Моме'нт ине'рции, величина, характеризующая распределение масс в теле и являющаяся наряду с массой мерой инертности тела при непоступательном движении. В механике различают М. и. осевые и центробежные. Осевым М. и. тела относительно оси z называется величина, определяемая равенством:

где m i — массы точек тела, h i — их расстояния от оси z , r — массовая плотность, V — объём тела. Величина I z является мерой инертности тела при его вращении вокруг оси (см. Вращательное движение ). Осевой М. и. можно также выразить через линейную величину k , называемую радиусом инерции, по формуле I z = Mk 2 , где М — масса тела. Размерность М. и. — L 2 M ; единицы измерения — кг ×м 2 или г ×см 2 .

  Центробежным М. и. относительно системы прямоугольных осей х, у, z , проведённых в точке О , называют величины, определяемые равенствами:

или же соответствующими объёмными интегралами. Эти величины являются характеристиками динамической неуравновешенности масс. Например, при вращении тела вокруг оси z от значений I xz и I yz зависят силы давления на подшипники, в которых закреплена ось.

  М. и. относительно параллельных осей z и z' связаны соотношением

I z = I z ' + М d 2      (3)

где z' — ось, проходящая через центр масс тела, a d — расстояние между осями (теорема Гюйгенса).

  М. и. относительно любой, проходящей через начало координат О оси Ol с направляющими косинусами a, b, g находится по формуле:

l ol = I x a2 + I y b2 + I z g2 — 2I xy ab — 2I yz bg — 2I zx ga.     (4)

Зная шесть величин I x , I y , I z , I xy , I yх , I zx , можно последовательно, используя формулы (4) и (3), вычислить всю совокупность М. и. тела относительно любых осей. Эти шесть величин определяют т. н. тензор инерции тела. Через каждую точку тела можно провести 3 такие взаимно-перпендикулярные оси, называемые главными осями инерции, для которых I xy = I yz = I zx = 0. Тогда М. и. тела относительно любой оси можно определить, зная главные оси инерции и М. и. относительно этих осей.

  М. и. тел сложной конфигурации обычно определяют экспериментально. Понятием о М. и. широко пользуются при решении многих задач механики и техники.

  Лит.: Краткий физико-технический справочник, под общ. ред. К. П. Яковлева, т. 2, М., 1960, с. 94—101; Фаворин М. В., Моменты инерции тел. Справочник, М., 1970; Гернет М. М., Ратобыльский В. Ф., Определение моментов инерции, М., 1969; см. также лит. при ст. Механика .

  С. М. Тарг.