Рели'ктовое излуче'ние, электромагнитное излучение, заполняющее наблюдаемую часть Вселенной. Р. и. существовало уже на ранних стадиях расширения Вселенной и играло важную роль в её эволюции; является уникальным источником информации о её прошлом. Интенсивность и спектр Р. и. соответствуют излучению абсолютно чёрного тела с температурой 2,7 К.
Р. и. было обнаружено в 1965 в радиодиапазоне электромагнитного излучения на длине волны 7,35 см. В диапазоне сантиметровых и дециметровых волн наблюдения Р. и. проводят с поверхности Земли при помощи радиотелескопов. В миллиметровом и субмиллиметровом диапазонах излучение земной атмосферы препятствует наблюдениям Р. и., поэтому для измерений используют широкополосные болометры, установленные на поднимаемых за пределы атмосферы баллонах и ракетах. Наблюдения на длинах волн от 50 см до 0,5 мм свидетельствуют о том, что Р. и. равномерно распределено на небесной сфере и является основной составляющей яркости неба в дециметровом, сантиметровом, миллиметровом и субмиллиметровом диапазонах (рис. ). Р. и. определяет плотность энергии электромагнитного излучения во Вселенной — около 0,25 эв/см3, и плотность числа фотонов во Вселенной — около 400 в 1 см3. На каждый атом во Вселенной приходится более ста миллионов реликтовых фотонов.
Открытие Р. и. подтвердило предложенную в 1946 Г. А. Гамовым гипотезу (т. н. горячую модель Вселенной), согласно которой Вселенная на ранние стадиях расширения характеризовалась не только высокой плотностью, но и высокой температурой, достаточной для протекания ядерных реакций синтеза лёгких элементов. При высокой температуре плазма находилась в термодинамическом равновесии с излучением. В ходе последующего расширения Вселенной температура вещества и излучения падала по адиабатическому закону, происходила рекомбинация протонов и электронов, и равновесие между веществом и излучением нарушилось. Однако тепловое излучение сохранилось до современной эпохи и наблюдается в виде Р. и.
Исследования Р. и. дают ценный материал для космогонических и космологических теорий. Так, по отсутствию заметной анизотропии Р. и. судят о крупномасштабных свойствах Вселенной, делают выводы о её изотропии и однородности. Выявление мелкомасштабных флуктуаций температуры Р. и. на небесной сфере дало бы возможность сделать заключение о первичных возмущениях в плотности и скорости вещества, рост которых привёл к образованию галактик и скоплений галактик, о времени их образования. Обнаружение отклонений Р. и. от законов излучения абсолютно чёрного тела позволило бы выявить источники выделения энергии, действовавшие в течение времени охлаждения Р. и.
Р. и. существенно влияет на ряд процессов, происходящих во Вселенной и в современную эпоху. Так, Р. и. определяет время жизни релятивистских электронов и космических лучей сверхвысоких энергий в межгалактическом пространстве: электроны, рассеивая фотоны Р. и., отдают им энергию и тормозятся. Энергия реликтовых фотонов при этом возрастает во много раз. Этот механизм, возможно, является причиной возникновения фонового рентгеновского излучения. При столкновении фотонов Р. и. с протонами ультравысоких энергий происходит рождение p-мезонов, протоны быстро теряют энергию. Столкновения фотонов с ядрами космических лучей при определённых условиях приводят к расщеплению ядер. Р. и. влияет на заселённость нижних энергетических уровней молекул межзвёздного вещества. На этом основан, в частности, косвенный метод определения температуры Р. и. Полученные этим путём температуры Р. и. хорошо согласуются с температурами, полученными и при прямых радионаблюдениях.
Лит.: Зельдович Я. Б., Новиков И. Д., Релятивистская астрофизика, М., 1967; их же, Строение и эволюция Вселенной, М., 1975: Лонгейр М. С., Сюняев Р. А., Электромагнитное излучение во Вселенной, «Успехи физических наук», 1971, т. 105, в. 1.
Р. А. Сюняев.
Спектр реликтового излучения. Сплошная кривая — спектр излучения абсолютно черного тела с температурой 2,7 К.