Пищеваре'ние, совокупность процессов, обеспечивающих механическое измельчение и химическое (главным образом ферментативное) расщепление пищевых веществ на компоненты, лишённые видовой специфичности и пригодные к всасыванию и участию в обмене веществ организма животных и человека. Поступающая в организм пища всесторонне обрабатывается под действием различных пищеварительных ферментов , синтезируемых специализированными клетками, причём расщепление сложных пищевых веществ (белков, жиров и углеводов) на всё более мелкие фрагменты происходит с присоединением к ним молекулы воды (см. Гидролиз ). Белки расщепляются в конечном итоге на аминокислоты, жиры — на глицерин и жирные кислоты, углеводы — на моносахариды. Эти относительно простые вещества подвергаются всасыванию , а из них в органах и тканях вновь синтезируются сложные органические соединения. Известно 3 основных типа П.: внутриклеточное, внеклеточное (дистантное) и мембранное (рис. 1 ).
Внутриклеточное П.: нерасщеплённый или неполностью расщепленный пищевой субстрат поступает внутрь клетки, где подвергается дальнейшему гидролизу ферментами цитоплазмы. Такой эволюционно более древний тип П. распространён у всех одноклеточных, у некоторых низших многоклеточных организмов (например, у губок) и у высших животных. В последнем случае имеются в виду фагоцитарные свойства белых кровяных клеток (см. Лейкоциты ) и ретикуло-эндотелиальной системы , а также одна из разновидностей фагоцитоза — так называемый пиноцитоз , свойственный клеткам экто- и энтодермального происхождения. Внутриклеточное П. может быть реализовано не только в цитоплазме, но и в специальных внутриклеточных полостях — пищеварительных вакуолях, существующих постоянно или образующихся при фаго- и пиноцитозе. Предполагается, что во внутриклеточном П. могут участвовать лизосомы , ферменты которых поступают в пищеварительные вакуоли.
Внеклеточное, или дистантное, П.: синтезируемые в клетках ферменты переносятся во внеклеточную среду организма и осуществляют своё действие на расстоянии от секретирующих клеток. Внеклеточное П. преобладает у кольчатых червей, ракообразных, насекомых, головоногих, оболочников и хордовых, кроме ланцетника. У большинства высокоорганизованных животных секреторные клетки расположены достаточно далеко от полостей, где реализуется действие пищеварительных ферментов (слюнные железы и поджелудочная железа у млекопитающих). Если дистантное П. происходит в специальных полостях, принято говорить о полостном П. Дистантное П. может проходить за пределами организма, продуцирующего ферменты. Так, при дистантном внеполостном П. насекомые вводят пищеварительные ферменты в обездвиженную добычу, а бактерии выделяют разнообразные ферменты в культуральную среду.
Мембранное, или пристеночное, П. осуществляется ферментами, локализованными на структурах клеточной мембраны, и занимает промежуточное положение между внеклеточным и внутриклеточным. У большинства высокоорганизованных животных такое П. происходит на поверхности мембран микроворсинок кишечных клеток и является основным механизмом промежуточных и заключительных стадий гидролиза. Мембранное П. обеспечивает совершенное сопряжение пищеварительных и транспортных процессов и их максимальное сближение в пространстве и времени. Это достигается в результате специальной организации пищеварительных и транспортных функций клеточной мембраны в виде своеобразного пищеварительно-транспортного «конвейера», способствующего передаче конечных продуктов гидролиза с фермента на переносчик или вход в транспортную систему (рис. 2 ). Мембранное П. обнаружено у человека, млекопитающих, птиц, земноводных, рыб, круглоротых и многих представителей беспозвоночных животных (насекомые, ракообразные, моллюски, черви). Каждому из 3 типов П. присущи как определённые преимущества, так и ограничения. В процессе эволюции большинство организмов стало сочетать эти процессы; чаще они комбинируются у одного и того же организма, что способствует оптимальной эффективности и экономичности пищеварительной системы .
У человека, высших и многих низших животных пищеварительный аппарат подразделяют на ряд отделов, выполняющих специфические функции: 1) воспринимающий; 2) проводящий, который у некоторых видов животных расширен с образованием специального депо; 3) пищеварительные отделы — а) размельчения пищи и начальных этапов П. (в некоторых случаях оно завершается в этом отделе), б) последующего П. и всасывания; 4) всасывания воды; этот отдел имеет особое значение для наземных животных, в нём всасывается большая часть воды, поступающей в кишечник (английский учёный Дж. Дженнингс, 1972). В каждом из отделов пищевая масса, в зависимости от её свойств и специализации отделов, задерживается на определённое время или переводится в следующий отдел.
Пищеварение в ротовой полости. У млекопитающих, большинства др. позвоночных и многих беспозвоночных животных пища подвергается в ротовой полости (у человека она находится здесь в среднем 10—15 сек) как механическому измельчению путём жевания , так и первоначальной химической обработке под действием слюны , которая, смачивая пищевую массу, обеспечивает формирование пищевого комка. Химическая обработка пищи во рту заключается в основном в переваривании (у человека и всеядных) углеводов амилазой слюны. Здесь же (главным образом на языке) расположены вкусовые органы , осуществляющие дегустацию пищи. С помощью движений языка и щёк пищевой комок подаётся на корень языка и в результате глотания поступает в пищевод , а затем в желудок.
Пищеварение в желудке . Пища накапливается в желудке , перемешивается и пропитывается кислым желудочным соком , обладающим ферментативной активностью, выраженными антибактериальными свойствами и способностью денатурировать клеточные структуры. Основная функция желудка: депонирование пищи, её механическая и химическая обработка, включающая начальные стадии П. (главным образом белков под действием протеолитических ферментов ), а также постепенная эвакуация пищевой массы в кишечник . В желудке пища находится в зависимости от её количества и состава от 4 до 10 к (у человека в среднем 3,5—4 ч). У многих животных желудок имеет несколько отделов, выполняющих различные функции. Например, у жвачных в желудке происходят основные преобразования пищевой массы под влиянием деятельности бактерий и простейших. Слизистая оболочка желудка секретирует неактивный пепсиноген, активируемый в присутствии соляной кислоты и трансформируемый в активный пепсин , осуществляющий начальные стадии гидролиза белков, а также парапепсины, гастриксин, желатиназу (в естественных условиях расщепляющую, по-видимому, коллаген соединительные ткани) и катепсины , принимающие участие в желудочном П. на ранних этапах онтогенетического развития. В желудочном соке некоторых жвачных в период молочного питания обнаруживается реннин , или химозин, вызывающий створаживание и последующее расщепление казеина и действующий, в отличие от пепсина, в слабокислой или нейтральной среде. В желудочном соке присутствует небольшое количество липазы , роль которой, однако, невелика. Амилаза слюны до её денатурации соляной кислотой продолжает начавшееся в полости рта расщепление углеводов. В полости желудка действуют также ферменты поджелудочного сока, забрасываемого антиперистальтическими движениями, главным образом при приёме жирной пищи.
Пищеварение в кишечнике . Из желудка пищевая масса порциями поступает в кишечник, где наиболее интенсивно (особенно в начальной части тонкой кишки) происходят процессы ферментативного гидролиза и переход к всасыванию. Фаза П. в тонком кишечнике реализуется в среде, близкой к нейтральной. Переход от первоначального переваривания в кислой среде (желудок) к перевариванию в нейтральной или слабощелочной (тонкая кишка) типичен как для человека и высших животных, так и для низших многоклеточных и одноклеточных организмов, у которых в пищеварительных вакуолях поддерживается сначала кислая, а затем щелочная реакция. Большинство надмолекулярных агрегаций и крупных молекул (белки и продукты их неполного гидролиза, углеводы и жиры) у человека и высших животных расщепляются в полости тонкой кишки преимущественно под действием ферментов, секретируемых поджелудочной железой и поступающих в двенадцатиперстную кишку. Пептиды, образовавшиеся под действием пепсина желудка, и нерасщеплённые белки гидролизуются протеазами поджелудочного сока: трипсином , химотрипсином , карбоксипептидазами и эластазой. В результате последовательного действия этих ферментов в полости тонкой кишки из крупных белковых молекул и полипептидов образуются низкомолекулярные пептиды и незначительное количество аминокислот. Углеводы (крахмал и гликоген) гидролизуются под влиянием a-амилазы поджелудочного сока, расщепляющей их до три- и дисахаридов без значительного накопления глюкозы. В гидролизе жиров существенную роль играет жёлчь , выделяемая печенью . Жёлчь активирует липазу поджелудочного сока и эмульгирует жиры, что приводит к увеличению поверхности соприкосновения их с липазой, растворённой в водной фазе. В полости тонкой кишки этот фермент поэтапно отщепляет жирные кислоты и приводит к образованию ди- и моноглицеридов и незначительного количества свободных жирных кислот и глицерина. Образующиеся продукты гидролиза в результате перемешивающих движений кишечной мускулатуры (см. Маятникообразные движения ) соприкасаются с поверхностью кишки, где происходит дальнейшая их обработка путём мембранного П. (рис. 3 ). В связи с выраженной поверхностной активностью продукты гидролиза поступают в зону щёточной каймы (если размеры их молекул не слишком велики), чему способствует их перенос в потоках растворителя, возникающих в результате всасывания воды кишечными клетками.
Промежуточные и заключительные стадии П. реализуются ферментами, локализованными на поверхности мембран кишечных клеток, где начинается всасывание. В мембранном П. участвуют: 1) ферменты поджелудочного сока (a-амилаза, липаза, трипсин, химотрипсин, эластаза и др.), адсорбированные в различных слоях так называемого гликокаликса, покрывающего микроворсинки и представляющего собой мукополисахаридную трёхмерную сеть; 2) собственно кишечные ферменты (g-амилаза, олиго- и дисахаридазы, различные тетра-, три- и дипептидазы, аминопептидаза, щелочная фосфатаза и её изоэнзимы, моноглицеридлипаза и др.), синтезированные клетками кишечного эпителия и переносимые на поверхность их мембран, где они осуществляют пищеварительные функции. Адсорбированные ферменты осуществляют преимущественно промежуточные, а собственно кишечные — заключительные стадии гидролиза пищевых веществ. Олигопептиды, поступающие в область щёточной каймы, расщепляются до аминокислот, способных к всасыванию, за исключением глицилглицина и некоторых дипептидов, содержащих пролин и оксипролин, которые всасываются как таковые. Дисахариды, поступающие с пищей и образующиеся в результате переваривания крахмала и гликогена, гидролизуются собственно кишечными гликозидазами до моносахаридов, которые транспортируются через кишечный барьер во внутреннюю среду организма. Триглицериды расщепляются не только под действием липазы поджелудочного сока, но и под влиянием собственно кишечного фермента — моноглицеридлипазы. Всасывание происходит в виде жирных кислот и b-моноглицеридов. Длинноцепочные жирные кислоты в слизистой оболочке тонкой кишки вновь эстерифицируются и поступают в лимфу в виде хиломикронов (частиц диаметром около 0,5 мкм). Короткоцепочные жирные кислоты не ресинтезируются и поступают в большей степени в кровь, чем в лимфу. В целом при мембранном П. расщепляется большая часть всех гликозидных и пептидных связей и триглицеридов. Мембранное П., в отличие от полостного, происходит в стерильной зоне, т.к. микроворсинки щёточной каймы представляют собой своеобразный бактериальный фильтр, отделяющий заключительные стадии гидролиза пищевых веществ от заселённой бактериями полости кишки. В норме в процессах П. важное значение имеют микроорганизмы, а у некоторых животных — простейшие, населяющие различные отделы желудочно-кишечного тракта. Пищеварительные процессы в тонкой кишке распределены неодинаково как в направлении от её начала к концу, так и в направлении от крипт к верхушкам ворсинок, что выражается в соответственной топографии каждого из пищеварительных ферментов, осуществляющих как полостное, так и мембранное П.
П. в толстых кишках практически отсутствует. В их содержимом обнаруживаются незначительные количества ферментов и богатая флора бактерий, вызывающих сбраживание углеводов и гниение белков, в результате чего образуются органические кислоты, газы (углекислый газ, метан и сероводород), ядовитые вещества (фенол, скатол, индол, крезол), обезвреживающиеся в печени. Вследствие микробного брожения расщепляется клетчатка. В толстых кишках преобладают процессы обратного всасывания (реабсорбции) воды, минеральных и органических компонентов пищевой кашицы — химуса . В толстых кишках всасываются до 95% воды, а также электролиты, глюкоза, некоторые витамины и аминокислоты, продуцируемые микробами кишечной флоры . По мере продвижения и уплотнения содержимого кишечника формируется кал, накопление которого вызывает акт дефекации .
Регуляция пищеварения . Функции пищеварительной системы зависят от состава и количества пищи, что впервые было подтверждено в эксперименте И. П. Павловым . Существует определённая связь между содержанием различных пищеварительных ферментов и качеством пищи. У одних видов животных (например, у хищных) преобладают протеолитические ферменты, у других (преимущественно растительноядных) — карбогидразы. Адаптивно-компенсаторные перестройки ферментных систем, участвующих в мембранном П., также обусловлены качеством пищи. Различия в наборе пищеварительных ферментов могут быть как фенотипические, так и генетические происхождения. Например, питание может стимулировать не только секрецию ферментов, но и их синтез, а состав диеты может определить соотношение пищеварительных ферментов у данного организма. Если в пищеварительный канал поступают жиры, белки и углеводы, в первую очередь перевариваются жиры, затем углеводы и, наконец, белки. Деятельность пищеварительной системы координируется с помощью нервных и гуморальных регуляторов. Так, парасимпатическая нервная система стимулирует двигательную функцию желудочно-кишечного тракта, а симпатическая угнетает её. Различные гормоны, особенно вырабатываемые передней долей гипофиза и корой надпочечников , влияют на синтез пищеварительных ферментов, их перенос и включение в липопротеидные комплексы мембраны микроворсинок собственно кишечных ферментов, на процессы всасывания и моторику, а также секреторную функцию. Между видом пищи, длительностью переваривания и скоростью продвижения её по желудочно-кишечному тракту существует тонко сбалансированная зависимость, осуществляемая частично посредством местной регуляции, но в основном рефлекторно. В регуляции деятельности пищеварительной системы участвуют сигналы, поступающие с рецепторов , локализованных в большинстве органов пищеварительного аппарата и обеспечивающих, в частности, анализ свойств пищи в ротовой полости (см. Вкус ). Значение центробежной (эфферентной) и центростремительной (афферентной) иннервации подробно рассмотрено при описании соответствующих органов.
Расстройства П. возникают при нарушении секреторной, двигательной, всасывательной или выделительной функций органов П. См. Ахилия , Гастрит , Гельминтозы , Гепатит , Диспепсия , Запор , Колит , Опухоли , Понос , Рак , Энтерит , Язвенная болезнь . Профилактика нарушений П. заключается в соблюдении рационального режима питания и общих санитарно-гигиенических норм.
Лит.: Бабкин Б. П., Внешняя секреция пищеварительных желез, М.— Л., 1927; Павлов И. П., Лекции о работе главных пищеварительных желез, Полн. собр. соч., 2 изд., т. 2, кн. 2, М.— Л., 1951; Бабкин Б. П., Секреторный механизм пищеварительных желез, Л., 1960; Проссер Л., Браун Ф., Сравнительная физиология животных, пер. с англ., М., 1967; Уголев А. М., Пищеварение и его приспособительная эволюция, М., 1961; его же, Мембранное пищеварение. Полисубстратные процессы, организация и регуляция, Л., 1972; Bockus Н. L., Gastroenterology, v. 1—3, Phil.- L., 1963-65; Davenport Н. W., Physiology of the digestive tract, 2 ed., Chi., 1966; Handbook of physiology, sec. 6: Alimentary canal, v. 1—5, Wash., 1967—68; Jennings J. B., Feeding, digestion and assimilationin animals, 2 ed., L., 1972.
А. М. Уголев, Н. М. Тимофеева, Н. Н. Иезуитова.
Рис. 3. Собственно кишечные и адсорбированные из полости тонкой кишки ферменты при мембранном пищеварении (схематическое изображение фрагмента внешней поверхности микроворсинки): А — распределение ферментов; Б — взаимоотношение ферментов, переносчиков и субстратов; I — полость тонкой кишки; II — гликокаликс; III — поверхность мембраны; IV — трёхслойная мембрана кишечной клетки; 1 — собственно кишечные ферменты; 2 — адсорбированные ферменты; 3 — переносчики; 4 — субстраты.
Рис. 2. Пищеварительно-транспортный конвейер (гипотетическая модель): 1 — фермент; 2 — переносчик; 3 — мембрана кишечной клетки; 4 — димер; 5 — мономеры, образующиеся при заключительных стадиях гидролиза.
Рис. 1. Локализация гидролиза пищевых веществ при различных типах пищеварения: А — внеклеточное, дистантное; Б — внутриклеточное и В — мембранное пищеварение; 1 — внеклеточная жидкость; 2 — внутриклеточная жидкость; 3 — внутриклеточная вакуоль; 4 — ядро; 5 — клеточная мембрана; 6 — ферменты.