Сжатие
Сжа'тие в сопротивлении материале в, см. Растяжение-сжатие .
Сжатие
Сжа'тие в сопротивлении материале в, см. Растяжение-сжатие .
Сжатие земли
Сжа'тие земли', земного эллипсоида, величина, характеризующая степень сплюснутости Земли в направлении оси вращения, т. е. отступление формы Земли от шара. Полярное С. З. a выражается равенством: , где a — радиус экватора Земли, а b — полярный радиус её. По современным данным, a = 1: 298,3. В связи с обнаруженным фактом сплюснутости Земли также и по экватору введено понятие экваториального С. З., равного , где a 1 и a 2 , соответственно, — наибольший и наименьший радиусы земного экватора. По имеющимся данным, e = 1: 30000, разность a 1 — a 2 составляет около 210 м. См. также Геодезия , Земля .
Сжатых отображений принцип
Сжа'тых отображе'ний при'нцип, одно из основных положений теории метрических пространств о существовании и единственности неподвижной точки множества при некотором специальном («сжимающем») отображении его в себя. С. о. п. применяют главным образом в теории дифференциальных и интегральных уравнений.
Произвольное отображение А метрического пространства М в себя, которое каждой точке х из М сопоставляет некоторую точку у = Ax из М, порождает в пространстве М уравнение
Ax = х. (*)
Действие отображения А на точку х можно интерпретировать как перемещение её в точку у = Ax. Точка х называется неподвижной точкой отображения А, если выполняется равенство (*). Т. о. вопрос о разрешимости уравнения (*) является вопросом о нахождении неподвижных точек отображения А.
Отображение А метрического пространства М в себя называется сжатым, если существует такое положительное число a < 1, что для любых точек х и у из М выполняется неравенство
d (Ax, Ау) £ ad (х, у),
где символ d (u, u) означает расстояние между точками u и u метрического пространства М.
С. о. п. утверждает, что каждое сжатое отображение полного метрического пространства в себя имеет, и притом только одну, неподвижную точку. Кроме того, для любой начальной точки x 0 из М последовательность {x n }, определяемая рекуррентными соотношениями
x n = Ax n-1 , n = 1,2,...,
имеет своим пределом неподвижную точку х отображения А. При этом справедлива следующая оценка погрешности:
.
С. о. п. позволяет единым методом доказывать важные теоремы о существовании и единственности решений дифференциальных, интегральных и др. уравнений. В условиях применимости С. о. п. решение может быть с наперёд заданной точностью вычислено последовательных приближений методом .
С помощью определённого выбора полного метрического пространства М и построения отображения А эти задачи сводят предварительно к уравнению (*), а затем находят условия, при которых отображение А оказывается сжатым.
Лит.: Смирнов В. И., Курс высшей математики, т. 5, М., 1959.
Ш. А. Алимов.
Сжижение газов
Сжиже'ние га'зов, переход вещества из газообразного состояния в жидкое. С. г. достигается охлаждением их ниже критической температуры (Т к ) и последующей конденсацией в результате отвода теплоты парообразования (конденсации). Охлаждение газа ниже Т К необходимо для достижения области температур, при которых газ может сконденсироваться в жидкость (при Т > Т К жидкость существовать не может). Впервые газ (аммиак) был сжижен в 1792 (голландский физик М. ван Марум). Хлор был получен в жидком состоянии в 1823 (М. Фарадей ), кислород — в 1877 (швейцарский учёный Р. Пикте и французский учёный Л. П. Кальете), азот и окись углерода — в 1883 (З. Ф. Вроблевский и К. Ольшевский ), водород — в 1898 (Дж. Дьюар ), гелий — в 1908 (Х. Камерлинг-Оннес ).
Идеальный процесс С. г. изображен на рис. 1 . Изобара 1—2 соответствует охлаждению газа до начала конденсации, изотерма 2—0 — конденсации газа. Площадь ниже 1—2—0 эквивалентна количеству теплоты, которое необходимо отвести от газа при его сжижении, а площадь внутри контура 1—2—0—3 (1—3 — изотермическое сжатие газа, 3—0 — адиабатическое его расширение) характеризует термодинамически минимальную работу L min , необходимую для С. г.:
L min = T 0 (S Г — S Ж ) — (J Г - J Ж ),
где T 0 — температура окружающей среды; S Г , S Ж — энтропии газа и жидкости; J Г , J Ж — теплосодержания (энтальпии) газа и жидкости.
Значения L min и действительно затрачиваемой работы L Д для сжижения ряда газов даны в таблице.
Промышленное С. г. с критической температурой Т К выше температуры окружающей среды (например, аммиак, хлор) осуществляется с помощью компрессора, где газ сжимается, и последующей конденсацией газа в теплообменниках, охлаждаемых водой или холодильным рассолом. С. г. с Т К , которая значительно ниже температуры окружающей среды, производится методами глубокого охлаждения . Наиболее часто для С. г. с низким Т К применяются холодильные циклы , основанные на дросселировании сжатого газа (использование Джоуля — Томсона эффекта ), на расширении сжатого газа с производством внешней работы в детандере, на расширении газа из постоянного объёма без совершения внешней работы (метод теплового насоса ). В лабораторной практике иногда используется каскадный метод охлаждения (сжижения).
Графическое изображение и схема дроссельного цикла С. г. дана на рис. 2 . После сжатия в компрессоре (1—2) газ последовательно охлаждается в теплообменниках (2—3—4) и затем расширяется (дросселируется) в вентиле (4—5). При этом часть газа сжижается и скапливается в сборнике, а несжижившийся газ направляется в теплообменники и охлаждает свежие порции сжатого газа. Для С. г. по циклу с дросселированием необходимо, чтобы температура сжатого газа перед входом в основной теплообменник T3 была ниже температуры инверсионной точки (см. Инверсионная кривая ). Для этого и служит теплообменник с посторонним холодильным агентом T2. Если температура инверсионной точки газа лежит выше комнатной (азот, аргон, кислород), то схема принципиально работоспособна и без теплообменников T1 и T2. Применение посторонних хладагентов в этих случаях имеет целью повышение выхода жидкости. Если же температура инверсионной точки газа ниже комнатной, то теплообменник с посторонним хладагентом обязателен. Например, при сжижении водорода методом дросселирования в качестве постороннего хладагента используется жидкий азот, при сжижении гелия — жидкий водород.
Для С. г. в промышленных масштабах чаще всего применяются циклы с детандерами (рис. 3 ), т. к. расширение газов с производством внешней работы — наиболее эффективный метод охлаждения. В самом детандере жидкость обычно не получают, ибо технически проще проводить само сжижение в дополнительной дроссельной ступени. После сжатия в компрессоре (1—2) и предварительного охлаждения в теплообменнике (2—3) поток сжатого газа делится на 2 части: часть М отводится в детандер, где, расширяясь, производит внешнюю работу и охлаждается (3—7). Охлажденный газ подаётся в теплообменник, где понижает температуру оставшейся части сжатого газа 1 — М, которая затем дросселируется и сжижается. Теоретически расширение в детандере должно осуществляться при постоянной энтропии (3—6). Однако из-за потерь расширение протекает по линии 3—7. Для увеличения термодинамической эффективности процесса С. г. иногда применяют несколько детандеров, работающих на различных температурных уровнях.
Циклы с тепловыми насосами обычно используются (наряду с детандерными и дроссельными циклами) при С. г. с помощью холодильно-газовых машин, которые позволяют получать температуры до 12 К, что достаточно для сжижения всех газов, кроме гелия (см. табл.). Для сжижения гелия к машине пристраивается дополнительная дроссельная ступень.
Подвергаемые сжижению газы должны очищаться от паров воды, масла и др. примесей (например, воздух — от углекислоты, водород — от воздуха), которые при охлаждении могут затвердеть и закупорить теплообменную аппаратуру. Поэтому узел очистки газа от посторонних примесей — необходимая часть установок С. г.
О применении сжиженных газов см. в ст. Глубокое охлаждение .
Значения температуры кипения Т кип (при 760 мм. рт. ст.), критической температуры Т К , минимальной L min и действительной L Д работ сжижения некоторых газов
Газ | Т кип , К | Т К , К | L min , квт•ч/кг | L д , квт•ч/кг |
Азот Аргон Водород Воздух Гелий Кислород Метан Неон Пропан Этилен | 77,4 87,3 20,4 78,8 4,2 90,2 111,7 27,1 231,1 169,4 | 126,2 150,7 33,0 132,5 5,3 154,2 191,1 44,5 370,0 282,6 | 0,220 0,134 3,31 0,205 1,93 0,177 0,307 0,37 0,04 0,119 | 1,2—1,5 0,8—0,95 15—40 1,25—1,5 15—25 1,2—1,4 0,75—1,2 3—4 ~ 0,08 ~ 0,3 |
Лит.: Фастовский В. Г., Петровский Ю. В., Ровинский А. Е., Криогенная техника, 2 изд., М., 1974; Справочник по физико-техническим основам криогеники, 2 изд., М., 1973. См. также лит. при ст. Глубокое охлаждение .
А. Б. Фрадков.
Рис. 3. Схема и диаграмма Т — S (температура — энтропия) цикла сжижения газов с детандером: К — компрессор; Д — детандер; Др — дроссельный вентиль.
Рис. 1. Идеальный цикл сжижения газов на диаграмме T—S (температура — энтропия).
Рис. 2. Схема и диаграмма Т — S (температура — энтропия) цикла сжижения газов на основе эффекта Джоуля — Томсона: К — компрессор; T1, T2, ТЗ — теплообменники; Др — дроссельный вентиль.
Сжимаемость
Сжима'емость, способность вещества изменять свой объём под действием всестороннего давления. С. обладают все вещества. Если вещество в процессе сжатия не испытывает химических, структурных и других изменений, то при возвращении внешнего давления к исходному значению начальный объём восстанавливается. У твёрдых тел, имеющих поры, трещины и другие неоднородности структуры, практически обратимая С. может наблюдаться только при достаточно высоком давлении (например, у горных пород при давлении большем 2—5 кбар; 1 кбар = 108 н/м 2 ).
Обычно С. (объёмной упругостью) называется обратимое изменение занимаемого веществом объёма V под равномерным гидростатическим давлением р. Величину С. характеризует коэффициент С. (b, который выражает уменьшение единичного объёма тела при увеличении р на одну единицу: , где DV и Dr — изменения объёма V и плотности r при изменении р на величину Dр. К = 1/b называют модулем объёмной упругости (модулем объёмного сжатия, объёмным модулем), для твердых тел , где Е — модуль нормальной упругости (Юнга модуль ), m — модуль сдвига. Для идеальных газов К = р при любой температуре Т. В общем случае С. вещества, а следовательно К и b, зависит от р и Т. Как правило, b убывает при увеличении р и растет с Т. Часто С. характеризуют относит. плотностью d = r/r0, где r0 — плотность при О °С и р = 1 атм.
Сжатие может происходить как при постоянной температуре (изотермически), так и с одновременным разогревом сжимаемого тела (например, в адиабатном процессе). В последнем случае значения К будут большими, чем при изотермическом сжатии (для большинства твёрдых тел при обычной температуре — на несколько %).
Для оценки С. веществ в широком диапазоне давлений используют уравнения состояния, выражающие связь между р, V и Т. Определяют С. непосредственно по изменению объёма тел под давлением (см. Пьезометр ), из акустических измерений скорости распространения упругих волн в веществе, из экспериментов по ударному сжатию, дающих зависимость между r и р при максимальных полученных в эксперименте давлениях. С. находят также из измерений параметров кристаллической решётки под давлением, производимых методом рентгеновского структурного анализа . С. можно определить с помощью измерения линейной деформации твёрдого тела под гидростатическим давлением (по т. н. линейной С.). Для изотропного тела коэффициент линейной С. , где L — линейный размер тела.
С. газов, будучи очень большой при давлениях до 1 кбар, по мере приближения их плотности к плотности жидкостей становится близкой к С. жидкостей. Последняя с ростом р уменьшается сначала резко, а затем меняется весьма мало: в интервале 6—12 кбар b уменьшается примерно так же, как в интервале от 1 атм (10-3 кбар) до 1 кбар (примерно в 2 раза), и при 10—12 кбар составляет 5—10% от начального значения. При 30—50 кбар модули К жидкостей по порядку величины близки к К твёрдых тел. Для твёрдых тел при 100 кбар Dr/r0 » 15—25%. Для отдельных веществ, например щелочных металлов, Dr/r ~ 40%, для большинства др. металлов ~ 6—15%. Линейная С. анизотропных веществ зависит от кристаллографических направлений (во всяком случае, до давлений в десятки кбар), причём вдоль направлений со слабым межатомным взаимодействием она может в 8—10 раз превосходить С. по направлениям, вдоль которых в кристаллической решётке имеет место более сильная связь; изменение параметра решётки в этих направлениях в определённом интервале р может быть даже положительным (теллур, селен). С. — важнейшая характеристика вещества, которая позволяет судить о зависимости физических свойств от межатомных (межмолекулярных) расстояний.
Знание С. газов (паров), жидкостей и твёрдых тел необходимо для расчёта работы тепловых машин, химико-технологических процессов, действия взрыва, аэро- и гидродинамических эффектов, наблюдающихся при движениях с большими скоростями, и т. д. Примеры С. различных веществ приведены в ст. Давление высокое .
Лит.: Варгафтик Н. Б., Справочник по теплофизическим свойствам газов и жидкостей, 2 изд., М., 1972; Справочник физических констант горных пород, [пер. с англ.], М., 1969, гл. 7; Физический энциклопедический словарь, т. 4, М., 1963 (ст. Сжимаемость). См. также лит. при статьях Давление высокое . Пьезометр .
Л. Д. Лившиц.