Ме'трика, математический термин, обозначающий правило определения того или иного расстояния между любыми двумя точками (элементами) данного множества А . При этом расстоянием r(а, b ) между точками а и b множества А называется вещественная числовая функция, удовлетворяющая следующим условиям:
1) r(а, b ) ³ 0, причём r(а, b ) = 0 тогда и только тогда, когда а = b ,
2) r(а, b ) = r(b, а ); 3) r(а, b ) + r(b, с ) ³ r(а, с ). На одном и том же множестве М. может вводиться различным образом. Например, на плоскости за расстояние между точками а и b , имеющими координаты (x 1 , y 1 ) и (х 2 , y 2 ) соответственно, можно принять не только обычное евклидово расстояние
но и различные другие расстояния, например
В векторных пространствах (функциональных и координатных) М. часто задаются нормы, иногда — с помощью скалярного произведения. В дифференциальной геометрии М. вводится путём задания элемента длины дуги при помощи дифференциальной квадратичной формы (см. Римановы геометрии ). Множество с введённой на нём М. называется метрическим пространством .
Иногда под М. понимают правило определения не только расстояний, но и углов; например, проективная метрика .
В. И. Соболев.