Требуется рассчитать и согласовать релейную защиту системы электроснабжения, схема которой представлена на рис. 4.1. Защиту линии W3 выполнить на электромеханической базе (реле РТ-40; независимая времятоковая характеристика МТЗ); линии W2 — на базе устройства «СИРИУС-2-Л» (независимая времятоковая характеристика МТЗ); линии W1 — также на основе устройства «СИРИУС-2-Л». Оценить эффективность МТЗ с различными времятоковыми характеристиками.
4.1. Исходные данные
Параметры энергосистемы:
Максимальные рабочие токи линий:
IMAX РАБ W1 = 330 A; IMAX РАБ W2 = 265 A; IMAX РАБ W3 = 210 A.
Время действия собственных защит нагрузок:
tСЗ Н1 = 0,6 c; tСЗ Н2 = 0,9 c; tСЗ Н3 = 1,1 c; tСЗ Н4 = 0,8 c.
Коэффициенты трансформации ТТ: kTT = 500/5.
4.2. Расчет защиты линии W3
Токи трехфазного и двухфазного КЗ на линии W3 (функции от l):
Ток срабатывания отсечки линии W3:
Ток срабатывания реле:
Принятое значение тока срабатывания реле (уставка): IУCT = 12 А.
Уточненное значение тока срабатывания отсечки линии W3:
Эффективность токовой отсечки линии W3 оценивается графически по длине зоны действия (рис. 4.2). Длина минимальной зоны действия токовой отсечки W3 (в процентах от длины всей линии):
Ток срабатывания МТЗ линии W3:
Ток срабатывания реле:
Принятое значение тока срабатывания реле (уставка): IУСТ = 3,6 А.
Уточненное значение тока срабатывания отсечки линии W3:
Проверка чувствительности МТЗ линии W3:
Время срабатывания МТЗ линии W3:
tMTЗ W3 = tСЗ H4 + Δt = 0,8 + 0,5 = 1,3 с.
Токовые характеристики двухступенчатой защиты линии W3 представлены на рис. 4.3.
4.3. Расчет защиты линии W2
Токи трехфазного и двухфазного КЗ на линии W2 (функции от l):
Ток срабатывания отсечки линии W2:
Уставка по току (МТЗ-1) для устройства «СИРИУС-2-Л» (не требует уточнения):
Длина минимальной зоны действия токовой отсечки линии W2 определяется графическим путем (рис. 4.4):
Ток срабатывания МТЗ линии W2:
Уставка по току (МТЗ-3) для устройства «СИРИУС-2-Л»:
Проверка чувствительности МТЗ линии W2 в режимах основного и резервного действия:
Время срабатывания MT3 линии W2:
tМТЗ W2 = max (tМТЗ W3; tCЗ H3) + Δt = max (1,3; 1,1) + Δt = 1,3 + 0,4 = 1,7 c.
Mожно (но не обязательно) ввести дополнительную ступень защиты — токовую отсечку с выдержкой времени. Ток срабатывания этой отсечки:
IHO W2 = kЗ × ITO W1 = 1,1 × 1200 = 1320,0 A.
Уставка по току (MT3-2) для устройства «СИРИУС-2-Л»:
Время срабатывания неселективной отсечки линии W2:
tHO W2 = tTO W2 + ΔtMIN = 0,1 + 0,4 = 0,5 с.
Токовые характеристики трехступенчатой защиты линии W2 представлены на рис. 4.5.
4.4. Расчет защиты линии W1
Токи трехфазного и двухфазного КЗ на линии W1 (функции от l):
Ток срабатывания отсечки линии W1:
Уставка по току (МТЗ-1) для устройства «СИРИУС-2-Л»:
Длина зоны действия токовой отсечки линии W1 определяется графическим методом (рис. 4.6):
Ток срабатывания МТЗ линии W1:
Уставка по току (МТЗ-3) для устройства «СИРИУС-2-Л»:
Проверка чувствительности МТЗ линии W1:
Ступень МТЗ-З устройства «СИРИУС-2-Л» может обладать независимой или одной из нескольких разновидностей зависимых времятоковых характеристик. Вне зависимости от принятого типа времятоковой характеристики уставки по току, как правило, остаются одними и теми же. Следовательно, токовые характеристики во всех случаях будут выглядеть одинаково (рис. 4.7, верхний график). Временные характеристики всех защит при независимом типе времятоковой характеристики МТЗ-З линии W1 приведены на рис. 4.7 (нижний график), а карта селективности — на рис. 4.8.
При внимательном изучении карты селективности (а также временных характеристик) становится понятно, что при всей простоте реализации защита с независимыми времятоковыми характеристиками во многих случаях имеет излишний запас по времени срабатывания по отношению к защите удаленного объекта. Например, если при КЗ ток принимает значение в интервале (ITO W2; ITO W1), то при отказе отсечки линии W2 (со временем действия ≈ 0,1 с) в режиме резервного действия сработает MT3 линии W1 со временем действия 2,1 с.
С таким же временем будет действовать эта MT3 при КЗ в конце линии W1. Уменьшить запас по времени срабатывания и повысить тем самым эффективность действия системы защиты в целом можно только путем использования защит, обладающих правильно подобранной зависимой характеристикой времени срабатывания.
Устройство «СИРИУС-2-Л» позволяет выбрать при реализации MT3 одну из пяти зависимых времятоковых характеристик (рис. 4.9).
Следует помнить, что ТУСТ, входящее в описывающие эти характеристики выражения (см. формулы на соответствующих графиках рис. 4.9), необходимо определять расчетным путем или графически, поскольку время действия МТЗ теперь величина не постоянная, а зависящая от тока КЗ. Например, если в качестве ТУСТ принять рассчитанное ранее время действия МТЗ линии W1, то реальное время действия этой защиты оказывается недопустимо большим. На рис. 4.10 показана карта селективности при использовании нормально инверсной характеристики (ТУСТ = ТМТЗ 1 = 2,1 с), а на рис. 4.11 — временные характеристики защит при тех же параметрах срабатывания.
При использовании нормально инверсной времятоковой характеристики требуемой минимально возможной ступени селективности удается достичь при ТУСТ = 0,315 с (рис. 4.12 — карта селективности; рис. 4.13 — временные характеристики защит). Экспериментальное сравнение защит с различными характеристиками показывает, что еще меньший запас по времени при сохранении взаимного резервирования обеспечивает защита с сильно инверсной характеристикой времени срабатывания при ТУСТ = 0,285 с (рис. 4.14 и рис. 4.15).
Однако еще меньшего времени действия защит удается достичь, если временные характеристики МТЗ отстраивать не друг от друга, а от характеристик тех защит, которые, обладая достаточной зоной действия, срабатывают быстрее ввиду меньшей выдержки времени. Этот подход иллюстрируется рис. 4.16 (ср. с рис. 4.14) и рис. 4.17 (ср. с рис. 4.15). Здесь на линии W2, к примеру, МТЗ выполняет только резервные функции; защита линии полностью обеспечивается первыми двумя ступенями. Следовательно, от них и необходимо отстраивать МТЗ линии W1. Это позволяет принять ТУСТ еще меньшим (ТУСТ = 0,205 с; характеристика сильно инверсная).
Данный подход оказывается справедлив, если считать надежность отдельных защит достаточно высокой, так как в случае отказа какой-либо ступени селективность действия оказывается нарушенной.
При высоких требованиях к селективности можно, напротив, настроить защиты таким образом, чтобы не допускать неизбирательного действия защит при большинстве возможных вариантов их отказов. Однако в этом случае время действия защит оказывается завышенным, а использование зависимых времятоковых характеристик — нецелесообразным (рис. 4.18 и 4.19).
Упрощенная принципиальная электрическая схема подключения терминала «СИРИУС-2-Л» приведена на рис. 4.20.
Рис. 4.9. Зависимые времятоковые характеристики устройства «СИРИУС-2-Л»:
а — нормально инверсная
б — сильно инверсная;
в — чрезвычайно инверсная;
г — крутая (аналог РТВ-1);
д — пологая (аналог РТ-80, РТВ-IV)