Трансфини'тные чи'сла (от транс… и лат. finitus — ограниченный), обобщённые порядковые числа. Определение Т. ч. опирается на понятие вполне упорядоченного множества (см. Упорядоченные и частично упорядоченные множества ). Каждое конечное множество можно сделать вполне упорядоченным, выписав все его элементы в определённом порядке. Простейшим примером бесконечного вполне упорядоченного множества является множество всех натуральных чисел, расположенных в порядке возрастания; то же множество, расположенное в порядке убывания (так что большее считается предшествующим меньшему), уже не будет вполне упорядоченным, так как ни одно его бесконечное подмножество не имеет первого элемента. Два упорядоченных множества Х и Y называются подобными или имеющими один и тот же порядковый тип, если между их элементами можно установить взаимно однозначное соответствие , сохраняющее порядок элементов (то есть такое, что для любых двух элементов x' , х» множества Х и соответствующих им элементов y' , у» множества Y из x'

  Трансфинитными числами называются порядковые типы бесконечных вполне упорядоченных множеств. Тем самым понятие Т. ч. представляет собой распространение понятия порядкового числа на бесконечные множества. Аналогичное обобщение понятия количественного числа приводит к понятию мощности множества . Так как неравномощные множества нельзя поставить во взаимно однозначное соответствие, то вполне упорядоченным множествам различной мощности соответствуют различные Т. ч. Однако обратное (в отличие от случая конечных множеств) неверно: бесконечные вполне упорядоченные множества могут быть равномощными, не будучи подобными и тем самым определяя различные Т. ч.

  Для Т. ч. можно ввести понятия «больше» и «меньше». Именно, Т. ч. a , по определению, меньше Т. ч. b (a < b ), если какое-либо (а значит, и любое) вполне упорядоченное множество типа a подобно некоторому отрезку какого-нибудь (а следовательно, и любого) множества типа b (отрезком вполне упорядоченного множества, отсеченным элементом х , называется подмножество его элементов, предшествующих х ). При этом доказывается, что для любых двух Т. ч. a и b всегда осуществляется один и только один из трёх случаев: либо a < b , либо a = b , либо a > b .

  В применении Т. ч. к различным вопросам математики важную роль играет принцип трансфинитной индукции, обобщающий обычный принцип математической индукции на произвольные вполне упорядоченные множества: если некоторое предложение верно для первого элемента вполне упорядоченного множества Х и если из того, что оно верно для всех элементов множества X , предшествующих данному элементу x из множества X , следует его справедливость и для элемента х , то это предложение верно для каждого элемента множества X .