Цилиндри'ческие фу'нкции, весьма важный с точки зрения приложений в физике и технике класс трансцендентных функций , являющихся решениями дифференциального уравнения:

#i-images-129378173.png      (1)

где n — произвольный параметр. К этому уравнению сводятся многие вопросы равновесия (упругого, теплового, электрического) и колебаний тел цилиндрической формы. Решение, имеющее вид: 

[где Г (z ) — гамма-функция ; ряд справа сходится при всех значениях х ], называется Ц. ф. первого рода порядка n. В частности, Ц. ф. нулевого порядка имеет вид:

  Если n — целое отрицательное: n = — n, то J n (x ) определяется так:

J -n (x ) = (— 1) n J n (x ).

  Ц. ф. порядка n = m  + 1 /2 , где m — целое число, сводится к элементарным функциям, например:

,

  Функции J n (x ) и уравнение (1) называют также по имени Ф. Бесселя (Бесселя функции , Бесселя уравнение ). Однако эти функции и уравнение (1) были получены ещё Л. Эйлером при изучении колебаний мембраны в 1766, т. е. почти за 50 лет до работ Бесселя; функция нулевого порядка встречается ещё раньше в работе Д. Бернулли , посвященной колебанию тяжёлой цепи (опубликована в 1738), а функция порядка 1 /3 в письме Я. Бернулли к Г. Лейбницу (1703).

  Если n не является целым числом, то общее решение уравнения (1) имеет вид

y = C 1 J n (x ) + C 2 J - n (x ),      (2)

где C 1 и C 2   — постоянные. Если же n — целое, то J n (x ) и J - n (x) линейно зависимы, и их линейная комбинация (2) уже не является общим решением уравнения (1). Поэтому, наряду с Ц. ф. первого рода, вводят ещё Ц. ф. второго рода (называемые также функциями Вебера):

  При помощи этих функций общее решение уравнения (1) может быть записано в виде

у = C1 Jn (x) + C 2 Y n (x )

(как при целом, так и при нецелом n).

В приложениях встречается также Ц. ф. мнимого аргумента  

и

(функция Макдональда). Эти функции удовлетворяют уравнению

общее решение которого имеет вид

y = C 1 l n (x ) + C 2 K n (x )

(как при целом, так и нецелом n). Часто употребляются ещё Ц. ф. третьего рода (или функции Ганкеля)

,

а также функции Томсона ber (х ) и bei (x ), определяемые соотношением

ber (x ) + i bei (x ) = I 0 (x #i-images-194411129.png ).

  Важную роль играют асимптотические выражения Ц. ф. для больших значений аргумента:

,

,

,

,

из которых, в частности, вытекает, что Ц. ф. J n (x ) и Y n (x ) имеют бесконечное множество действительных нулей, расположенных так, что вдали от начала координат они как угодно близки к нулям функций, соответственно,

 и

  Ц. ф. изучены очень детально и для комплексных значений аргументов. Для вычислений существует большое число таблиц Ц. ф.

  Лит.: Смирнов В. И., Курс высшей математики, 8 изд., т. 3, ч. 2, М., 1969; Никифоров А. Ф., Уваров В. Б., Основы теории специальных функций, М., 1974; Ватсон Г. Н., Теория бесселевых функций, пер. с англ., ч. 1—2, М., 1949; Бейтмен Г., Эрдей А., Высшие трансцендентные функции, пер. с англ., 2 изд., т. 2, М., 1974.