Магни'тная гидродина'мика (МГД), наука о движении электропроводящих жидкостей и газов в присутствии магнитного поля ; раздел физики, развившийся «на стыке» гидродинамики и классической электродинамики . Характерными для М. г. объектами являются плазма (настолько, что М. г. иногда рассматривают как раздел физики плазмы), жидкие металлы и электролиты .

  Первые исследования по М. г. восходят ко временам М. Фарадея , но как самостоятельная отрасль знания М. г. стала развиваться в 20 веке в связи с потребностями астрофизики и геофизики . Было установлено, что многие космические объекты обладают магнитными полями. Так, в атмосферах звёзд наблюдаются поля напряжённостью ~ 10000 э (на Солнце до 5000 э), а в открытых в 1969 пульсарах , по современным представлениям, напряжённости полей достигают 1012 э. Динамическое поведение находящейся в подобных полях плазмы радикально изменяется, так как плотность энергии магнитного поля становится сравнимой с плотностью кинетической энергии частиц плазмы (или превышает её). Этот же критерий справедлив и для слабых космических магнитных полей напряжённостью 10-3 —10-5 э (в межзвёздном пространстве, поле Земли в верхней атмосфере и за её пределами), если в областях, занимаемых ими, концентрация заряженных частиц низка. Таким образом, возникла необходимость в создании специальной теории движения космической плазмы в магнитных полях, получившей название космической электродинамики, а в случае, когда плазму можно рассматривать как сплошную среду — космической магнитогидродинамики (космической МГД).

  Основные положения М. г. были сформулированы в 1940-х годах Х. Альфвеном , который в 1970 за создание М. г. был удостоен Нобелевской премии по физике. Им было теоретически предсказано существование специфических волновых движений проводящей среды в магнитном поле, получивших название волн Альфвена. Начав формироваться как наука о поведении космической плазмы, М. г. вскоре распространила свои методы и на проводящие среды в земных условиях (главным образом создаваемые в научных исследованиях и в производственной деятельности). В начале 1950-х годов развитию М. г., как и физики плазмы в целом, дали мощный импульс национальные программы (СССР, США, Великобритания) исследований по проблеме управляемого термоядерного синтеза . Появились и быстро совершенствуются многочисленные технические применения М. г. (МГД-насосы, генераторы, сепараторы, ускорители, перспективные для космических полётов плазменные двигатели и пр.).

  В основе М. г. лежат две группы законов физики: уравнения гидродинамики и уравнения электромагнитного поля (Максвелла уравнения ). Первые описывают течения проводящей среды (жидкости или газа); однако, в отличие от обычной гидродинамики, эти течения связаны с распределёнными по объёму среды электрическими токами. Присутствие магнитного поля приводит к появлению в уравнениях дополнительного члена, соответствующего действующей на эти токи распределённой по объёму электродинамической силе (см. Ампера закон , Лоренца сила ). Сами же токи в среде и вызываемые ими искажения магнитного поля определяются второй группой уравнений. Таким образом, в М. г. уравнения гидродинамики и электродинамики оказываются существенно взаимосвязанными. Следует отметить, что в М. г. в уравнениях Максвелла почти всегда можно пренебречь токами смещения (нерелятивистская М. г.).

  В общем случае уравнения М. г. нелинейны и весьма сложны для решения, но в практических задачах часто можно ограничиться теми или иными предельными режимами, при оценке которых важным параметром служит безразмерная величина, называемая магнитным Рейнольдса числом :

      (1)

  (L — характерный для течения среды размер, V — характерная скорость течения, nm = c 2 /4ps — так называемая магнитная вязкость, описывающая диссипацию энергии магнитного поля, s — электрическая проводимость среды, с — скорость света в вакууме; здесь и ниже используется абсолютная система единиц Гаусса, см. СГС система единиц ).

  При R m << 1 (что обычно для лабораторных условий и технических применений) течение проводящей среды слабо искажает магнитное поле, которое поэтому можно считать заданным внешними источниками. Такое течение может быть использовано, например, для генерации электрического тока — энергия гидродинамического движения среды превращается в энергию тока во внешней цепи (см. Магнитогидродинамический генератор ). Напротив, если ток в среде поддерживается внешней эдс, то наличие внешнего магнитного поля вызывает появление упомянутой выше объёмной электродинамической силы, которая создаёт в среде перепад давления и приводит её в движение. Этот эффект используется в МГД-насосах (например, для перекачивания расплавленного металла) и плазменных ускорителях . Объёмная электродинамическая сила даёт также возможность создавать регулируемую выталкивающую (архимедову) силу, которая действует на помещенные в проводящую жидкость тела. На этом важном эффекте основано действие МГД-сепараторов. Таковы основные технические применения М. г. Кроме того, в М. г. находят естественное обобщение известные задачи обычных гидродинамики и газовой динамики : обтекание тел, пограничный слой и другие; в ряде случаев (например, при полётах в ионосфере космических аппаратов, в каналах, по которым текут проводящие среды) оказывается возможным с помощью магнитного поля существенно влиять на свойства соответствующих течений.

  Однако наиболее интересные и разнообразные эффекты характерны для другого предельного класса сред, рассматриваемых в М. г., — для сред с R m >> 1, то есть с высокой проводимостью и (или) большими размерами. Эти условия, как правило, выполняются в средах, изучаемых в гео- и астрофизических приложениях М. г., а также в горячей (например, термоядерной) плазме. Течения в таких средах чрезвычайно сильно влияют на магнитное поле в них. Одним из важнейших эффектов в этих условиях является вмороженность магнитного поля. В хорошо (строго говоря — идеально) проводящей среде индукция электромагнитная вызывает появление токов, препятствующих какому бы то ни было изменению магнитного потока через всякий материальный контур. В движущейся МГД-среде с R m >> 1 это справедливо для любого контура, образуемого её частицами. В результате магнитный поток через любой движущийся и меняющий свои размеры элемент среды остаётся неизменным (с тем большей степенью точности, чем больше величина R m ), и в этом смысле говорят о «вмороженности» магнитного поля. Это во многих случаях позволяет, не прибегая к громоздким расчётам, с помощью простых представлений получить качественную картину течений среды и деформаций магнитного поля — следует только рассматривать магнитные силовые линии как упругие нити, на которые нанизаны частицы среды. Более строгое рассмотрение этого «упругого» действия магнитного поля на проводящую среду показывает, что оно сводится к изотропному (то есть одинаковому по всем направлениям) «магнитному» давлению р М = B 2 / 8p, которое добавляется к обычному газодинамическому давлению среды р, и магнитному натяжению Т = B 2 / 4p, направленному вдоль силовых линий поля (магнитная проницаемость всех представляющих интерес для М. г. сред с большой точностью равна 1, и можно с равным правом пользоваться как магнитной индукцией В , так и напряжённостью Н ).

  Наличие дополнительных «упругих» натяжений в МГД-средах приводит к специфическому колебательному (волновому) процессу — волнам Альфвена. Они обусловлены магнитным натяжением Т и распространяются вдоль силовых линий (подобно волнам, бегущим вдоль упругой нити) со скоростью

   ,  (2)

где r — плотность среды. Волны Альфвена описываются точным решением нелинейных уравнений М. г. для несжимаемой среды. Ввиду сложности этих уравнений таких точных решений для больших R m получено очень немного. Ещё одно из них описывает течение несжимаемой (r = const) жидкости с той же альфвеновской скоростью (2) вдоль произвольного магнитного поля. Известно точное решение и для так называемых МГД-разрывов, которые включают контактные, тангенциальные и вращательные разрывы, а также быструю и медленную ударные волны. В контактном разрыве магнитное поле пересекает границу раздела двух различных сред, препятствуя их относительному движению (в приграничном слое среды неподвижны одна относительно другой). В тангенциальном разрыве поле не пересекает границу раздела двух сред (его составляющая, нормальная к границе, равна нулю), и эти среды могут находиться в относительном движении. Частным случаем тангенциального разрыва является нейтральный токовый слой, разделяющий равные по величине и противоположно направленные магнитные поля. В М. г. доказывается, что при некоторых условиях магнитное поле стабилизирует тангенциальный разрыв скорости, который абсолютно неустойчив в обычной гидродинамике. Специфическим для М. г. (не имеющим аналога в гидродинамике непроводящих сред) является вращательный разрыв, в котором вектор магнитной индукции, не изменяясь по абсолютной величине, поворачивается вокруг нормали к поверхности разрыва. Магнитные натяжения в этом случае приводят среду в движение таким образом, что вращательный разрыв распространяется по направлению нормали к поверхности с альфвеновской скоростью (2), если под В в (2) понимать нормальную составляющую индукции. Быстрые и медленные ударные волны в М. г. отличаются от обычных ударных волн тем, что частицы среды после прохождения фронта волны получают касательный к фронту импульс за счёт магнитных натяжений (ведь магнитные силовые линии можно рассматривать как упругие нити, см. выше). В быстрой ударной волне магнитное поле за её фронтом усиливается, скачок магнитного давления на фронте действует в ту же сторону, что и скачок газодинамического давления, и поэтому скорость такой волны больше скорости звука в среде. В медленной ударной волне, напротив, поле после её прохождения ослабевает, перепады газодинамического и магнитного давления на фронте волны направлены противоположно; скорость медленной волны меньше скорости звука. Число теоретически мыслимых необратимых ударных волн в М. г. оказывается значительно больше, чем реально существующих. Отбор решений, соответствующих действительности, производится с помощью так называемого условия эволюционности, следующего из рассмотрения устойчивости ударных волн при их взаимодействии с колебаниями малой амплитуды.

  Известные точные решения, однако, далеко не исчерпывают содержания теоретических М. г. сред с R m >> 1. Широкий класс задач удаётся исследовать приближённо. При таком исследовании возможны два основных подхода: приближение слабого поля, когда магнитные давление и натяжение малы по сравнению с остальными динамическими факторами (газодинамическим давлением и инерциальными силами), и приближение сильного поля, когда

     (3)

здесь u — скорость среды, р — её газодинамическое давление.

  В приближении слабого поля течение среды определяется обычными газодинамическими факторами (влиянием магнитных натяжений пренебрегают). При этом требуется рассчитать изменения поля в среде, движущейся по заданному закону. К этому классу задач относится очень важная проблема гидромагнитного динамо и проблема МГД-турбулентности. Первая состоит в отыскании ламинарных течений проводящих сред, которые могут создавать, усиливать и поддерживать магнитное поле. Задача о гидромагнитном динамо является основой теории земного магнетизма и магнетизма Солнца и звёзд. Существуют простые кинематические модели, показывающие, что гидромагнитное динамо в принципе может быть осуществлено при специальном выборе распределений скоростей среды. Однако строгого доказательства, что такие распределения реализуются в действительности, пока нет.

  Основным в проблеме МГД-турбулентности является выяснение поведения слабого исходного («затравочного») магнитного поля в турбулентной проводящей среде (см. Турбулентность ). Имеется доказательство роста среднего квадрата напряжённости случайно возникшего слабого начального поля, то есть возрастания магнитной энергии в начальной стадии процесса. Однако остаётся открытой проблема установившегося турбулентного состояния, связанная с происхождением магнитных полей в космическом пространстве, в частности в нашей и других галактиках .

  Приближение сильного поля, в котором определяющими являются магнитные натяжения, применяют при изучении разреженных атмосфер космических магнитных тел, например Солнца и Земли. Есть основания полагать, что именно это приближение окажется полезным для исследования процессов в удалённых астрофизических объектах — сверхновых звёздах , пульсарах , квазарах и прочих. В условиях, отвечающих (3), изменения магнитного поля вблизи его источников (появление активных областей и пятен на Солнце, смещение магнитопаузы в магнитном поле Земли под действием солнечного ветра и т.д.) переносятся с альфвеновской скоростью (2) вдоль поля, вызывая соответствующие перемещения плазмы. В результате действия магнитных сил возникают такие характерные образования, как выбросы и протуберанцы, шлемовидные структуры и стримеры на Солнце, магнитный хвост Земли (см. Солнце ; Солнечная активность ; Земля , раздел Магнитосфера).

  Особенно интересные явления имеют место в окрестностях тех точек сильного поля, в котором оно обращается в нуль. В таких областях образуются тонкие токовые слои, разделяющие магнитные поля противоположного направления (так называемые нейтральные слои). В этих слоях происходит процесс «аннигиляции» магнитной энергии, то есть её высвобождение и превращение в другие формы. В частности, в них возникают сильные электрические поля, ускоряющие заряженные частицы. Аннигиляция магнитного поля в нейтральных токовых слоях ответственна за появление хромосферных вспышек на Солнце и суббурь в земной магнитосфере (см. Магнитные бури ). Вероятно, с ней связаны и многие другие резко нестационарные процессы во Вселенной, сопровождающиеся генерацией ускоренных заряженных частиц и жёстких излучений. С точки зрения М. г. нейтральные слои представляют собой разрывы непрерывности магнитного поля (подобно ударным волнам и тангенциальным разрывам). Однако, процессы в токовых слоях , и прежде всего неустойчивости, приводящие к появлению сильных ускоряющих электрических полей, выходят за рамки М. г. и относятся к тонким и ещё не вполне разработанным вопросам физики плазмы.

  Лит.: Апьфвен Г., Фельтхаммар К.-Г., Космическая электродинамика, перевод с английского, 2 изд., М., 1967; Сыроватский С. И., Магнитная гидродинамика, «Успехи физических наук», 1957, т. 62, в. 3; Куликовский А. Г., Любимов Г. А., Магнитная гидродинамика, М., 1962; Шерклиф Дж.. Курс магнитной гидродинамики, перевод с английского, М., 1967; Половин Р. В., Ударные волны в магнитной гидродинамике, «Успехи физических наук»,1960, т. 72, в. 1; Брагинский С. И., Явления переноса в плазме, в сборнике: Вопросы теории плазмы, вып. 1, М., 1963; Пикельнер С. Б., Основы космической электродинамики, М., 1966; Данжи Дж., Космическая электродинамика, перевод с английского, М., 1961; Андерсон Э., Ударные волны в магнитной гидродинамике, перевод с английского, М., 1968; Ландау Л. Д., Лифшиц Е. М., Электродинамика сплошных сред, М., 1959 (Теоретическая физика).

  С. И. Сыроватский.