Кватернио'ны (от лат. quaterni — по четыре), система чисел, предложенная в 1843 англ. учёным У. Гамильтоном. К. возникли при попытках найти обобщение комплексных чисел х + iy, где х и у— действительные числа, i — базисная единица с условием i 2 = —1. Как известно, комплексные числа изображаются геометрически точками плоскости, и действия над ними соответствуют простейшим геометрическим преобразованиям плоскости (сдвигу, вращению, растяжению или сжатию и их комбинациям). Поиски числовой системы, которая геометрически реализовалась бы с помощью точек 3-мерного пространства, привели к установлению того, что из точек пространства трёх и выше трёх измерений нельзя «устроить» числовую систему, в которой алгебраические операции сохраняли бы все свойства сложения и умножения действительных или комплексных чисел. Однако если отказаться от одного свойства — коммутативности (переместительности) умножения, — сохранив все остальные свойства сложения и умножения, то из точек пространства четырех измерений можно устроить числовую систему (в пространстве трех, пяти и даже выше измерений нельзя устроить даже такой системы чисел). Числа, реализуемые в 4-мерном пространстве и называются кватернионами. К. представляют собой линейную комбинацию четырёх «базисных единиц» 1, i, j, k: X=x o (1+x 1 +x 2 j+x 3 k, где хо, х 1 , x 2 , х 3 — действительные числа. Действия над К. производятся по обычным правилам действия над многочленами относительно 1, i, j, k (нельзя лишь пользоваться переместительным законом умножения) с учётом правил умножения базисных единиц, указанных в таблице

1 i j k
1 1 i J k
I i -1 k -j
j j -k -1 i
k k J -i ~!

Из таблицы видно, что 1 играет poль обычной единицы и, следовательно, в записи К. может быть опущена:

  X=x o +x 1 i+x 2 j+x 3 k.

  (1)

  В К. (1) различают скалярную часть х о и векторную часть

  V= x 1 i +x 2 j+x 3 k, так что X=x o +V.

  Если х о = 0, то кватернион V наз. вектором; он может отождествляться с обычными 3-мерными векторами .

  В середине 19 в. К. воспринимались как обобщение понятия о числе, призванное играть в науке столь же значительную роль, как и комплексные числа. Эта точка зрения подкреплялась и тем, что были найдены приложения К. к электродинамике и механике. Однако векторное исчисление в его современной форме вытеснило К. из этих областей. Ясно, что роль К. ни в какой мере не может быть сравнима с ролью комплексных чисел, имеющих многочисленные и разнообразные приложения в различных отраслях науки и техники.

Лит.: см. при ст. Гиперкомплексные числа .

Таблица к ст. Кватернионы.