Спла'вы металлов, металлические сплавы, твёрдые и жидкие системы, образованные главным образом сплавлением двух или более металлов , а также металлов с различными неметаллами. Термин «С.» первоначально относился к материалам с металлическими свойствами. Однако с середины 20 в. в связи с бурным развитием физики и техники полупроводников и полупроводниковых материалов понятие С. расширилось и распространилось на С. элементарных полупроводников и полупроводниковых соединений. С. даже при сравнительно простой кристаллической структуре часто обладают более высокими механическими и физическими свойствами, чем составляющие их чистые металлы, например твёрдые растворы Cu—Sn (бронза ) или Fe—C (чугун , сталь ). Два больших периода истории материальной культуры — бронзовый век и железный век — названы по тем металлам и С., из которых изготовлялись орудия труда, предметы вооружения и пр. Издавна было известно, что свойства С. зависят не только от их состава, но и от тепловой (например, закалка ) и механической (например, ковка) обработки, Переход от поиска практически важных С. с помощью «проб и ошибок» к научным основам создания промышленных С. произошёл только в конце 19 — начале 20 вв., когда под влиянием быстро растущих запросов техники и идей физической химии возникло учение о зависимости между свойствами металлов и свойствами образованных из них С., а также о влиянии на них механических, тепловых, химических и др. воздействий (см. Металловедение , Металлография , Металлофизика , физико-химический анализ ). Были построены диаграммы состояния и диаграммы состав — свойство для всевозможных комбинаций металлических систем, как двойных, так и многокомпонентных. Раскрываемый диаграммой состояния характер взаимодействия компонентов системы (образование твёрдых растворов , химических соединений, механических смесей, наличие фазовых превращений в твёрдом состоянии) позволяет предвидеть тип диаграмм состав — твёрдость, состав — электропроводность и др., получить представление о макроструктуре С. Во второй половине 20 в. внимание учёных в СССР и за рубежом всё больше сосредоточивается на проблеме предсказания характера взаимодействия элементов и свойств их С. При этом используются закономерности, вскрытые периодической системой элементов , успехи теории химической связи , достижения физики твёрдого тела и вычислительной техники. Разработка теории С. создала новые возможности развития промышленности, а также ряда отраслей новой техники. Современные промышленные С. — основная часть конструкционных материалов . При этом 95% мировой металлопродукции составляют С. на основе железа — самого дешёвого и доступного металла (сталь, чугун, ферросплавы ). Всё больше элементов периодической системы Менделеева, до недавнего времени представлявших чисто научный интерес, находит практическое применение для легирования известных и создания новых С. с целью расширения диапазона свойств и областей применения.
Большое число всевозможных С. требует их классификации. Для неё существует теоретический и практический подход. В первом случае с точки зрения термодинамики химической (и фаз правила ) С. классифицируют: а) по числу компонентов — на двойные, тройные и т. д.; б) по числу фаз — на однофазные (твёрдый раствор или интерметаллид) и многофазные (гетерофазные), состоящие из двух и более фаз. Этими фазами могут быть чистые компоненты, твёрдые растворы, фазы со структурой a-, b-, g-, e- латуни , b- вольфрама , типа Cu5Ca, NiAs, CaF2, сигма-фазы, фазы Лавеса (названы по имени нем. учёного Ф. Лавеса), фазы внедрения и др. Особенно ценны С. с очень тонкой гетерогенностью (см. Дисперсноупрочнённые материалы , Старение металлов ); можно считать, что они лежат на границе между твёрдыми растворами и многофазными С. По практическому получению и применению принята следующая классификация С.: а) по металлам — либо являющимся основой С. (С. чёрных металлов и С. цветных металлов, а также алюминиевые сплавы , железные сплавы , никелевые сплавы и т. п.), либо по добавленным в небольших количествах и придающим особо ценные свойства легирующим компонентам (бериллиевая бронза, ванадиевая, вольфрамовая и др. стали); б) по применению (для изготовления конструкций или инструментов) и свойствам — антифрикционные, жаропрочные, жаростойкие, износостойкие, лёгкие и сверхлёгкие, легкоплавкие, химически стойкие и многие другие, а также С. с особыми физическими свойствами — тепловыми, магнитными, электрическими (см. Прецизионные сплавы ); в) по технологии изготовления изделий — на литейные (отливка жидких С. в формы); деформируемые (в холодном или горячем состоянии путём ковки, прокатки, волочения, прессования, штамповки); полученные методами порошковой металлургии (см. Спечённые материалы ).
Для обозначения качественного состава выпускаемые в СССР С. маркируются (см. на примере медных сплавов , легированных сталей ). Кроме того, многие С. имеют названия, связанные с различными их признаками: составом (например, нихром ), особыми свойствами (например, инвар , константан ). С. называют и по фамилиям изобретателей (Вуда сплав , мельхиор , монель-металл ), названиям фирм (армко-железо ) и др.
Свойства большинства С. определяются как составом, так и структурой С., зависящей от условий кристаллизации и охлаждения, термической и механической обработки. При нагреве и охлаждении изменяется структура С. (см. Макроструктура , Микроструктура ), что обусловливает изменение механических, физических и химических свойств и влияет на поведение С. при обработке и эксплуатации. Выяснение (с помощью диаграмм состояния) возможных фазовых превращений в С. даёт исходные данные для анализа важнейших видов термической обработки (закалки, отпуска металлов, отжига , старения). Например, перед отжигом углеродистых сталей исходной структурой чаще всего является феррито-карбидная смесь; основное превращение, происходящее при нагревании, — это переход перлита в аустенит при температуре выше 727 °С («точка A1»); закалка позволяет сохранить аустенитную структуру (т. н. закалка без полиморфного превращения, при которой происходит повышение прочности при сохранении пластичности С.). Типичный пример подобного поведения для алюминиевых С. — закаленный дуралюмин Д16. Реже встречаются С., у которых при закалке снижается прочность и сильно возрастает пластичность по сравнению с отожжённым состоянием. Типичный пример — бериллиевая бронза Бр. Б2 или нержавеющая хромоникелевая сталь X18H9. Для любых металлов или С., в которых при изменении температуры происходит полиморфное превращение основного компонента, при быстром охлаждении возможна закалка с бездиффузионным полиморфным превращением, которую обычно называют «закалкой на мартенсит ». Мартенситное превращение , открытое при изучении закалки углеродистых и легированных сталей, как выяснилось впоследствии, является одним из фундаментальных способов перестройки кристаллической решётки , свойственным как чистым металлам, так и самым различным классам С.: безуглеродистым С. на основе железа, сплавам цветных металлов, полупроводниковым соединениям и др. Современная термическая обработка металлов и С. включает не только собственно термическую, но и термомеханическую обработку , химико-механическую обработку и химико-термическую обработку . В процессе таких технологических операций, как литьё , сварка , горячая обработка давлением, С. могут побочно также подвергаться отдельным видам термического воздействия и изменять свои свойства.
Для установления и проверки свойств С. применяют различные методы контроля, в т. ч. разрушающего — испытания на механическую прочность и пластичность , жаропрочность (см. Механические свойства материалов ), а также испытания на стойкость против коррозии(см. Коррозия металлов, Жаростойкость и др.), и неразрушающего (измерения твёрдости, электрических, оптических, магнитных и др. свойств). Состав С. определяется химико-аналитическими методами (см. Качественный анализ , Количественный анализ ), с помощью спектрального анализа , рентгеноспектрального анализа и др. методов. Весьма эффективны для практического применения методы быстрого («экспрессного») химического анализа, используемые при производстве С., полуфабрикатов и изделий из С. Для исследования как самой структуры С., так и её дефектов используются методы физического металловедения. Различают макроскопические и микроскопические дефекты С. (см. Дефекты в кристаллах , Дефекты металлов ).
Подавляющее большинство промышленных С. существует в мелкозернистом (в виде поликристаллов ) состоянии; свойства таких С. практически изотропны (см. Изотропия ). Получение С. в виде монокристаллов представляло чисто научный интерес. Лишь со 2-й половины 20 в. появилась необходимость в промышленном производстве С. в виде монокристаллов, т. к. в ряде областей новой техники могут быть использованы только монокристаллы (см. Полупроводниковые материалы ).
Современные успехи науки о С. в значительной мере связаны с совершенствованием классических и разработкой новых физических методов исследования твёрдого тела (см. Рентгеновский структурный анализ , Электронная микроскопия , Нейтронография , Электронография и др. методы).Подробнее о методах получения С., их свойствах, значении и применении см. также статьи о различных С.
Лит.: Д. К. Чернов и наука о металлах, под ред. Н. Т. Гудцова, Л. — М., 1950; Бочвар А. А., Металловедение, 5 изд., М., 1956; Смирягин А. П., Промышленные цветные металлы и сплавы, 2 изд., М., 1956; Курнаков Н. С., Избр. труды, т. 1—2, М., 1960—61; Колачёв Б. А., Ливанов В. И., Елагин В. И. Металловедение и термическая обработка цветных металлов и сплавов, М., 1972; Бокштейн С. З., Строение и свойства: металлических сплавов, М., 1971; Курдюмов Г. В., Явления закалки и отпуска стали, М., 1960; Штейнберг С. С., Металловедение, М., 1961; Хансен М., Андерко К., Структуры двойных сплавов, пер. с англ., 2 изд., т. 1—2, М., 1962; Диаграммы состояния металлических систем, в. 1—17, под ред. Н. В. Агеева, М., 1959—73; Савицкий Е. М., Бурханов Г. С., Металловедение тугоплавких металлов и сплавов, М., 1967; Эллиот Р. П., Структуры двойных сплавов, пер. с англ., т. 1—2, М., 1970; Шанк Ф. А., Структуры двойных сплавов, пер. с англ., М., 1973; Физическое металловедение, под ред. Р. Кана, пер. с англ., т. 1—3, М., 1967—68; Горелик С. С., Дашевский М. Я., Материаловедение полупроводников и металловедение, М., 1973; Новиков И. И., Теория термической обработки металлов, М., 1974.
С. А. Погодин, Г. В. Инденбаум.