескольких планетах? Пусто ли пространство между Солнцем и Меркурием? Парижский астроном Урбен Леверьер, которому принадлежит заслуга открытия Нептуна, уже сто лет тому назад предположил, что должна быть еще планета, он даже дал ей имя: Вулкан. Между тем при затмениях Солнца недалеко от него наблюдаются объекты, которые не являются кометами, как считали раньше, они движутся по траекториям, сходным с планетарными, то есть могут быть в некотором роде планетами. Верны ли эти наблюдения? Мнения тут расходятся.

Сколько же нам нужно еще исследовать, замерять, наблюдать, рассчитывать, чтобы составить себе представление о картине нашей крошечной солнечной системы? Это элементарная основа, на которой строится здание нашего представления о мире, а подчас трудно отделаться от впечатлений, что мы скорее удаляемся от этой цели, чем приближаемся к ней.

Сколько надежд связывали с непосредственным исследованием Луны, полагая, что хотя бы оно позволит решить некоторые загадки. Но все, что удалось при этом узнать, было уже либо известно, либо предсказано, за исключением некоторых деталей о структуре поверхности Луны: мертвые камни, осколки метеоритов, кратеры, безводные пространства, отсутствие атмосферы, песок, пустыни. Мы, конечно же, никоим образом не хотим умалить подвига космонавтов, значения их лунного путешествия, фантастических технических достижений, которые сделали возможным этот полет. Но тех, кто надеялся по кусочку лунного камня прочесть историю происхождения нашей солнечной системы, а такую надежду высказал недавно один американский физик, постигло глубокое разочарование. Даже о происхождении Луны мы сейчас знаем не больше, чем 20 или 30 лет тому назад.

Теперь, когда мы знаем, что Луна не сообщит нам сенсационных тайн о происхождении нашего мира и что наши ближние соседи по солнечной системе, Марс и Венера, представляют собой лишь негостеприимные, пыльные, терзаемые морозами и жарой, изъязвленные кратерами пустыни, астрономы, физики, теоретики, разрабатывающие теорию относительности, начинают набрасывать картину, живо напоминающую нам страницы фантастических романов.

Их фантазии окрыляет идея о становлении и старении звезд, они предполагают, что вначале, возможно, существовало видимое «горячее» облако газа, которое постепенно охлаждается и затем сгущается. Так можно представить себе час рождения крохотного, но все же твердого небесного тела, звезды.

Если же имеются очень большие массы газов, которые затем уплотняются, то на отдельные частицы не только начинают влиять мощные силы притяжения — при достаточной плотности могут трансформироваться атомные ядра, при этом они отдают тепло, развивая высокие температуры. Растущее тепловое движение частиц наталкивается на препятствие в виде дальнейшего уплотнения материи, и, пока происходят ядерные процессы, наступает равновесие между силами уплотнения (сжатия) и силами расширения (ядерного взрыва). Это равновесие зависит, подобно «критической массе» ядерного реактора, от массы системы. Во всяком случае, должен прийти момент, когда ядерная энергия будет исчерпана и равновесие станет нестабильным, в этом случае масса обрушивается внутрь самой себя. Этот процесс замедляется наличием отталкивающих друг друга электронов, имеющих одинаковые заряды, в результате чего вновь наступает равновесие. Конечный продукт такого процесса астрономы называют «белым карликом» — это маленькая, медленно охлаждающаяся звезда.

Если же, напротив, звезда в ее первоначальном виде имела бóльшую массу, например, как наше Солнце, то тогда силы гравитации могут взять верх над силами отталкивания электронов. Звездная масса, так сказать, проваливается через заряженное облако, ядерные силы сталкиваются, и энергия выбрасывается в мировое пространство в виде невероятной световой вспышки. В этом случае от звезды останется нейтронное ядро, точка диаметром 10 километров. Возможно, что открытые, в 1968 году пульсары именно такие нейтронные звезды.

Думая о происходящем, мы как будто попадаем в какую-то сказочную страну фантазии. Что же произойдет, если массы звезды будет настолько больше, что ни электронное облако, ни ядерные силы будут не в состоянии задержать свертывание под действием гравитационных сил — гравитационный коллапс? Что произойдет, если огромная масса неудержимо будет стремиться к одной точке? Здесь идеи теоретиков физики оставляют далеко позади литературную фантастику.

Новые миры, о которых здесь шла речь, основываются, в частности, на работах гениального немецкого астрофизика Карла Шварцшильда. Конечно, нам известны случаи, когда в науке дебютировали молодые таланты, но даже для нашего века жизнь Шварцшильда, который уже школьником опубликовал несколько работ в солидных научных журналах, в 26 лет стал доцентом университета, в 28 — профессором и директором всемирно известной обсерватории, — редкое явление.

Наконец, Шварцшильд становится членом Прусской академии наук, а затем взлет его карьеры, подобный комете, внезапно прерывается — начинается первая мировая война, Шварцшильда призывают в солдаты, он заболевает на фронте и умирает в Потсдаме 11 мая 1916 года в возрасте 42 лет. В год своей смерти, незадолго до опубликования теории относительности, Шварцшильд выдвигает математический постулат, согласно которому ускорение гравитации может стать бесконечно большим относительно неподвижного наблюдателя. Одним из самых причудливых следствий его явилось бы то, что свет звезды, которая подвержена необратимому гравитационному коллапсу, стал бы виден наблюдателю вначале с задержкой, а затем и вовсе не достигал бы наблюдателя! Он смог бы регистрировать только гравитационное поле, действие силы тяжести. Такое тело, упавшее внутрь самого себя, невидимое для наблюдателя и остающееся на небе черным пятном, астрофизики называют «черной дырой».

Хорошо свидетелю гравитационного коллапса, если он находится на достаточном удалении от звезды. Но что произойдет с теми, кто живет на поверхности небесного тела, пораженного этим процессом? Предположим, что они сознательно участвовали в нем, тогда их увлечет в центр подобного образования, в область, где пространственные координаты (длина, ширина и высота) становятся временными категориями. Такие существа попали бы в совершенно «иной мир», из которого нельзя вернуться. Они будут жить в совсем иной системе измерений, которая никогда не может, так утверждают математики, вступить в контакт с нашей системой.

Если продолжить подсчеты, провести теоретические изыскания еще дальше и предположить существование симметричной к первой и также являющейся результатом гравитационного коллапса системы, то получим еще один феномен: антигравитационный коллапс — неудержимое расширение.

Оставим пока все эти системы и феномены, заметим для себя лишь то обстоятельство, что астрофизики считают антигравитационный коллапс явлением, которое могло бы наблюдаться и в нашем мире. На случай, если это произойдет, у них приготовлено уже и название: «белая дыра».

Как будет выглядеть наш мир в будущем? Ведь и представление о нем, основанное на теории относительности, не последнее слово в той картине мира, которую создает наука. Некогда думали, что мир — это Земля (и светящиеся точки на «небе»), потом, что это — солнечная система, Млечный Путь, ограниченное бесконечное пространство многих галактик. Теперь мы уже говорим о «гравитационных мирах».

А может быть, мы только начинаем познавать мир…