Прямоуго'льников фо'рмула, простейшая формула для приближённого вычисления определённого интеграла, имеющая вид
где h = (b — a )/n , x k = x + (k — 1) h и a £ x £ a + h. Наиболее точной из всех П. ф. является формула средних ординат, в которой x = а + h /2; если ÷f '' (x )÷ < М на отрезке [а , b ], то для этой формулы
Остальные П. ф. в общем случае менее точны; поэтому, например, вместо формул, в которых x = а и x = а + h, предпочитают пользоваться их средним арифметическим (см. Трапеций формула ), т.к. погрешность при этом будет не больше (b — a )3 M /12n 2 . Если обе части П. ф. для x = а + h /2, x = а и x = а + h умножить соответственно на коэффициенты 2 /3 , 1 /6 , и 1 /6 , а затем сложить, то получится более точная формула приближённого интегрирования (см. Симпсона формула ), погрешность которой не больше (b — a )5 N /2880n 4 , где N — максимум úf IV (x )ú на отрезке [а , b ].