Бе'сселя функции, цилиндрические функции 1-го рода; возникают при рассмотрении физических процессов (теплопроводности, диффузии, колебаний и пр.) в областях с круговой и цилиндрической симметрией; являются решениями Бесселя уравнения .

  Б. ф. Jp порядка (индекса) р, — ¥ < p < ¥, представляется рядом

сходящимся при всех х. Её график при х > 0 имеет вид затухающего колебания; J p (x ) имеет бесчисленное множество нулей; поведение J p (x ) при малых |х | даётся первым слагаемым ряда (*), при больших х > 0 справедливо асимптотическое представление

в котором отчётливо проявляется колебательный характер функции. Б. ф. «полуцелого» порядка р = n + 1 /2 выражаются через элементарные функции; в частности,

Б. ф. J p (mp n x/l ) (где mp n — положительные нули J p (x ), р > -1 /2 ) образуют ортогональную с весом х в промежутке (0, l ) систему (см. Ортогональная система функций ).

  Функция J 0 была впервые рассмотрена Д. Бернулли в работе, посвященной колебанию тяжёлых цепей (1732). Л. Эйлер , рассматривая задачу о колебаниях круглой мембраны (1738), пришёл к уравнению Бесселя с целыми значениями р = n и нашёл выражение J„ (x ) в виде ряда по степеням х. В последующих работах он распространил это выражение на случай произвольных значений р. Ф. Бессель исследовал (1824) функции J p (x ) в связи с изучением движения планет вокруг Солнца. Он составил первые таблицы для J 0 (x ), J 1 (x ), J 2 (x ).

  Лит.: Ватсон Г. Н., Теория бесселевых функций, пер. с англ., ч. 1—2, М., 1949; Лебедев Н. Н., Специальные функции и их приложения, 2 изд., М.— Л., 1963; Бейтмен Г., Эрдейи А., Высшие трансцендентные функции, функции Бесселя, функции параболического цилиндра, ортогональные многочлены, пер. с англ., М., 1966.

  П. И. Лизоркин.