Спе'ктры опти'ческие, спектры электромагнитного излучения в инфракрасном, видимом и ультрафиолетовом диапазонах шкалы электромагнитных волн . С. о. разделяют на спектры испускания (называемые также спектрами излучения, или эмиссионными спектрами), спектры поглощения, рассеяния и отражения. С. о. испускания получаются от источников света разложением их излучения по длинам волн l спектральными приборами и характеризуются функцией f(l), дающей распределение энергии испускаемого света в зависимости от l. С. о. поглощения (абсорбции), рассеяния и отражения обычно получаются при прохождении света через вещество с последующим его разложением по l. Эти типы С. о. характеризуются долей энергии света каждой длины волны соответственно поглощённой [k(l)], рассеянной [a(l)] и отражённой [R(l)]. При рассеянии монохроматического света длины волны lо спектр комбинационного рассеяния света характеризуется распределением энергии рассеянного света по измененным длинам волн l ¹ lо[f’(l)]. Т. о., любой спектр характеризуется некоторой функцией f(l), дающей распределение энергии (абсолютной или относительной) по длинам волн; при этом энергию рассчитывают на некоторый интервал l. От функции f(l) можно перейти к функции j(n), дающей распределение энергии по частотам n = с/ l (с — скорость света); тогда энергия рассчитывается на единицу интервала n.
С. о. регистрируют с помощью фотографических и фотоэлектрических методов, применяют также счётчики фотонов для ультрафиолетовой области, термоэлементы и болометры в инфракрасной области и т. д. В видимой области С. о. можно наблюдать визуально.
По виду С. о. разделяют на линейчатые, состоящие из отдельных спектральных линий , соответствующих дискретным значениям l, полосатые, состоящие из отдельных полос, каждая из которых охватывает некоторый интервал l, и сплошные (непрерывные), охватывающие большой диапазон l. Строго говоря, отдельная спектральная линия также не соответствует вполне определённому значению l, а всегда имеет конечную ширину, характеризуемую узким интервалом l (см. Ширина спектральных линий ).
Диапазон | l, мкм | n, сек -1 ' | n /с, см -1 | h n , эв | Т, К |
Инфракрасное излучение | 10 3 —0,74 | 3,0×10"—4,0×10 14 | 10—1,35×10 4 | 1,25×10 -3 —1,7 | 14—2,0×10 4 |
Видимое излучение | 0,74—0,40 | 4×10 14 —7,5×10 14 | 1,35×10 4 —2,5×10 4 | 1,7—3,1 | 2,0×10 4 —3,6×104 |
Ультрафиолетовое излучение | 0,40—0,001 | 7,5×10 14 —3,0×10'° | 2,5×10 4 —10 6 | 3,1—125 | 3,6×10 4 —1,4×10 6 |
С. о. возникают при квантовых переходах между уровнями энергии атомов, молекул, а также твёрдых и жидких тел. С. о. испускания соответствуют возможным квантовым переходам с верхних уровней энергии на нижние, спектры поглощения — с нижних уровней энергии на верхние.
Вид С. о. зависит от состояния вещества. Если при заданной температуре вещество находится в состоянии термодинамического равновесия с излучением (см. Тепловое излучение ), оно испускает сплошной спектр, распределение энергии в котором по l (или n) даётся Планка законом излучения . Обычно термодинамическое равновесие вещества с излучением отсутствует и С. о. могут иметь самый различный вид. В частности, для спектров атомов характерны линейчатые спектры, возникающие при квантовых переходах между электронными уровнями энергии (см. Атомные спектры ), для простейших молекул типичны полосатые спектры, возникающие при переходах между электронными, колебательными и вращательными уровнями энергии (см. Молекулярные спектры ).
Для С. о. различным диапазонам l и, следовательно, n соответствуют различные энергии фотонов hn = Е 1 —Е2 (где h — Планка постоянная , Е 1 и Е2 — энергии уровней, между которыми происходит переход). В табл. приведены для 3 диапазонов электромагнитных волн примерные интервалы длин волн l, частот n, волновых чисел n/c, энергий фотонов hn, а также температур Т, характеризующих энергию фотонов согласно соотношению kT = hn (k — Больцмана постоянная ).
С. о. широко применяются для исследования строения и состава вещества (см. Спектроскопия , Спектральный анализ ).
Лит.: Ландсберг Г. С., Оптика, 4 изд., М., 1957. (Общий курс физики, ч. 3); Фриш С. Э., Оптические спектры атомов, М. — Л., 1963.
М. А. Ельяшевич.