Жи'дкость, агрегатное состояние вещества, промежуточное между твёрдым и газообразным состояниями. Ж., сохраняя отдельные черты как твёрдого тела, так и газа, обладает, однако, рядом только ей присущих особенностей, из которых наиболее характерная — текучесть . Подобно твёрдому телу, Ж. сохраняет свой объём, имеет свободную поверхность, обладает определённой прочностью на разрыв при всестороннем растяжении и т. д. С другой стороны, взятая в достаточном количестве Ж. принимает форму сосуда, в котором находится. Принципиальная возможность непрерывного перехода Ж. в газ также свидетельствует о близости жидкого и газообразного состояний.

  По химическому составу различают однокомпонентные, или чистые. Ж. и двух- или многокомпонентные жидкие смеси (растворы ). По физической природе Ж. делятся на нормальные (обычные), жидкие кристаллы с сильно выраженной анизотропией (зависимостью свойств от направления) и квантовые жидкости — жидкие 4He, 3He и их смеси — со специфическими квантовыми свойствами при очень низких температурах. Нормальные чистые Ж. имеют только одну жидкую фазу (т. е. существует один единственный вид каждой нормальной Ж.). Гелий 4He может находиться в двух жидких фазах — нормальной и сверхтекучей, а жидкокристаллические вещества — в нормальной и одной или даже двух анизотропных фазах.

  Общим для всех нормальных Ж., в том числе и для смесей, является их макроскопическую однородность И изотропность при отсутствии внешних воздействий. Эти свойства сближают Ж. с газами, но резко отличают их от анизотропных кристаллических твёрдых тел. Аморфные твёрдые тела (например, стекла), с современной точки зрения, являются переохлажденными Ж. (см. Аморфное состояние ) и отличаются от обычных Ж. только численными значениями кинетических характеристик (существенно большей вязкостью и др.). Область существования нормальной жидкой фазы ограничена со стороны низких температур фазовым переходом в твёрдое состояние — кристаллизацией или (в зависимости от величины приложенного давления) фазовым переходом в сверхтекучее состояние для 4He и в жидко-анизотропное состояние для жидких кристаллов. При давлениях ниже критического давления р к нормальная жидкая фаза ограничена со стороны высоких температур фазовым переходом в газообразное состояние — испарением . При давлениях р > р к фазовый переход отсутствует и по своим физическим свойствам Ж. в этой области неотличима от плотного газа. Наивысшая температура T k , при которой ещё возможен фазовый переход Ж. — газ, называется критической. Значения p k  и T k определяют критическую точку чистой Ж., в которой свойства Ж. и газа становятся тождественными. Наличие критической точки для фазового перехода Ж. — газ позволяет осуществить непрерывный переход из жидкого состояния в газообразное, минуя область, где газ и Ж. сосуществуют (см. Критическое состояние ). Т. о., при нагревании или уменьшении плотности свойства Ж. (теплопроводность, вязкость, самодиффузия и др.), как правило, меняются в сторону сближения со свойствами газов. Вблизи же температуры кристаллизации большинство свойств нормальных Ж. (плотность, сжимаемость, теплоёмкость, электропроводность и т. д.) близки к таким же свойствам соответствующих твёрдых тел. В табл. приведены значения теплоёмкости при постоянном давлении (С р ) ряда веществ в твёрдом и жидком состояниях при температуре кристаллизации. Малое различие этих теплоёмкостей показывает, что тепловое движение в Ж. и твёрдых телах вблизи температуры кристаллизации имеет примерно одинаковый характер.

  Теплоёмкость некоторых веществ [в дж/(кг·К)], при температуре кристаллизации

Na Hg Pb Zn Cl NaCl
С р , тв. 1382 138 146 461 620 1405
С р , ж. 1386 138 155 542 1800 1692

  Молекулярная теория Ж. По своей природе силы межмолекулярного взаимодействия в Ж. и кристаллах одинаковы и имеют примерно одинаковые величины. Наличие в Ж. сильного межмолекулярного взаимодействия обусловливает, в частности, существование поверхностного натяжения на границе Ж. с любой др. средой. Благодаря поверхностному натяжению Ж. стремится принять такую форму, при которой её поверхность (при данном объёме) минимальна. Небольшие объёмы Ж. имеют обычно характерную форму капли . В отсутствии внешних сил, когда действуют только межмолекулярные силы (например, в условиях невесомости ), Ж. приобретает форму шара. Влияние поверхностного натяжения на равновесие и движение свободной поверхности Ж., границ Ж. с твёрдыми телами или границ между несмешивающимися Ж. относится к области капиллярных явлений .

  Фазовое состояние вещества зависит от физических условий, в которых оно находится, главным образом от температуры Т и давления р. Характерной определяющей величиной является зависящее от температуры и давления отношение e(Т, р) средней потенциальной энергии взаимодействия молекул к их средней кинетической энергии. Для твёрдых тел e (Т, р) >> 1; это значит, что силы межмолекулярного взаимодействия велики и удерживают молекулы (атомы, ионы) вблизи равновесных положений — узлов кристаллической решётки, несмотря на тепловое движение частиц. В твёрдых телах тепловое движение имеет характер коллективных колебаний атомов (ионов) около узлов кристаллической решётки.

  В газах осуществляется обратный предельный случай e (Т, р) << 1; силы притяжения между молекулами недостаточны, чтобы удержать их вблизи друг от друга, вследствие чего положения и скорости молекул распределены почти хаотически.

  Для Ж. e (Т, р)~1: интенсивности упорядочивающих межмолекулярных взаимодействий и разупорядочивающего теплового движения молекул имеют сравнимые значения, чем и определяется вся специфичность жидкого состояния вещества. Тепловое движение молекул в неметаллических Ж. состоит из сочетания коллективных колебательных движений того же типа, что и в кристаллических телах, и происходящих время от времени скачков молекул из одних временных положений равновесия (центров колебаний) в другие. Каждый скачок происходит при сообщении молекуле энергии активации, достаточной для разрыва её связей с окружающими молекулами и перехода в окружение др. молекул. В результате большого числа таких скачков молекулы Ж. более или менее быстро перемешиваются (происходит самодиффузия, которую можно наблюдать, например, методом меченых атомов). Характерные частоты скачков составляют ~1011—1012 сек -—1 для низкомолекулярных Ж., много меньше для высокомолекулярных, а в отдельных случаях, например для сильно вязких Ж. и стекол, могут оказаться чрезвычайно низкими. При наличии внешней силы, сохраняющей своё направление более длительное время, чем интервалы между скачками, молекулы перемещаются в среднем в направлении этой силы. Т. о., статические или низкочастотные механические воздействия приводят к проявлению текучести Ж. как суммарному эффекту от большого числа молекулярных переходов между временными положениями равновесия. При частоте воздействий, превышающей характерные частоты молекулярных скачков, у Ж. наблюдаются упругие эффекты (например, сдвиговая упругость), типичные для твёрдых тел. Однородность и изотропность нормальных Ж. молекулярная теория Ж. объясняет отсутствием у них дальнего порядка во взаимных положениях и ориентациях молекул (см. Дальний порядок и ближний порядок ). Положения и ориентации двух или более молекул, расположенных далеко друг от друга, оказываются статистически независимыми. В идеальном кристаллическом теле, как правило, существует «жёсткий» дальний порядок в расположении и ориентации молекул (атомов, ионов). В жидком кристалле дальний порядок наблюдается лишь в ориентации молекул, но он отсутствует в их расположении.

  Ж. иногда разделяют на неассоциированные и ассоциированные, в соответствии с простотой или сложностью их термодинамических свойств. Предполагается, что в ассоциированных Ж. есть сравнительно устойчивые группы молекул — комплексы, проявляющие себя как одно целое. Существование подобных комплексов в некоторых растворах доказывается прямыми физическими методами. Наличие устойчивых ассоциаций молекул в однокомпонентных Ж. недостоверно.

  Основой современных молекулярных теорий жидкого состояния послужило экспериментальное обнаружение в Ж. ближнего порядка — согласования (корреляции) во взаимных положениях и ориентациях близко расположенных групп, состоящих из 2, 3 и большего числа молекул. Эти статистической корреляции, определяющие молекулярную структуру жидкости, простираются на область протяжённостью порядка несколько межатомных расстояний и быстро исчезают для далеко расположенных друг от друга частиц (отсутствие дальнего порядка). Структурные исследования реальных Ж., позволившие установить эту особенность жидкого состояния, производятся методами рентгеновского структурного анализа и нейтронографии .

  По структуре и способам их описания Ж. делят на простые и сложные. К первому сравнительно малочисленному классу относят однокомпонентные атомарные жидкости. Для описания свойств таких Ж. достаточно указать лишь взаимное расположение атомов. К этому классу Ж. относятся жидкие чистые металлы, сжиженные инертные газы и (с некоторыми оговорками) Ж. с малоатомными симметричными молекулами, например CCl4. Для простых Ж. результаты рентгено-структурного или нейтронографического анализа могут быть выражены с помощью т. н. радиальной функции распределения g (r) (см. рис. ). Эта функция характеризует распределение частиц вблизи произвольно выбранной частицы, т. к. значения g (r) пропорциональны вероятности нахождения двух атомов (молекул) на заданном расстоянии r друг от друга. Ход кривой g (r) наглядно показывает существование определённой упорядоченности в простой Ж. — в ближайшее окружение каждой частицы входит в среднем определённое число частиц. Для каждой Ж. детали функции g (r) незначительно меняются с изменением температуры и давления. Расстояние до первого пика определяет среднее межатомное расстояние, а по площади под первым пиком можно восстановить среднее число соседей (среднее координационное число ) атома в Ж. В большинстве случаев эти характеристики вблизи линии плавления оказываются близкими к кратчайшему межатомному расстоянию и координационному числу в соответствующем кристалле. Однако, в отличие от кристалла, истинное число соседей у частицы и истинное межатомное расстояние в Ж. являются не постоянными числами, а случайными величинами, и по графику g (r) устанавливаются лишь их средние значения.

  При сильном нагревании Ж. и приближении к газовому состоянию ход функции g (r) постепенно сглаживается соответственно уменьшению степени ближнего порядка. В разреженном газе g (r)»1.

  Для сложных Ж. п для жидких смесей расшифровка рентгенограмм более сложна и во многих случаях полностью не может быть осуществлена. Исключение составляет вода и некоторые др. низкомолекулярные Ж., для которых имеются довольно полные исследования и описания их статистической структуры.

  Теория кинетических и динамических свойств Ж. (диффузии, вязкости и т. д.) разработана менее полно, чем равновесных свойств (теплоёмкости и др.). Динамическая теория жидкого состояния весьма сложна и пока не получила достаточного развития. В теории Ж. большое развитие получили численные методы, позволяющие рассчитывать свойства простых Ж. с помощью быстродействующих вычислительных машин. Наибольший интерес представляет метод молекулярной динамики, непосредственно моделирующий на вычислительной машине совместное тепловое движение большого числа молекул при заданном законе их взаимодействия и по прослеженным траекториям многих отдельных частиц восстанавливающий все необходимые статистические сведения о системе. Таким путём получены точные теоретические результаты относительно структуры и термодинамических свойств простых неметаллических Ж. Отдельную и ещё не решенную проблему составляет вопрос о структуре и свойствах простых Ж. в непосредственной окрестности критической точки . Некоторые успехи были здесь достигнуты в последнее время методами теории подобия. В целом проблема критических явлений для чистых Ж. и смесей остаётся ещё недостаточно выясненной.

  Отдельную проблему составляет вопрос о структуре и свойствах жидких металлов , на которые значительное влияние оказывают имеющиеся в них коллективизированные электроны. Несмотря на некоторые успехи, полной электронной теории жидких металлов ещё не существует. Значительные (пока ещё не преодоленные) трудности встретились при объяснении свойств жидких полупроводников .

  Основные направления исследований жидкого состояния. Многочисленные макроскопические свойства Ж. изучаются и описываются методами различных разделов механики, физики и физической химии. Равновесные механические и тепловые свойства Ж. (сжимаемость, теплоёмкость и др.) изучаются термодинамическими методами. Важнейшей задачей является нахождение уравнения состояния для давления и энергии как функции от плотности и температуры, а в случае растворов — и от концентраций компонентов. Знание уравнения состояния позволяет методами термодинамики установить многочисленные связи между различными механическими и тепловыми характеристиками Ж. Имеется большое количество эмпирических, полуэмпирических и приближённых теоретических уравнений состояния для различных индивидуальных жидкостей и их групп.

  Неравновесные тепловые и механические процессы в Ж. (например, диффузия, теплопроводность, электропроводность и др.), особенно в смесях и при наличии химических реакций, изучаются методами термодинамики необратимых процессов .

  Механические движения Ж., рассматриваемых как сплошные среды, изучаются в гидродинамике . Важнейшее значение имеет Навье — Стокса уравнение , описывающее движение вязкой Ж. У т. н. ньютоновских Ж. (вода, низкомолекулярные органические Ж., расплавы солей и др.) вязкость не зависит от режима течения (в условиях ламинарного течения , когда Рейнольдса число R < Rkpитич.), в этом случае вязкость является физико-химической постоянной, определяемой молекулярной природой Ж. и её состоянием (температурой и давлением). У неньютоновских (структурно-вязких) Ж. вязкость зависит от режима течения даже при малых числах Рейнольдса (жидкие полимеры, стекла в интервале размягчения, эмульсии и др.). Свойства неньютоновских Ж. изучает реология . Специфические особенности течения жидких металлов, связанные с их электропроводностью и лёгкой подверженностью влиянию магнитных полей, изучаются в магнитной гидродинамике . Приложения методов гидродинамики к задачам молекулярной физики жидкостей изучаются в физико-химической гидродинамике.

 Лит.: Френкель Я. И., Собрание избранных трудов, т. 3, М., 1959; Фишер И.3., Статистическая теория жидкостей, М., 1961; Ландау Л. Д., Лифшиц Е. М., Механика сплошных сред, М., 1953; Фабелинский И. Л., Молекулярное рассеяние света, М., 1965; Скрышевский А. Ф., Рентгенография жидкостей, К., 1966; Физика простых жидкостей. Экспериментальные исследования, пер. с англ., М., 1972 [в печати].

  И. З. Фишер.

Вид радиальной функции распределения g(r) для жидкого натрия (в условных единицах): а — распределение частиц в зависимости от расстояния r; б — число частиц в тонком сферическом слое как функция расстояния r. Пунктиром показано распределение молекул при отсутствии упорядоченности в их расположении (газ). Вертикальные отрезки — положения атомов в кристаллическом натрии, числа при них — количество атомов в соответствующих координационных сферах (т. н. координационные числа).