Бо'льцмана стати'стика, физическая статистика для систем из большого числа невзаимодействующих частиц. Строго Б.с. подчиняются атомные и молекулярные идеальные газы, т. е. газы, у которых потенциальная энергия взаимодействия молекул считается равной нулю. Реально к таким системам относятся разрежённые газы, молекулы которых слабо взаимодействуют друг с другом.
При большом числе частиц в системе невозможно детально описать поведение каждой частицы. Однако общие черты поведения системы в целом являются усреднённым отражением движения отдельных частиц. Частицы распределяются по возможным для них состояниям — их координаты r и импульсы р принимают определённые значения. Математически это описывается функцией распределения, характеризующей вероятность пребывания частицы в данном состоянии.
Для идеального газа молекул, находящихся в поле внешних сил, функция распределения Больцмана имеет вид:
где р 2 /2m — кинетическая энергия молекулы массы m, U (r ) — её потенциальная энергия во внешнем поле, k — Больцмана постоянная , Т — абсолютная температура газа; постоянная А определяется из условия, что суммарное число частиц, распределённых по всем возможным состояниям, равно полному числу частиц в системе (условие нормировки). Так как величина kT характеризует среднюю энергию теплового движения молекулы, то в Б. с. распределение частиц по состояниям определяется отношением полной энергии частицы (кинетическая плюс потенциальная) к энергии её теплового движения.
Функция распределения (1) содержит два сомножителя: ехр (-р 2 / 2mкТ ) и exp (-U (r )/kT ). Первый из них определяет распределение молекул по импульсам (или скоростям), т. е. является Максвелла распределением , а второй — распределение по координатам в поле внешних сил. Поэтому иногда только вторую зависимость называют распределением Больцмана, а формулу (1) называют распределением Максвелла — Больцмана.
С помощью функции распределения Больцмана легко получить формулу изменения концентрации молекул воздуха (независимо от их импульса) с изменением высоты над земной поверхностью, а следовательно, и барометрическую формулу , определяющую зависимость давления воздуха от высоты.
В квантовой статистике вместо функции распределения рассматривается среднее число частиц , находящихся в данном квантовом состоянии с энергией E i , и распределение Больцмана выглядит следующим образом:
Постоянная А находится из условия
где N — общее число частиц в системе, и равна А = (N/V )(h 2 /mkT )3/2 (V — объём газа, h — Планка постоянная ). Распределение (2) является предельным случаем квантовых статистик Бозе — Эйнштейна и Ферми — Дирака, когда можно пренебречь квантовомеханическими эффектами, связанными с взаимным влиянием тождественных частиц (см. Тождественности принцип ). Оно справедливо для систем, у которых все числа малы по сравнению с 1; это означает, что частицы проводят почти всё время в сильно различающихся состояниях и потому специфическое влияние их друг на друга не проявляется.
Квантовая Б. с. справедлива при малых плотностях газа N/V и высоких температурах (при данной массе частиц). Фактически Б. с. применима для всех разреженных молекулярных газов, т.к. масса молекул велика и квантовое воздействие тождественных частиц друг на друга должно было бы проявиться лишь при столь высоких плотностях и низких температурах, которые соответствуют твёрдому (для гелия — жидкому) состоянию вещества (а в этом случае Б. с. вообще неприменима, т.к. взаимодействие молекул велико). К электронному газу в металлах и газу световых квантов — фотонов — Б. с. неприменима (см. Статистическая физика ).
Лит. см. при ст. Статистическая физика .
В. П. Павлов.