Исчисле'ние, основанный на чётко сформулированных правилах формальный аппарат оперирования со знаками определённого вида, позволяющий дать исчерпывающе точное описание некоторого класса задач, а для некоторых подклассов этого класса (лишь для наиболее простых И., совпадающих с ним) — и алгоритмы решения. Примерами И. могут служить совокупность арифметических правил оперирования с цифрами (т. е. числовыми знаками), «буквенное» И. элементарной алгебры, дифференциальное И., интегральное И., вариационное И. и другие ветви математического анализа и теории функций. Несмотря на раннее происхождение, термин «И.» употреблялся в математике до недавнего времени без строгого общего определения. С развитием математической логики возникла потребность в общей теории И. и в уточнении самого понятия «И.», которое подверглось более последовательной формализации. В большинстве случаев, однако, оказывается достаточным следующее (идущее от Д. Гильберта ) представление об И. Рассматривается некоторый (вообще говоря, бесконечный, хотя и, быть может, задаваемый посредством конечного числа символов) алфавит, из элементов которого, именуемых буквами, с помощью четко сформулированных правил образования строятся формулы рассматриваемого И. (называемые также иногда словами, или выражениями). Некоторые из таких («правильно построенных») формул объявляются аксиомами, а из них с помощью правил преобразования (или, иначе, правил вывода) «выводятся» новые формулы, называемые теоремами данного И. Иногда термин «И.» относят лишь к «словарной» («выразительной») части описанного построения, говоря, что присоединение к ней «дедуктивной» части (т. е. добавление к алфавиту и правилам образования аксиом и правил ввода) даёт формальную систему. Впрочем, эти термины часто считают синонимичными (и в качестве синонимов пользуются также терминами «логистическая система», «формализм», «формальная теория» и многими др.). Если такое неинтерпретированное («бессмысленное») И. сопоставить с некоторой интерпретацией (или, как говорят, дополнить чисто синтаксические рассмотрения некоторой семантикой; см. Логическая семантика ) то получают формализованный язык . Представление содержательных логических (и логико-математических) теорий в виде формализованных языков есть характерная особенность математической логики (см. также Доказательство ).
Лит.: Клини С. К., Введение в метаматематику, пер. с англ., М., 1957, § 14—20; Марков А. А., Теория алгорифмов, М.—Л., 1954 (Тр. Математического института им. В. А. Стеклова, т. 42); Карри Х. Б., Основания математической логики, пер. с англ., М., 1969, гл. 2; Математическая теория логического вывода, Сборник переводов, под ред. А. В. Идельсона, Г. Е. Минца, М., 1967; Логические и логико-математические исчисления, 1, Сб. работ, под ред. В. П. Оревкова, Л., 1968.
Ю. Л. Гастев.