Сло'жная фу'нкция , функция от функции. Если величина y является функцией от u, то есть у = f (u ), а и, в свою очередь, функцией от х, то есть u = j(х ), то у является С. ф. от х, то есть y = f [(x )], определённой для тех значений х, для которых значения j(х ) входят в множество определения функции f (u ). В таком случае говорят, что у является С. ф. независимого аргумента х, а u — промежуточным аргументом. Например, если у = u 2 , u = sinx, то у = sin2 х для всех значений х. Если же, например, у = , u = sinx , то у = #i-images-106317972.png , причём, если ограничиваться действительными значениями функции, С. ф. у как функция х определена только для таких значений х, для которых sin ³ 0, то есть для , где k = 0, ± 1, ± 2,...
Производная С. ф. равна произведению производной данной функции по промежуточному аргументу на производную промежуточного аргумента по независимому аргументу. Это правило (цепное правило) распространяется на С. ф. с двумя, тремя и т. д. промежуточными аргументами: если у = f (u 1 ), u 1 = j(u 2 ),..., u k-1 = jk-1 (u k ), u k = jk (x ), то