Волново'й паке'т, распространяющееся волновое поле, занимающее в каждый момент времени ограниченную область пространства. В. п. может возникнуть у волн любой природы (звуковых, электромагнитных и т.п.). Такой волновой «всплеск» в некоторой области пространства может быть разложен на сумму монохроматических волн, частоты которых лежат в определённых пределах. Однако термин «В. п.» обычно употребляется в связи с квантовой механикой.
В квантовой механике каждому состоянию частицы с определённым значением импульса и энергии соответствует плоская монохроматическая волна де Бройля , т. е. волна с определённым значением частоты и длины волны, занимающая всё пространство. Координата частицы с точно определённым импульсом является полностью неопределённой — частица с равной вероятностью может быть обнаружена в любом месте пространства, поскольку эта вероятность пропорциональна квадрату амплитуды волны де Бройля. Это отвечает неопределённостей соотношению , утверждающему, что чем определённее импульс частицы, тем менее определённа её координата.
Если же частица локализована в некоторой ограниченной области пространства, то её импульс уже не является точно определённой величиной — имеется некоторый разброс возможных его значений. Состояние такой частицы представится суммой (точнее, интегралом, так как импульс свободной частицы изменяется непрерывно) монохроматических волн с частотами, соответствующими интервалу возможных значений импульса. Наложение (суперпозиция) группы таких волн, имеющих почти одинаковое направление распространения, но слегка отличающихся по частотам, и образует В. п. Это означает, что результирующая волна будет отлична от нуля лишь в некоторой ограниченной области; в квантовой механике это соответствует тому, что вероятность обнаружить частицу в области, занимаемой В. п., велика, а вне этой области практически равна нулю.
Оказывается, что скорость В. п. (точнее его центра) совпадает с механической скоростью частицы. Отсюда можно сделать вывод, что В. п. описывает свободно движущуюся частицу, возможная локализация которой в каждый данный момент времени ограничена некоторой небольшой областью координат (т. е. В. п. является волновой функцией такой частицы).
С течением времени В. п. становится шире, расплывается (см. рис. ). Это является следствием того, что составляющие пакет монохроматические волны с разными частотами даже в пустоте распространяются с различными скоростями: одни волны движутся быстрее, другие — медленнее, и В. п. деформируется. Такое расплывание В. п. соответствует тому, что область возможной локализации частицы увеличивается.
Если частица не свободна, а находится вблизи некоторого центра притяжения, например электрон в кулоновском поле протона в атоме водорода, то такой связанной частице будут соответствовать стоячие волны, сохраняющие стабильность. Форма В. п. при этом остаётся неизменной, что отвечает стационарному состоянию системы. В случае, когда система под влиянием внешних воздействий (например, когда на атом налетает частица) скачком переходит в новое состояние, В. п. мгновенно перестраивается в соответствии с этим переходом; это называется редукцией В. п. Такая редукция приводила бы к противоречиям с требованиями относительности теории , если бы волны де Бройля представляли собой обычные материальные волны, например типа электромагнитных. Действительно, в этом случае редукция В. п. означала бы существование сверхсветовых (мгновенных) сигналов. Вероятностное истолкование волн де Бройля снимает это затруднение (см. также Квантовая механика ).
В. И. Григорьев.
Расплывание волнового пакета с течением времени t. В начальный момент времени частица описывается волновым пакетом y0 , в момент t — волновым пакетом yt ; |y0 |2 и |yt |2 определяют вероятности обнаружить частицу в некоторой точке х; v — скорость центра пакета, совпадающая с механической скоростью частицы. Площади, ограниченные кривыми и осью абсцисс, одинаковы и дают полную вероятность обнаружения частицы в пространстве в данный момент времени.