Исче'рпывания ме'тод, метод доказательства, применявшийся математиками древности при нахождении площадей и объёмов. Название «метод исчерпывания» введено в 17 в.
Типичная схема доказательства при помощи И. м. может быть изложена в современных обозначениях так: для определения величины А строится некоторая последовательность величин C1, C2, ..., C n , ... так, что
C n < A; (1)
предполагают также известным такое В, что
C n < В (2)
и при любом целом К для достаточно больших n удовлетворяются неравенства
К (A — C n ) < D, К (В — C n ) < D, (3)
где D — постоянно. С современной точки зрения, для перехода от неравенств (3) к равенству
А = В (4)
достаточно заметить, что из условий (1), (2) и (3) следует
Математики древности, не располагавшие теорией пределов , обращались к доказательству от противного и доказывали невозможность каждого из неравенств А < В, В < А. Чтобы опровергнуть первое из них, при помощи аксиомы Евдокса — Архимеда (см. Архимеда аксиома ) устанавливали, что для R = B — А существует такое К, что KR > D и в силу условия (1) получали
К (В — C n ) > К (В — A) > D,
что противоречит второму из неравенств (3). Аналогично опровергалось другое предположение. После этого оставалось принять только равенство (4).
Введение И. м. вместе с лежащей в его основе аксиомой приписывается Евдоксу Книдскому. Этим методом широко пользовался Евклид, а с особенным искусством и разнообразием — Архимед. Например, для определения площади сегмента А параболы Архимед строит площади C1, C2, ..., «исчерпывающие» при их постепенном нарастании площадь A сегмента, по схеме, ясной из чертежа. При этом
Вместо того чтобы прибегнуть к предельному переходу,
Архимед геометрически доказывает, что при любом n
Вводя площадь
Архимед получает, что
и, следуя изложенному выше порядку, заканчивает доказательство того, что
Рис. к ст. Исчерпывания метод.