Отрица'тельная температу'ра, отрицательная абсолютная температура, величина, вводимая для описания неравновесных состояний квантовой системы, в которых более высокие уровни энергии более населены, чем нижние. В равновесном состоянии вероятность иметь энергию E n определяется формулой:
. (1)
Здесь E i — уровни энергии системы, k — Больцмана постоянная , Т — абсолютная температура, характеризующая среднюю энергию равновесной системы U = S (W n E n ), Из (1) видно, что при Т > 0 нижние уровни энергии более населены частицами, чем верхние. Если система под влиянием внешних воздействий переходит в неравновесное состояние, характеризующееся большей населённостью верхних уровней по сравнению с нижними, то формально можно воспользоваться формулой (1), положив в ней Т < 0. Однако понятие О. т. применимо только к квантовым системам, обладающим конечным числом уровней, так как для создания О. т. для пары уровней необходимо затратить определённую энергию.
В термодинамике абсолютная температура Т определяется через обратную величину 1/Т , равную производной энтропии S по средней энергии системы при постоянстве остальных параметров х :
. (2)
Из (2) следует, что О. т. означает убывание энтропии с ростом средней энергии. Однако О. т. вводится для описания неравновесных состояний, к которым применение законов равновесной термодинамики носит условный характер.
Пример системы с О. т.— система ядерных спинов в кристалле, находящемся в магнитном поле, очень слабо взаимодействующих с тепловыми колебаниями кристаллической решётки , то есть практически изолированной от теплового движения. Время установления теплового равновесия спинов с решёткой измеряется десятками минут. В течение этого времени система ядерных спинов может находиться в состоянии с О. т., в которое она перешла под внешним воздействием.
В более узком смысле О. т.— характеристика степени инверсии населённостей двух выбранных уровней энергии квантовой системы. В случае термодинамического равновесия населённости N 1 и N 2 уровней E 1 и E 2 (E 1 < E 2 ), т. е. средние числа частиц в этих состояниях связаны формулой Больцмана:
, (3)
где Т — абсолютная температура вещества. Из (3) следует, что N 2 < N 1 . Если нарушить равновесие системы, например воздействовать на систему монохроматическим электромагнитным излучением, частота которого близка к частоте перехода между уровнями: w21 = (E 2 — E 1 )/ и отличается от частот других переходов, то можно получить состояние, при котором населённость верхнего уровня выше нижнего N 2 > N 1 . Если условно применить формулу Больцмана к случаю такого неравновесного состояния, то по отношению к паре энергетических уровней E 1 и E 2 можно ввести О. т. по формуле:
. (4)
Несмотря на формальный характер этого определения, оно оказывается в ряде случаев удобным, например позволяет описывать флуктуации в равновесных и неравновесных системах с О. т. аналогичными формулами. Понятием О. т. пользуются в квантовой электронике для удобства описания процессов усиления и генерации в средах с инверсией населённости.
Лит.: см. при статьях Квантовая электроника , Квантовый усилитель .
Д. Н. Зубарев.