Криоэлектро'ника, криогенная электроника, направление, охватывающее исследование взаимодействия электромагнитного поля с электронами в твёрдых телах при криогенных температурах (ниже 90К) и создание электронных приборов на их основе. В криоэлектронных приборах используются различные явления: сверхпроводимость металлов и сплавов, зависимость диэлектрической проницаемости некоторых диэлектриков от электрического поля, появление у металлов при Т < 80К полупроводниковых свойств при аномально высокой подвижности электронов проводимости и др.
К криоэлектронным приборам следует отнести: запоминающие и логические криоэлектронные устройства вычислительной техники; генераторы, усилители, переключатели, резонаторы, детекторы, преобразователи частоты, фильтры, линии задержки, модуляторы и др. приборы СВЧ; сверхпроводящие магнитометры , гальванометры , болометры и др. Одной из задач К. является создание электронных охладителей, а также миниатюрных приборов, сочетающих в одной конструкции электронную схему, криостат , служащий герметической оболочкой, и охлаждающее устройство.
Криотроны. Развитие К. началось с создания криотрона (1955) — миниатюрного переключательного элемента, действие которого основано на явлении сверхпроводимости. Криотроны — элементы логических, запоминающих и переключательных устройств. Они отличаются низким потреблением энергии (10-18дж), малыми габаритами (до 10-6мм2), быстродействием (время переключения ~ 10-11сек). Первые проволочные криотроны были вскоре заменены плёночными (1958—1960). В 1955—56 появились др. плёночные запоминающие элементы: персистор, персистотрон, ячейка Кроу, однако они не получили распространения. Основным криоэлектронным элементом в вычислительной технике остался плёночный криотрон. В 1967 был разработан плёночный туннельный криотрон (криосар), основан на Джозефсона эффекте .
Криоэлектронные усилители. Проблема приёма слабых сигналов СВЧ стимулировала появление низкотемпературных твердотельных усилителей, основанных на разных физических явлениях и обладающих ничтожно малыми шумами. К ним следует отнести прежде всего парамагнитный квантовый усилитель и параметрический усилитель, работающий при температуре 90K. В последнем роль активного элемента (параметрического полупроводникового диода ) играет либо р—n-переход в полупроводнике с высокой подвижностью носителей при Т < 90К, либо переход металл — полуметалл (InSb, рис. 1 ). Последний приобретает при Т < 90К свойства полупроводника, имеющего подвижность носителей в 102—103 раз выше, чем у Ge и Si. Мощность, потребляемая таким усилителем, ~ 10-1— 10- 2 вт.
Сверхпроводниковый усилитель также основан на принципе параметрического усиления, но в этом случае периодически изменяется не ёмкость С колебательной системы, а её индуктивность L (рис. 2 ). Индуктивным элементом такого усилителя служит тонкая плёнка сверхпроводника при температуре несколько ниже T kp . В сверхпроводящей плёнке возникает т. н. «сверхиндуктивность» L к обусловленная кинетической энергией движущихся сверхпроводящих электронных пар. Индуктивность L k при определённом выборе геометрии плёнки может преобладать над обычной индуктивностью L проводника. Внешним электромагнитным полем можно периодически разрушать и восстанавливать сверхпроводящие электронные пары, изменяя их число n s , и этим самым можно периодически изменять индуктивность L k по закону: Lk = 1/ns.
Параэлектрические усилители основаны на аномально высокой поляризации некоторых диэлектриков (например, CrTiO3) при низких температурах. Диэлектрическая проницаемость таких диэлектриков (параэлектриков) от 10 до 15·103, при Т < 80К появляется сильная зависимость диэлектрических потерь от внешнего электрического поля (рис. 3 ). Активный элемент параэлектрического усилителя представляет собой электрический конденсатор, заполненный таким параэлектриком, помещенным в электромагнитное поле (накачка). Ёмкость такого конденсатора периодически изменяется с частотой накачки, что позволяет осуществить параметрическое усиление (рис. 4 ).
Существуют усилители, в которых используются комбинации перечисленных методов. Например, сочетание изменяющихся индуктивности L сверхпроводника и ёмкости С «запертого» перехода металл — полуметалл позволяет создать усилитель, где одновременно от одного генератора модулируется С и L, что улучшает характеристики усилителей (рис. 5 ).
Количественным критерием чувствительности криоэлектронных усилителей является их шумовая температура Т ш . У криоэлектронных усилителей она достигает единиц и долей градуса К (рис. 6 ). Наряду с этим криоэлектронные усилители обладают широкой полосой пропускания и высоким усилением (обычно от 10 до 104).
Криоэлектронные резонаторы. Повышение стабильности частоты генераторов СВЧ ограничено величиной добротности Q объёмных резонаторов , которая зависит от активных потерь энергии в их проводящих стенках. Теоретически предел Q обычных резонаторов 2—8·103 для основного типа волн в сантиметровом диапазоне. Добротность может быть увеличена в 10—100 раз охлаждением до 15—20K за счёт уменьшения рассеяния электронов на тепловых колебаниях кристаллической решётки металла.
Резонаторы со сверхпроводящими стенками теоретически должны обладать бесконечно большой добротностью из-за отсутствия потерь в поверхностном слое сверхпроводника. В действительности же потери существуют вследствие инерционности электронов. С другой стороны, на очень высоких частотах (~ 1011гц), когда энергия кванта электромагнитного поля сравнима с энергией расщепления сверхпроводящих электронных пар (3,52 k T), потери в сверхпроводящем и нормальном состояниях становятся одинаковыми. Поэтому наибольшая добротность (Q ~ 1011) достигается в дециметровом диапазоне длин волн. Для l = 3 см добротность сверхпроводящих резонаторов ~ 10 7 —10 10 . С помощью сверхпроводящих резонаторов стабильность частоты обычных клистронов может быть улучшена с 5×10-4 до 10-9—10-10, т. е. до уровня стабильности квантовых стандартов частоты при сохранении всех преимуществ клистронов. Сверхпроводящие резонаторы обычно работают при гелиевых температурах (4,2 К). Если в них используются сверхпроводники 1-го рода, то их рабочая температура поднимается до 10—15 К.
Фильтры и линии задержки. Сверхпроводящий фильтр представляет собой цепочку последовательных соединений сверхпроводящих резонаторов. Избирательность в полосе запирания у такого фильтра повышена в 103—106 раз по сравнению с обычными фильтрами.
Сверхпроводящая линия задержки в простейшем виде представляет собой тонкий кабель из сверхпроводника, свёрнутый в спираль и помещенный в криостат. Его длина соответствует времени задержки сигнала (t ~ мсек или долей мсек). Применяется в радиолокации и измерительной технике. Для t ~ нсек или псек используются сверхпроводящие меандры — извилистые линии из узких тонких сверхпроводящих плёнок на диэлектрической подложке. Изменяя внешним полем распределённую индуктивность такой линии, можно управлять временем задержки t. Применяются также параэлектрические фильтры и линии задержки.
Охлаждение в К. достигается различными методами. Криостат, который обычно служит оболочкой прибора, часто соединяют с криогенной установкой. Для охлаждения используются
также Джоуля — Томсона эффект , Пельтье эффект , Эттингсгаузена эффект, магнитное охлаждение и др. В приборах для космических исследований охлаждение и поддержание низких температур достигается за счёт использования отвердевших газов (1 кг твёрдого азота может находиться в космосе до 1 года).
Иногда несколько приборов помещают в общий криостат, который может выполнять также определённые функции, например служить антенной . Т. о. осуществляют интеграцию. Развитие К. особенно интегральной, приводит к увеличению надёжности приборов, уменьшению их габаритов, веса и расширяет области их применения (рис. 7 ).
Лит.: Брэмер Д ж., Сверхпроводящие устройства, пер. с англ., М., 1964; Крайзмер Л. П., Устройства хранения дискретной информации, 2 изд., Л., 1969; Алфеев В. Н., Радиотехника низких температур, М., 1966; его же, Криогенная электроника, «Известия ВУЗОВ. Радиоэлектроника», 1970, т. 13, в. 10, с. 1163—1175; Электронная техника. Серия 15, Криогенная электроника, в. 1, М., 1969, с. 3; Малков М., Данилов И., Криогеника, М., 1970; Уильямс Дж., Сверхпроводимость и ее применение в технике, перевод с английского, М., 1973.
В. Н. Алфеев.
Рис. 2. а — схема сверхпроводящего усилителя; L — yправляемая индуктивность; Rп — сопротивление перехода Джезефсона; б — активный элемент усилителя.
Рис. 4. а — активный элемент параметрического усилителя; б — зависимость его ёмкости С от напряжения при Т = 4, 2 К, пунктир — эта же зависимость при комнатной температуре.
Рис. 1. а — эквивалентная схема низкотемпературного параметрического усилителя; б — вольтамперная характеристика перехода металл—полуметалл (U — напряжение, I — ток) и зависимость его ёмкости С от напряжения при Т < 80 К; пунктиром показана эта же характеристика при комнатной температуре (300 К): Uн и wн — напряжение и частота накачки; в — переход металл—полуметалл является активным элементом усилителя.
Рис. 3. Зависимость диэлектрической проницаемости ε и угла диэлектрических потерь δ от температуры Т.
Рис. 5. Криоэлектронный усилитель с 4 управляемыми реактивными параметрами.
Рис. 6. Зависимость шумовой температуры Тш, различных усилителей СВЧ от частоты: 1 — сверхмалошумящие электровакуумные (специальные типы ЛБВ) и полупроводниковые (туннельные и транзисторные) усилители; 2 — неохлаждаемые параметрические усилители; 3, 4, 5 — криоэлектронные усилители азотного, водородного и гелиевого уровней охлаждения; 6 — парамагнитные квантовые усилители.
Рис. 7. Низкотемпературный параметрический усилитель для сверхдальнего приёма телевизионных сигналов через искусственные спутники Земли: 1 — криостат; 2 — колебательная система с активным элементом; 3 — генератор накачки; 4 — входной фильтр.