Ри'мана геоме'трия, эллиптическая геометрия, одна из неевклидовых геометрий , т. е. геометрическая теория, основанная на аксиомах, требования которых (в значительной части) отличны от требований аксиом евклидовой геометрии . Основными объектами, или элементами, трёхмерной Р. г. являются точки, прямые и плоскости; основные понятия Р. г. суть понятия принадлежности (точки прямой, точки плоскости), порядка (например, порядка точек на прямой или порядка прямых, проходящих через данную точку в данной плоскости) и конгруэнтности (фигур). Требования аксиом Р. г., касающиеся принадлежности и порядка, полностью совпадают с требованиями аксиом проективной геометрии . Соответственно, в Р. г. имеют место, например, следующие предложения: через каждые две точки проходит одна прямая, каждые две плоскости пересекаются по одной прямой, каждые две прямые, лежащие в одной плоскости, пересекаются (в одной точке), точки на прямой расположены в циклическом порядке (как и прямые, лежащие в одной плоскости и проходящие через одну точку). Требования аксиом Р. г., касающиеся конгруэнтности, сходны с требованиями соответствующих аксиом геометрии: во всяком случае они обеспечивают движения фигур по плоскости и в пространстве Римана столь же свободные, как на плоскости и в пространстве Евклида. Метрические свойства плоскости Римана «в малом» совпадают с метрическими свойствами обыкновенной сферы. Точнее: для любой точки плоскости Римана существует содержащая эту точку часть плоскости, изометричная некоторой части сферы; радиус R этой сферы — один и тот же для всех плоскостей данного пространства Римана. Число К = 1/R 2 называется кривизной пространства Римана (чем меньше К, тем ближе свойства фигур этого пространства к евклидовым). Свойства плоскости Римана «в целом» отличаются от свойств целой сферы; так, например, на плоскости Римана две прямые пересекаются в одной точке, а на сфере два больших круга, которые играют роль прямых в сферической геометрии, пересекаются в двух точках; прямая, лежащая на плоскости, не разделяет эту плоскость (т. е., если прямая а лежит в плоскости a, то любые две точки плоскости a, не лежащие на прямой а, возможно соединить отрезком, не пересекая прямой а).

  По-видимому, первое сообщение о Р. г. сделано Б. Риманом в его лекции «О гипотезах, лежащих в основании геометрии» (1854, опубликовано в 1867), где Р. г. рассматривалась как частный случай римановой геометрии — теории римановых пространств в широком смысле. Р. г. относится к теории пространств постоянной положительной кривизны.

  Лит. см. при статье Неевклидовы геометрии .

  Н. В. Ефимов.