Непараметри'ческие ме'тоды в математической статистике, методы непосредственной оценки теоретического распределения вероятностей и тех или иных его общих свойств (симметрии и т.п.) по результатам наблюдений. Название Н. м. подчёркивает их отличие от классических (параметрических) методов, в которых предполагается, что неизвестное теоретическое распределение принадлежит какому-либо семейству, зависящему от конечного числа параметров (например, семейству нормальных распределений ), и которые позволяют по результатам наблюдений оценивать неизвестные значения этих параметров и проверять те или иные гипотезы относительно их значений. Разработка Н. м. является в значительной степени заслугой советских учёных.

  В качестве примера Н. м. можно привести найденный А. Н. Колмогоровым способ проверки согласованности теоретических и эмпирических распределений (так называемый критерий Колмогорова). Пусть результаты n независимых наблюдений некоторой величины имеют функцию распределения F (x ) и пусть F n (x ) обозначает эмпирическую функцию распределения (см. Вариационный ряд ), построенную по этим n наблюдениям, a D n — наибольшее по абсолютной величине значение разности F n (x ) — F (x ). Случайная величина

имеет в случае непрерывности F (x ) функцию распределения K n (l), не зависящую от F (x ) и стремящуюся при безграничном возрастании n к пределу

  Отсюда при достаточно больших n, для вероятности p n , l . Неравенства

получается приближённое выражение

  p n, l » 1 - К (l).     (*)

  Функция К (l) табулирована. Её значения для некоторых А приведены в табл.

  Таблица функции К (l)

l 0,57 0,71 0,83 1,02 1,36 1,63
К (l) 0,10 0,30 0,50 0,75 0,95 0,99

  Равенство (*) следующим образом используется для проверки гипотезы о том, что наблюдаемая случайная величина имеет функцию распределения F (x ): сначала по результатам наблюдений находят значение величины D n , а затем по формуле (*) вычисляют вероятность получения отклонения F n от F, большего или равного наблюдённому. Если указанная вероятность достаточно мала, то в соответствии с общими принципами проверки статистических гипотез (см. Статистическая проверка гипотез ) проверяемую гипотезу отвергают. В противном случае считают, что результаты опыта не противоречат проверяемой гипотезе. Аналогично проверяется гипотеза о том, получены ли две независимые выборки, объёма n 1 и n 2 соответственно, из одной и той же генеральной совокупности с непрерывным законом распределения. При этом вместо формулы (*) пользуются тем, что вероятность неравенства

как это было установлено Н. В. Смирновым , имеет пределом К (l), здесь D n1 , n2 есть наибольшее по абсолютной величине значение разности F n1 (х ) — F n2 (х ).

  Другим примером Н. м. могут служить методы проверки гипотезы о том, что теоретическое распределение принадлежит к семейству нормальных распределений. Отметим здесь лишь один из этих методов — так называемый метод выпрямленной диаграммы. Этот метод основывается на следующем замечании. Если случайная величина Х имеет нормальное распределение с параметрами a и s, то

где Ф-1 — функция, обратная нормальной:

  Т. о., график функции у = Ф -1 [F (x )] будет в этом случае прямой линией, а график функции у = Ф -1 [F n (x)] — ломаной линией, близкой к этой прямой (см. рис. ). Степень близости и служит критерием для проверки гипотезы нормальности распределения F (x ).

  Лит.: Смирнов Н. В., Дунин-Барковский И. В., Курс теории вероятностей и математической статистики для технических приложений, 3 изд., М., 1969; Большее Л. Н., Смирнов Н. В., Таблицы математической статистики, М., 1968.

  Ю. В. Прохоров.

Рис. к ст. Непараметрические методы.