Инвариа'нтность, неизменность, независимость от физических условий. Чаще рассматривается И. в математическом смысле — неизменность какой-либо величины по отношению к некоторым преобразованиям (см. Инварианты ). Например, если рассматривать движение материальной точки в двух системах координат, повёрнутых одна относительно другой на некоторый угол, то проекции скорости движения будут изменяться при переходе от одной системы отсчёта к другой, но квадрат скорости, а следовательно, и кинетическая энергия останутся неизменными, т. е. кинетическая энергия инвариантна относительно пространственных вращений системы отсчёта. Важным случаем преобразований являются преобразования координат и времени при переходе от одной инерциальной системы отсчёта к другой (Лоренца преобразования ). Величины, не изменяющиеся при таких преобразованиях, называются лоренц-инвариантными. Пример такого инварианта — так называемый четырёхмерный интервал , квадрат которого равен s2 12 = (x 1 — x 2 )2 + (y 1 — y 2 )2 + (z 1 — — z 2 )2 — c 2 (t 1 — t 2 )2 , где x 1 , y 1 , z 1 и x 2 , y 2 , z 2 — координаты двух точек пространства, в которых происходят некоторые события, a t 1 и t 2 — моменты времени, в которые эти события совершаются, с — скорость света. Другой пример: напряжённости электрического Е и магнитного Н полей меняются при преобразованиях Лоренца, но E 2 — H 2 и (EH ) являются лоренц-инвариантными. В общей теории относительности (теории тяготения ) рассматриваются величины, инвариантные относительно преобразований к произвольным криволинейным координатам, и т. д.
Важность понятия И. обусловлена тем, что с его помощью можно выделить величины, не зависящие от выбора системы отсчёта, т. е. характеризующие внутренние свойства исследуемого объекта. И. тесно связана с имеющими большое значение сохранения законами . Равноправие всех точек пространства (однородность пространства), математически выражающееся в виде требования И. некоторой функции, определяющей уравнения движения (так называемая лагранжиана) относительно преобразований переноса начала координат, приводит к закону сохранения импульса; равноправие всех направлений в пространстве (изотропия пространства) — к закону сохранения момента количества движения; равноправие всех моментов времени — к закону сохранения энергии и т. д. (Нётер теорема ).
В. И. Григорьев.