Курс на Марс. Самый реалистичный проект полета к Красной планете

Вагнер Ричард

Зубрин Роберт

Глава 4

Добраться на Марс

 

 

Быстрые миссии и хорошие миссии

Планируя долгое путешествие, вы сначала продумаете маршрут и способ перемещения. То же справедливо и для путешествия на Марс.

Многие считают, мы не достигнем Марса, поскольку Красная планета находится так далеко от Земли. Пока нам не доступны принципиально более совершенные типы космических двигателей, утверждают скептики, дорога окажется слишком долгой. Давайте рассмотрим это возражение.

Марс действительно далеко. При самом удачном расположении, когда он располагается на линии Солнце – Земля – Марс прямо напротив Земли и ближе всего к ней (древние астрономы, с их геоцентрической картиной мира, описывали это положение как «противостояние», о нем подробнее будет сказано далее), расстояние составляет 56 миллионов километров, или 38 миллионов миль. При максимальном удалении от Земли, то есть когда Марс находится за Солнцем на линии Земля – Солнце – Марс (древние астрономы называли такую конфигурацию «соединение»), расстояние составляет около 400 миллионов километров (рис. 4.1). Сейчас не существует даже чертежей реактивных двигательных систем, которые могли бы напрямую доставить аппарат с Земли на Марс, когда планеты находятся в противостоянии. Дело обстоит так, потому что космический корабль, покидая Землю, обладает ее скоростью – около 30 километров в секунду, и, таким образом, космический корабль продолжит обращаться вокруг Солнца в том же направлении, что и Земля, пока не израсходует огромное количество топлива на изменение курса. В самом деле, как показал немецкий математик Вальтер Гоман в 1925 году, если в качестве топлива используется бензин, лучшее время для путешествия с Земли на Марс – соединение планет, когда они находятся на максимальном расстоянии друг от друга с противоположных сторон от Солнца (рис. 4.2). Это самый простой путь, поскольку корабль движется по эллипсу, который одним краем касается орбиты Земли, а другим – орбиты Марса, таким образом необходимое изменение курса становится минимальным. Чем больше отклонение от такого плана полета, тем больше работы придется совершить двигателям и тем дороже обойдется миссия. Но даже если мы решим израсходовать дополнительное топливо, чтобы «срезать углы» и отклониться от полноценной траектории Гомана, нам скорее всего придется преодолеть дугу по меньшей мере в 400 миллионов километров, чтобы добраться с Земли на Марс. Четыреста миллионов километров. Это очень много. Для сравнения, Луна от Земли «всего» в 400000 километров. Таким образом, чтобы добраться до Марса, придется преодолеть расстояние в тысячу раз больше, чем пролетели в свое время астронавты миссии «Аполлон» по пути на Луну. На путь в одну сторону у корабля «Аполлон» ушло три дня. Значит ли это, что до Марса лететь 3000 дней, то есть восемь лет?

К счастью, нет. Астронавты миссии «Аполлон» летели к Луне со средней скоростью около 1,5 километра в секунду. Ограничение было установлено не технологией реактивного движения того времени, – третья ступень «Сатурна-5» могла разогнать «Аполлон» в два или даже три раза сильнее, – а выбранной траекторией полета. Астронавты миссии «Аполлон» могли мчаться к Луне со скоростью 4,5 километра в секунду и добраться туда в течение одного дня, но пришлось бы очень дорого заплатить: у них не было бы возможности остановиться. Из-за маленькой силы тяжести на Луне система ускорения космического корабля должна сработать так, чтобы аппарат вышел на орбиту Луны. Командный модуль «Аполлона» просто не смог бы снизить скорость аппарата, если бы он приближался к Луне быстрее, чем со скоростью 1,5 километра в секунду.

Рис. 4.1. Противостояние и соединение. В противостоянии Марс и Земля находятся по одну сторону от Солнца. В соединении Марс, если смотреть с Земли, находится за Солнцем

Рис. 4.2. Возможные траектории для полета на Марс: (А) орбита Гомана; (В) быстрая миссия во время соединения Земли и Марса; (С) миссия во время противостояния Земли и Марса

Марс же обладает существенной силой тяжести и атмосферой, которые могут поспособствовать торможению космического аппарата. Таким образом, если космический аппарат подлетит к Марсу на гораздо большей скорости, то все равно сможет выйти на его орбиту. Более важно, что корабль, покидающий Землю с гиперболической скоростью в 3 километра в секунду, не полетит с той же скоростью по Солнечной системе. Земля в этом случае играет роль быстро движущейся платформы, а поскольку она движется в одном направлении с аппаратом, он набирает дополнительную скорость в 30 километров в секунду, пока вращается с Землей вокруг Солнца. Итак, начальная скорость корабля составляет не 3 километра в секунду, а 33 километра в секунду, что более чем в двадцать раз превышает скорость командного модуля «Аполлона». (Этот эффект «подвижной платформы» нельзя использовать, чтобы облегчить путь до Луны, потому что Луна движется вокруг Солнца вместе с Землей.) По мере того как корабль покидает потенциальную яму Солнца и движется от орбиты Земли к орбите Марса, часть кинетической энергии, связанной с этой скоростью, преобразуется в потенциальную, и аппарат немного замедляется, но по-прежнему летит очень быстро. К счастью, Марс будет двигаться по своей орбите со скоростью 24 километра в секунду примерно в том же направлении, что и космический корабль. Когда тот достигнет орбиты Марса, его скорость относительно Красной планеты составит только около 3 километра в секунду (так как скорость его движения примерно 27 километров в секунду), и это достаточно медленно, чтобы можно было вывести аппарат на орбиту Марса. К тому времени, когда космический аппарат достигнет Красной планеты, он преодолеет расстояние в тысячу раз больше, чем астронавты миссии «Аполлон», но в среднем примерно в двадцать раз быстрее. Поделив тысячу на двадцать, мы получим время полета от Земли до Марса – 150 дней, в пятьдесят раз больше, чем трехдневное путешествие астронавтов миссии «Аполлон». Это и есть грубая оценка времени полета только в сторону Марса с использованием технологий реактивного движения эпохи программы «Аполлон», которые совпадают с современными. И это вполне хорошая оценка. Хотя на самом деле перелет по траектории Гомана занимает 258 дней. Сократить путешествие до 150 дней возможно, только если использовать дополнительное топливо.

Но добраться до Марса – это полдела, еще нужно вернуться назад. Земля и Марс находятся в непрерывном движении вокруг Солнца, и поскольку они движутся с разными скоростями, то постоянно смещаются друг относительно друга. Поскольку для запуска и возвращения миссии подходят только конкретные взаимные положения Земли и Марса, выбранная траектория не только определяет, как долго вам придется путешествовать, она также задает время, когда можно стартовать с планеты. Это сильно усложняет формирование плана миссии, но в итоге, по сути, у нас остается два варианта пилотируемой миссии на Марс, которая предусматривает возвращение на Землю. Эти два варианта известны как миссии класса соединений и противостояний. Типичные параметры обоих типов миссий приведены в табл. 4.1.

Одним из примеров миссии в соединении будет «миссия с минимальными затратами энергии», которая реализуется двумя маневрами Гомана между Землей и Марсом. Такая миссия будет самой дешевой, но в один конец придется лететь 258 дней. Этот вариант подходит для груза, но, если на Марс полетят люди, желательно ускорить процесс. Оказывается, что для сокращения времени полета до 180 дней при старте в период соединения Земли и Марса понадобится не слишком много дополнительного топлива, именно этот вариант мы предлагаем для миссии «Марс Директ». Тем не менее, если принять такой план полета, придется задержаться на поверхности Марса на 550 дней, пока не откроется стартовое окно для возвращения на Землю. То есть общая продолжительность миссии составит около 910 дней.

Таблица 4.1. Продолжительность полета и пребывания на Марсе

Первая половина миссии в противостоянии – полет с Земли на Марс – осуществляется таким же образом, как в случае миссии в соединении. Но обратный путь будет радикально отличаться. По дороге домой придется потратить топливо для старта с Марса, но не для непосредственного возвращения на Землю, а для выхода в межпланетное пространство. Затем придется обогнуть Венеру, производя гравитационный маневр, который благодаря эффекту пращи поможет набрать скорость для полета к Земле. Такой способ позволит астронавтам поймать стартовое окно для возвращения на Землю вскоре после прибытия на Марс. И хотя на обратный путь потребуется значительно больше времени, чем на маневр Гомана, миссия в противостоянии займет всего приблизительно 600 дней.

Разработчики миссии НАСА «90-дневный отчет» делали ставку на запуск в период противостояния, потому что хотели минимизировать общую продолжительность полета. Другие следовали их примеру, полагая, что противостояние – единственное удобное время для полетов на Марс. Но есть ли смысл у такого подхода? В рамках миссии в противостоянии к реактивным двигателям предъявляются значительно более строгие требования: например, изменение скорости на 7,8 километра в секунду, чтобы ускорить или замедлить космический корабль. Для миссии в соединении это значение составляет всего 6,0 километра в секунду. (ΔV – это изменение скорости, необходимое для перемещения космического корабля с одной орбиты на другую.) Если использовать для вывода корабля с опорной марсианской орбиты на ведущую к Земле траекторию хранящееся в космосе топливо, стартовая масса будет примерно вдвое больше, чем для миссии в соединении. Однако на самом деле все еще сложнее. Требования на ΔV, приведенные в табл. 4.1, относятся только к ускоряющему маневру отправки с НОО Земли и с высокоэллиптической орбиты Марса. Предполагается, что космический аппарат способен произвести торможение на земной или марсианской орбите. Но космический корабль для миссии в противостоянии может оказаться настолько массивным, что торможение в атмосфере будет трудновыполнимо или вообще невозможно. Если это так, для замедления придется использовать ракетные двигатели, что увеличит ΔV для всей миссии, а это приведет к увеличению массы аппаратов и стоимости. Так мы приходим к выводу, что миссия в противостоянии практически невозможна до тех пор, пока не ловится ЯРД, у которого скорость истечения вдвое выше, чем у химического реактивного двигателя, или что-то лучшее. (По этой причине миссии в противостоянии поддерживают некоторые сторонники разработки ЯРД.)

Но для чего нам уменьшать длительность миссии? Обычно называют классические причины: важно минимизировать воздействие на экипаж невесомости и различных типов космического излучения. В рамках миссии в противостоянии экипажу действительно гораздо дольше придется находиться в невесомости, так как почти все время полета люди проведут в межпланетном пространстве. Кроме того, доза радиации, полученная за единицу времени в межпланетном пространстве, примерно в четыре раза выше, чем на Марсе, где атмосфера и вещество поверхности обеспечивают существенную защиту (даже если не принимать дополнительные меры, такие как укрепление мешков с песком на крыше жилого модуля). Следовательно, доза радиации, полученная экипажем в миссии в противостоянии, скорее всего будет немного больше, чем во время миссии в соединении.

Несмотря на все сомнения по поводу радиации в полете на Марс, нужно понимать, что дозы, приведенные в табл. 4.1, особой угрозы не представляют. Если вдуматься, каждые 60 бэр радиации, полученные за длительный период времени, такой как многолетнее путешествие на Марс и назад, добавляют 1 % риска заболеть смертельной формой рака в будущем для женщины тридцати пяти лет, в то время как для тридцатипятилетнего мужчины аналогичная (по последствиям) доза составляет 80 бэр. Радиация – это не самый опасный фактор в пилотируемой марсианской миссии.

Таким образом, преимущества миссии в противостоянии иллюзорны, а вот недостатки реальны. Требования к реактивным двигателям для миссии в противостоянии возрастают, увеличивая массу аппарата и, следовательно, стоимость миссии. Сборка оборудования при такой огромной массе должна производиться на орбите, где невозможен полноценный контроль качества. Кроме того, масштабность и сложность такой сборки растут, тем самым увеличивая риск ошибок. Но и это еще не все. Для миссии в противостоянии потребуется больше топлива, чем для какой-либо другой, значит, двигатели будут работать дольше, что увеличивает риск их отказа из-за изношенности. Также растет время полета в один конец, значит, требуются более надежные системы жизнеобеспечения корабля (для миссии в соединении они должны гарантированно работать только 180 дней подряд; для миссии в противостоянии этот срок составляет 430 дней). Система жизнеобеспечения миссии в противостоянии также должна выдерживать перепады внешней температуры, вызванные тем, что по пути от Марса к Земле корабль пролетает мимо Венеры, где Солнце греет вдвое сильнее, чем у Земли. (Вот почему некоторые разработчики миссии в противостоянии говорят об этом маневре не «пролететь мимо Венеры», а «прожариться у Венеры».) Наконец, когда корабль достигнет Земли, он войдет в атмосферу Земли намного жестче, чем более легкий космический аппарат для миссии в соединении. Возрастают силы, действующие на спускающийся корабль и экипаж при замедлении, а также увеличивается риск того, что в случае неудачного входа в атмосферу космический аппарат либо сгорит, либо оттолкнется от атмосферы, оставив экипаж в бездействии в межпланетном пространстве.

Но даже на фоне всех этих изъянов один недостаток выглядит особенно огромным и абсурдным: миссия в противостоянии даст практически нулевой результат. После шести месяцев пути длиной в 400 миллионов километров космический аппарат и экипаж проведут на Марсе всего тридцать дней. Проведя всего лишь месяц на орбите Марса, экипаж может надеяться в лучшем случае пробыть на поверхности две недели перед возвращением на Землю. А если погода на Марсе будет плохой, астронавты могут вообще не начать высадку. Вся миссия может оказаться бесполезной (вспомните, что «Маринер-9» после прибытия к Марсу вынужден был четыре месяца пережидать пылевую бурю). Я сравниваю план миссии в противостоянии с семейной рождественской поездкой на Гавайи: десять дней придется провести в пути, перелетая из одного аэропорта в другой, и еще половину дня – на пляже, если повезет с погодой. Проще говоря, план миссии в противостоянии – это просто глупая затея. Он донельзя увеличивает затраты и риск и сводит к минимуму научную результативность. Этот вариант поддерживают лишь те, кто хотел бы представить пилотируемый полет на Марс как несбыточную мечту, или те, кто пытается усложнить миссию в надежде получить финансирование для разработки новых реактивных двигательных систем. Те, кто действительно хочет достичь Марса, вообще не рассматривают всерьез миссии в противостоянии.

А вот миссии в соединении дают нам куда больше простора для выбора наиболее разумного варианта. План минимальных энергозатрат – самый дешевый, но план быстрого полета приводит к большей результативности, так как большая часть общего времени миссии будет потрачена на исследование Марса, а меньшая – на дорогу. Полет на Марс по короткой траектории в соединении резко уменьшает время, проведенное экипажем в невесомости, тем самым урезая возможные дозы радиации, и сводит к минимуму требования к надежности системы жизнеобеспечения на корабле. При этом, поскольку не предполагается, что миссия с минимальными энергозатратами, будет быстрой, корабль для нее можно сделать более тяжелым, с большим количеством резервных версий для различных критически важных для миссии систем: двигательной, управления и жизнеобеспечения. И если космический корабль для миссии с минимальными энергозатратами должен быть более надежным, чем для быстрой миссии, то сделать его таким поможет запас массы. (Космический корабль для миссии в противостоянии, который должен быть самым надежным, будет иметь наименьший запас массы, чтобы обеспечить надежность подсистем корабля и возможность их резервного дублирования.)

В данном случае нужно найти разумный компромисс между скоростью космического аппарата и возможностью резервного дублирования его ключевых систем. Но есть и дополнительное соображение. При определенных скоростях старта можно полететь на Марс по траектории, которая доставит корабль прямо назад, на Землю, если экипаж решит не лететь (или по какой-то причине не сможет лететь) вперед, чтобы выполнить маневр орбитального захвата на Марсе. Такие траектории известны как траектории свободного возвращения. Если система реактивных двигателей корабля полностью выйдет из строя во время полета с Земли на Марс или если миссию необходимо будет прервать по любой другой причине, то движение по таким траекториям позволит экипажу благополучно вернуться домой точно так же, как произошло в почти катастрофической миссии «Аполлон-13», где использовали траекторию свободного возвращения, чтобы добраться до Луны. Безопасность вылета к Марсу по такой траектории настолько очевидна, что вряд ли стоит рассматривать траектории несвободного возвращения для участка пути Марс – Земля, которые помогут в лучшем случае сэкономить тридцать дней. В таблице 4.2 мы перечисляем характеристики траекторий свободного возвращения для Марса. При скорости старта 3,34 километра в секунду и почти минимальной энергии (вариант А) полет до Марса занимает 250 дней, а полет с Марса на Землю займет три года (то есть два полуторагодичных орбитальных периода), что отлично подходит для грузового рейса, но не слишком хорошо – для пилотируемого полета. При скорости старта 5,08 километра в секунду (вариант В) сокращается транзит до Марса до 180 дней, а время полета по траектории свободного возвращения – до двух лет. Это явно лучший вариант для пилотируемой миссии. Во-первых, полет на Марс по траекториям свободного возвращения (варианты С и D) с большими затратами энергии приведет к гораздо большим затратам ракетного топлива в обмен на небольшое уменьшение времени полета. Во-вторых, облетать Марс придется делая большую петлю, а это приведет к тому, что экипаж потратит больше времени, чтобы добраться до дома, если придется, прибегнуть к свободному возвращению. В дополнение к этому высокоэнергетические варианты приведут к тому, что скорость аппарата при входе в марсианскую атмосферу будет слишком велика для безопасного торможения.

Возможность обеспечить свободное возвращение на Землю не является ключевым фактором в выборе траектории полета с Марса на Землю. Тем не менее уменьшение времени полета снижает шансы вернуться, если скорость старта превышает 4 километра в секунду. Чтобы двигаться намного быстрее, пришлось бы просто отказаться от части полезной нагрузки корабля и, таким образом, от критически важной дублированности его систем, при этом время полета снизилось бы почти незначительно.

Итак, мы выяснили, что наиболее удобными траекториями между Землей и Марсом во время пилотируемой марсианской миссии являются те, которые позволяют покинуть Землю со стартовой скоростью 5 километров в секунду (и не более) и покинуть Марс со стартовой скоростью около 4 километра в секунду. Для беспилотной грузовой миссии наиболее удобными будут траектории Гомана или вариант А с близкими к минимальным затратами энергии и стартовой скоростью 3,3 километра в секунду. И что же в итоге? Все это легко осуществить с использованием современных химических реактивных двигателей. От автора: ΔV, необходимое для миссии, и стартовая скорость миссии связаны, но это не одно и то же. Для интересующихся математические соотношения, связывающие их друг с другом, с удельным импульсом ракеты и массой миссии, приводятся в техническом разделе в конце этой главы.

Таблица 4.2. Траектории свободного возвращения между Землей и Марсом

 

Кто полетит?

После того как мы определили нашу траекторию, мы должны выбрать экипаж: кто полетит? Сколько всего человек?

Выражение «в тесноте, да не в обиде» отражает общую тенденцию, связанную с численностью экипажа для продолжительной миссии на Марс. Однако, так как размер экипажа определяет массу всех обитаемых модулей, двигательных установок и ракет-носителей, важно сделать его минимальным. К тому же, сколько резервных систем и вариантов прерывания ни включал бы в себя план миссии, мы должны понимать, что отправляем людей в опасную неизвестность. С этой точки зрения, чем меньше их будет на борту первой миссии, тем лучше. Наконец, как бы ни хотелось отправить в длительное путешествие большую группу астронавтов, достаточно изучить историю освоения Земли, чтобы понять: провести длительную экспедицию может один человек, два человека или любое другое число людей.

Тогда вопрос стоит переформулировать: сколько людей действительно необходимо для пилотируемой марсианской миссии? Иными словами, в ком мы действительно нуждаемся? Если миссии суждено провалиться, несомненно, наиболее вероятной причиной неудачи будет отказ одной или более критически важных механических и электрических систем (двигатели, управление, жизнеобеспечение). В таком случае самым важным членом экипажа будет механик, человек, от которого зависят жизни его коллег. Если угодно, можно назвать его бортинженером (он должен быть инженером вроде тех, что работали на старинных железнодорожных локомотивах или пароходах), но миссии нужен высококлассный механик, способный распознать проблемы до их возникновения и исправить все, что может быть исправлено. Эта работа настолько важна, что, несмотря на все ограничения, я бы порекомендовал взять двоих людей, способных ее выполнять.

Следующая наиболее важная для миссии роль – это обязанности ученого, работающего в полевых условиях. Помните, что исследования Марса являются сутью и смыслом пилотируемой миссии к Красной планете. Следующие по важности работники после тех, кто обеспечит путь на Марс и возвращение домой, – те, без кого не достичь исследовательских целей миссии. Поскольку нулевой научный результат будет фактически означать провал миссии, я снова рекомендую взять двоих ученых. Одного геолога – он займется разведыванием ресурсов и изучением геологической истории Марса, и одного биолога, который сосредоточится на особенностях Марса, способных прояснить вопрос о жизни на планете. Биолог также будет проводить эксперименты, чтобы определить химическую и биологическую токсичность марсианских веществ для земных растений и животных, а также пригодность местных почв для тепличных сельскохозяйственных работ.

Вот, собственно, и все. Если экипаж состоит из двух механиков и двух «ученых-полевиков», есть возможность разделить его на две группы, в которых никто не останется в одиночестве (один будет выезжать в поле на ровере, скажем, в то время, как другие остаются в базовом лагере). В этом случае всегда найдется кому починить неисправное оборудование и кому сделать научную работу. В людях, которые выполняют только особые функции, такие как «командир миссии», «пилот» или «доктор», нет необходимости. Разумеется, в экипаже миссии будет нужен кто-то, выполняющий обязанности командира, и человек, который может быть его заместителем, потому что в опасных ситуациях необходим человек, способный быстро принимать решения за всех, чтобы не устраивать голосования и обсуждения. Но для человека, который занят исключительно контролем над работой других, места нет. Аналогичным образом, на борту не должно быть человека, который отвечает только за пилотирование. Космический аппарат сможет совершить посадку в полностью автоматическом режиме, и навыки пилотирования окажутся полезны, разве что если вдруг откажет запасная система автоматизированного управления полетом – а это всего несколько минут за два с половиной года проведения миссии. Но в крайнем случае один или несколько членов экипажа могут пройти дополнительную подготовку – гораздо проще обучить пилотированию геолога, чем обучить пилота геологии. Наконец, врача на корабле не будет как такового. Великий норвежский исследователь Руаль Амундсен всегда отказывался брать врачей в свои экспедиции, заметив, что их присутствие пагубно сказывалось на моральном состоянии коллектива и что с подавляющим большинством медицинских проблем, которые возникают в экспедициях, опытные путешественники могут справиться сами. И если говорить честно, отбросив официоз, почти все космонавты ненавидят космических врачей. Вы бы на их месте тоже ненавидели: просто представьте, что во время выполнения тяжелой работы кто-то постоянно тычет в вас иголками, прикрепляет провода и ставит градусники. Всех членов экипажа обучат оказанию первой помощи, на борту работой терапевта займутся экспертные системы, а также можно будет получить медицинскую консультацию с Земли для диагностики легко излечимых заболеваний (ушных инфекций и тому подобного). Достаточно, чтобы среди членов экипажа был человек с опытом работы терапевтом или подготовкой фельдшера, а на борту имелся фельдшерский набор и запас антибиотиков широкого спектра действия. На роль такого человека, разумеется, хорошо подошел бы биолог. А вот иметь на борту первоклассного врача, который будет проводить свое время, читая медицинские статьи и оттачивая навыки по практической хирургии с использованием шлема виртуальной реальности, или хуже, мотая нервы коллегам углубленными обследованиями, – явное излишество.

Подводя итог в духе «Звездного пути», в пилотируемой миссии на Марс нужны два Скотти и два Спока. Капитан Кирк, Суду или Маккой не нужны, и что еще более важно, не придется обеспечивать их спальными местами и едой.

Мы можем достичь целей миссии с экипажем из четырех человек.

 

Прямой запуск

Все межпланетные миссии, проводившиеся до сих пор, осуществлялись «напрямую» – ракета-носитель поднимает космический корабль на НОО, а затем с помощью своей верхней ступени выводит его на траекторию к планете назначения. Так миссии «Маринер» и «Викинг» достигли Марса, так же корабли программы «Аполлон» достигли Луны. Но ни одна миссия не была отправлена за пределы НОО, чтобы поднять полезную нагрузку на обращающийся вокруг Земли космодром, с которого бы все это перенесли на свежезаправленный межпланетный лайнер, только что вернувшийся с Сатурна. Еще ни одна миссия за пределами НОО не выполнялась межпланетным кораблем, построенным в космосе. Из-за того что полет на Марс ассоциируется с такими футуристическими идеями, в умах множества людей пилотируемые исследования Красной планеты остаются чем-то из мира Будущего. Но если бы пилотируемый полет на Марс был бы осуществим путем прямого запуска, тогда мы могли бы это сделать. Если избавиться от космических лайнеров и космопортов, то полет человека на Марс перемещается из параллельной вселенной Будущего в нашу Вселенную. Если мы сможем осуществить прямой запуск, то 90 % того, что нам нужно для отправки людей на Марс, доступно уже сейчас.

Мы выбрали траекторию и размер экипажа. А сможет реально существующая тяжелая ракета-носитель не более чем за два последовательных запуска в рамках каждой миссии доставить на Марс все необходимое для четырех человек в соответствии с планом полета, который мы выбрали? Давайте посмотрим.

Ничего фантастического в тяжелых ракетах-носителях нет – США построили и эксплуатировали одну такую сорок пять лет назад. Ракета-носитель «Сатурн-5», которая отправила астронавтов программы «Аполлон» на Луну, была введена в эксплуатацию в 1967 году после пяти лет, потраченных на разработку и прослужила без отказов восемь лет до 1975 года, когда последняя рабочая ракета запустила американский модуль в рамках миссии «Союз – Аполлон». «Сатурн-5» мог поднять на НОО 140 тонн. Если мы хотим получить эквивалентную грузоподъемность сегодня, то надежным способом сделать это с «защитой от дурака» было бы повторное проектирование деталей и начало повторного производства «Сатурн-5». Однако есть и другие способы. Например, используя детали шаттла, можно произвести ТРН того же класса. Для этого нужно добавить блок из четырех главных двигателей шаттла (ГДШ) к нижней части внешнего топливного бака шаттла (ВБ), прикрепить два твердотопливных ракетных двигателя (ТРД) шаттла с какой-либо из сторон ВБ и разместить на вершине ВБ верхнюю ступень, работающую на смеси водорода и кислорода. Мы получим конструкцию ракеты-носителя «Арес», созданной Дэвидом Бейкером для миссии «Марс Директ». В зависимости от силы тяги, которую развивает двигатель верхней ступени, «Арес» может доставить на НОО от 121 тонны (при силе тяги в 250000 фунтов) до 135 тонн (при силе тяги в 500 000 фунтов). В России в 1980–1990-е годы существовала ТРН «Энергия», которую тоже нетрудно воссоздать. Продемонстрированная модель могла поднять на НОО только 100 тонн, но усовершенствованная конструкция, «Энергия-В», могла бы похвастаться грузоподъемностью в 200 тонн. За короткое время существования НИК НАСА разработало десятки проектов ТРН различных сортов с грузоподъемностью от 80 до 250 тонн. Проще говоря, если Соединенным Штатам нужна ТРН, то она обязательно будет.

Если на бумаге можно создать ракету-носитель любого желаемого размера, то в реальности все иначе. Были разработаны некоторые сверхТРН с грузоподъемностью в тысячу тонн (на НОО). Звучит великолепно, но старте такая ракета не оставила бы от Орландо (или по крайней мере от Космического центра имени Кеннеди) камня на камне. Поэтому давайте будем предельно осторожны в оценках и предположим, что Соединенные Штаты – современные – могут построить ТРН с грузоподъемностью не больше той, которой удалось добиться в 1960 году. Давайте ограничим грузоподъемность нашей ракеты 140 тоннами (на НОО) по аналогии с «Сатурн-5». Будет ли такой вариант достаточно надежен для прямого запуска «Марс Директ»?

Часть ответа на этот вопрос дана в табл. 4.3, где показано количество полезного груза, который будет доставлен на поверхность Марса одной ракетой-носителем, способной отправить на НОО 140 тонн, при условии что аппарат произведет маневр аэрозахвата в атмосфере Марса. Таблица дает информацию как для грузовых, так и для пилотируемых траекторий на участке Марс – Земля, а также для разных вариантов третьей ступени: для современного химического двигателя, работающего на смеси водорода и кислорода, с удельным импульсом 450 секунд, либо для ядерного ракетного двигателя, который будет разработан довольно скоро, с удельным импульсом 900 секунд.

Таблица 4.3. Доставка полезного груза на поверхность Марса с помощью ракеты-носителя тяжелого класса, способной вывести на НОО 140 тонн

Приведенные в табл. 4.3 показатели грузоподъемности рассчитаны исходя из предположения, что для выхода космического корабля в орбиту Марса используется атмосферное торможение. Это самый оптимальный способ выполнить орбитальный захват в миссии «Марс Директ», потому что вся полезная нагрузка предназначена для марсианской поверхности и поэтому в любом случае должна быть защищена обтекателем. Используя захват в атмосфере для проведения тормозного маневра, мы без усилий уменьшим используемую для разгона ΔV. Если бы вместо этого для торможения пришлось использовать ракетный двигатель, на поверхность Марса удалось бы доставить примерно на 25 % меньше груза. Если бы мы строили миссию согласно планам «90-дневного отчета» НАСА, использование атмосферы для тормозного маневра вызвало бы много технических трудностей. Торможение в атмосфере огромного звездного крейсера «Галактика» потребовало бы огромного обтекателя, который мог бы быть построен только на орбите, а это, как я уже отметил, безнадежная затея. Более того, для траекторий класса противостояния, используемых в «90-дневном отчете», предполагался действительно жесткий вход в марсианскую атмосферу, что увеличивало бы тепловую и механическую нагрузку на обтекатель. «Марс Директ» использует менее затратные по энергии траектории из класса соединения, для которых скорости входа более низкие и, следовательно, более низкие темпы нагревания, что приводит к значительному уменьшению сил аэродинамического торможения. Кроме того, космические аппараты, которые необходимо тормозить по сценарию «Марс Директ», относительно невелики, так что обтекатели для их защиты легко поместятся внутри головного обтекателя ракеты-носителя. Это может быть сделано одним из двух способов: либо с помощью растяжимого тканевого купола в форме зонтика, который складывается вокруг нижней части груза, как в оригинальном варианте «Марс Директ», либо заменой обтекателя ракеты-носителя жесткой, пулеобразной оболочкой, которая надевается на груз сверху. Оба варианта осуществимы, и в рамках миссии «Марс Директ» любой из них можно будет запускать сразу без необходимости сборки на орбите. Кроме того, требования к наведению, навигации и управлению при аэродинамическом торможении для корабля миссии «Марс Директ» ниже, чем в планах, предполагающих рандеву на орбите Марса, потому что по большому счету не важно, на какую именно орбиту аппарат попадает после захвата (после посадки данные об орбите будут стерты), до тех пор пока ее наклонение находится в пределах широких допусков, при которых есть доступ к назначенному месту посадки.

Для доставки полезной нагрузки мы также можем использовать принцип прямого входа. Как и при маневре аэродинамического торможения, полезная нагрузка замедляется при спуске не с помощью ракетного двигателя, а благодаря тому что атмосфера планеты оказывает аэродинамическое сопротивление ее движению. Однако между этими двумя подходами есть разница. При использовании маневра аэродинамического торможения космический корабль погружается в атмосферу планеты ровно настолько, чтобы замедлиться, а затем вновь выйти на нужную орбиту. В случае прямого входа космический корабль погружается глубоко в атмосферу, пока не погасит свою скорость, а затем переходит непосредственно к посадке. Аэродинамический захват считается лучшим вариантом для пилотируемой марсианской миссии потому, что в случае плохой погоды он позволяет экипажу при необходимости дождаться благоприятных условий для посадки на орбите. При прямом входе аппарат вынужден произвести посадку сразу после входа в атмосферу Марса. Тем не менее прямой вход был успешно использован при посадке на Марсе миссий «Пасфайндер», «Спирит», «Оппортьюнити» и «Феникс». Таким образом, накопился опыт, который может подтолкнуть разработчиков пилотируемой миссии на Марс также использовать этот маневр.

Однако в первую очередь важна полезная нагрузка, которую мы доставим на поверхность планеты. Если будут использованы химические двигатели, тогда беспилотная грузовая ракета-носитель, выводящая на НОО 140 тонн, может доставить на поверхность Марса 28,6 тонны, в то время как при самом быстром пилотируемом полете можно доставить на Марс 25,2 тонны. Реально ли разработать план пилотируемой миссии, уложившись в эти пределы массы? Если нельзя, мы всегда можем спроектировать более крупную ракету-носитель или наконец разработать ЯРД. Но давайте посмотрим, сумеем ли мы разработать миссию, имея в распоряжении только «Сатурн-5» и химические реактивные двигатели. Если у нас получится, то более продвинутые технологии или возможности двигательных установок и связанные с ними выгоды станут вишенкой на торте.

 

Продовольствие для экипажа

Достаточно ли нам имеющейся грузоподъемности? Что ж, давайте разберемся, какое продовольствие понадобится для миссии. В таблице 4.4 мы видим, какие продукты потребуются каждому члену экипажа ежедневно на каждом этапе миссии, а также их общее количество, необходимое для питания четверых астронавтов в каждом из двух жилых модулей, хабе (в котором экипаж будет жить во время полета с Земли на Марс и во время пребывания на поверхности Марса) и кабине ВЗА. Числа, приведенные в столбце «Необходимость/человек-день», являются стандартами НАСА (достаточно мягкими в отношении количества непитьевой воды, как вы можете заметить). Однако я заменил 0,13 кг/день обезвоженной пищи на 1 кг/день цельной пищи. Такая смешанная диета лучше повлияет на настрой экипажа во время длинной миссии, чем только обезвоженная пища, а стоимость миссии вырастет очень незначительно, так как влага, содержащаяся в цельных продуктах питания, послужит для восполнения потерь в системе рециркуляции питьевой воды. Для системы жизнеобеспечения экипажа предполагается довольно низкий КПД с физической и химической точки зрения, поскольку перерабатывает по 80 % кислорода и питьевой воды и 90 % технической воды (качество которой может быть более низким). Это намного проще и экономичнее, чем футуристические системы, основанные на экологии замкнутого пространства, где в теории пища, кислород и вода должны перерабатываться на 100 %.

Если вы умеете читать между строк, в табл. 4.4 вы сразу же обратите внимание на огромные преимущества, которые дают нам марсианские ресурсы. ВЗА будут производить не только горючее, но и большое количество воды и кислорода. Без маленького топливного завода на ВЗА нам пришлось бы доставить вместе с хабом дополнительные 7 тонн продовольствия. Получившиеся 14 тонн было бы очень трудно уместить, так как мы можем доставить на Марс только 25-тонный обитаемый модуль. Девять тонн воды, которые производятся каждым ВЗА, даже превышают требования НАСА, что должно хорошо сказаться на моральном состоянии тяжелоработающего экипажа на пустынной планете. По этим причинам в табл. 4.4 не упоминается доставка с Земли кислорода или воды. Мы также видим, что каждый хаб летит к Марсу с запасами пищи, рассчитанными на 800-дневную миссию, что дает более чем достаточное количество провизии для двухлетнего полета по траектории свободного возвращения, если высадку на Марс отменят. В этом случае экипаж в хабе будет вынужден эксплуатировать 5 тонн метаново-кислородного топлива из двигательной ступени, используемой при посадке на Марс, чтобы обеспечить себя дополнительными водой и кислородом (они не пригодятся в качестве топлива, если использовать траекторию свободного возвращения и затем маневр аэродинамического торможения в атмосфере Земли), и уменьшить использование непитьевой воды до 40 % от номинального уровня стандарта НАСА. Такие неудобства плохо повлияют на настрой экипажа, но их можно перетерпеть и выжить, а это единственное, что важно в случае аварийного прерывания миссии. Кроме того, в табл. 4.4 не показаны потери питьевой воды, потому что питьевая вода, потерянная из-за неэффективной рециркуляции, компенсируется водой, добавляемой к системе из цельной пищи.

Таблица 4.4. Требования по потреблению продовольствия для экипажа из четырех человек миссии «Марс Директ»

С учетом этих продовольственных требований можно назначить распределение массы для кабины ВЗА и хаба, оно представлено в табл. 4.5.

Таблица 4.5. Распределение массы для плана миссии «Марс Директ»

6,3 тонны водородного сырья из запаса полезной нагрузки ВЗА, показанного выше, после посадки будут преобразованы в 94 тонны метаново-кислородного топлива и 9 тонн воды. 82 тонны ракетного топлива из произведенных 94 тонн будут использованы для ракетных двигателей ВЗА, чтобы вернуть экипаж на Землю, а 12 тонн пойдут на заправку марсианских роверов с двигателями внутреннего сгорания. Если подсчитать только запасы воды и 12 тонн топлива для роверов и добавить их к массе других частей полезной нагрузки ВЗА, которые пригодятся на поверхности Марса (это кабина ВЗА с ее системами энергоснабжения и жизнеобеспечения, энергетический реактор, скафандры для внекорабельной деятельности (ВКД), легкий грузовик и т. д.), мы получим, что каждый ВЗА сможет доставить на поверхность Марса 36,5 тонны полезного груза. В распоряжении экипажа первой миссии будут два ВЗА (один доставят заранее для производства ракетного топлива, другой, резервный, запустят в тандеме с экипажем) и один хаб (который доставит на поверхность 24,7 тонны полезной нагрузки). В сумме это дает 97,7 тонны полезной нагрузки, которой экипаж будет пользоваться на поверхности Марса, – примерно в четыре раза больше, чем предполагалось в «90-дневном отчете» НАСА (начальная масса этой миссии более чем в два раза превышала бы массу нашей миссии). Полезная нагрузка, доступная экипажу на поверхности Марса, включает четыре герметизированных помещения, предназначенных для поддержания жизни: обитаемый модуль, два ВЗА и один ровер. То есть на случай перебоев в работе главной системы жизнеобеспечения хаба у экипажа останется несколько убежищ. Кроме того, у астронавтов будут 12 скафандров для ВКД, пять самоходных транспортных средств (герметизированный ровер, два открытых ровера и два легких грузовика), пять основных источников питания (два ядерных реактора на 80 кВт, три солнечные энергетические системы на 5 кВт каждая в обитаемом модуле и два ВЗА), пять резервных источников питания (двигатели на каждом из самоходных транспортных средств можно использовать, чтобы включить генератор), тонна полевого и лабораторного научного оборудования, 14 тонн продовольствия с Земли плюс 18 тонн произведенной на Марсе воды и 24 тонны топлива для роверов, два миниатюрных химических топливных завода, каждый из которых способен произвести из марсианского атмосферного углекислого газа примерно в пятьдесят раз больше кислорода, чем требуется экипажу для поддержания жизни. Поэтому предлагаемый план следует рассматривать как очень надежный. Но можно сделать его еще надежнее, воспользовавшись первым стартовым окном, чтобы отправить полностью укомплектованный хаб с продовольствием, но без экипажа, вместе с первым ВЗА на первое место посадки (то есть расписание программы запуска будет таким: два рейса ТРН каждые два года, начиная с первого). В этом случае астронавтам на Марсе будут доступны шесть обитаемых помещений, включая два полностью укомплектованных хаба, две полностью укомплектованные кабины ВЗА, плюс… Я надеюсь, вы уловили суть. Нам еще не доводилось исследовать какое-либо небесное тело, имея уровень резервной избыточности, хотя бы отдаленно приближающийся к этому. И все это мы сделали, используя технологии 1960-х годов – химические реактивные двигатели «Сатурна-5» – и не прибегая ни на одном из этапов миссии к орбитальной инфраструктуре, сборке, погрузке на орбите или орбитальному рандеву любого типа.

Таким образом мы можем почти неограниченно и с пользой для дела накапливать избыточную надежность лагеря на поверхности Марса – по сравнению с тем, с чем имеет дело экипаж в полете. И это еще одна причина, по которой проектировщики марсианской миссии должны попытаться максимально увеличить время, проводимое экипажем на поверхности, и свести к минимуму продолжительность пути. Все полезные наработки миссии можно накапливать и применять после высадки. Если это будет сделано, то поверхность Марса станет вторым по безопасности местом в Солнечной системе.

 

Перестраховка или прекращение миссии?

В прошлом многие марсианские миссии были построены вокруг следующего сценария: за несколько дней до прибытия или, возможно, во время прибытия на Марс экипаж понимает, что экспедицию необходимо прервать. Важно не то, в чем причина, а то, как это сделать. Как астронавтам достичь убежища? Что ж, очевидно, они должны вернуться на Землю и, хотя они планировали долго пробыть на поверхности в рамках миссии в соединении, к счастью, они взяли с собой достаточно топлива для быстрого возвращения на Землю по траектории из класса противостояния. Они могут направиться с Марса к Земле, включив двигатели и осуществив пролет мимо Венеры. Экипажу не нужно ждать, когда откроется стартовое окно для выхода на траекторию Гомана, да и кто стал бы так поступать в чрезвычайной ситуации? Но давайте все же подумаем об этом. Часть расходов на планирование идет на разработку опций прерывания миссии, а это непростая задача. Во-первых, такие миссии требуют дополнительной полезной нагрузки, необходимой как для длительного пребывания на поверхности Марса, так и для длительного полета на Землю. Во-вторых, необходимо дополнительное топливо, чтобы отправить весь груз на очень затратную по энергии траекторию для противостояния. Трудно представить себе более дорогостоящий подход к проектированию миссии. Более того, если прерывание не понадобится, доставка всего дополнительного груза будет напрасной. Кроме того, возвращение по траектории для противостояния обрекает экипаж на непрерывное воздействие больших доз космической радиации (и, вероятно, невесомости) на протяжении полутора лет, солнечного излучения во время пролета через внутреннюю часть Солнечной системы и на очень высокие перегрузки при посадке на Землю. В общем, такое возвращение станет тяжелым испытанием для экипажа, и даже если он выживет, миссия будет полностью бесполезной с научной точки зрения.

В конечном итоге планы такого рода мало увеличивают эффективность миссий, но значительно увеличивают их массу и стоимость. К счастью, мы сможем решить, что делать в случае чрезвычайной ситуации, задав один основной вопрос: должна ли Земля быть единственным убежищем? Ответ: однозначное «нет». Вовсе не обязательно строить все планы прерывания миссии вокруг возвращения на Землю. Правильная стратегия – заранее создать убежище на поверхности Марса и в случае необходимости прекращать миссию, эвакуируя астронавтов туда. Экипаж, летящий на Марс, сможет добраться до такого убежища гораздо быстрее, чем до Земли, а значит, мы гораздо надежней обеспечим безопасность для астронавтов. В этом случае основной вариант прерывания миссии не нарушает план ее первой части, не налагает никаких ограничений по массе, а его активация по-прежнему позволяет миссии осуществиться. Есть и вторичные варианты прекращения миссии, которые не связаны с выполнением научных задач, но миссия не разрабатывается вокруг этих вариантов. Иными словами, вместо того чтобы строить миссию, основываясь на ее возможной отмене, мы готовим список резервных планов. Так решаются проблемы в «Марс Директ».

Давайте рассмотрим миссию с НОО, чтобы понять, какие возможности для экстренного прерывания или резервные планы доступны экипажу. Первым крупным событием миссии является запуск двигателя, который выведет корабль на траекторию по направлению к Марсу. Общая ΔV для выполнения этого маневра равняется 4,3 километра в секунду, корабль будет выведен на быструю траекторию для соединения с возможностью свободного возвращения за два года, экипаж долетит на Марс за 180 дней или около того. Тем не менее ΔV= 3,7 километра в секунду вполне достаточно, чтобы отправить астронавтов на Марс по 250-дневной траектории с минимальными затратами энергии. Поэтому, если двигатель удастся запустить по крайней мере при ΔV= 3,7 километра в секунду, экипаж будет отправлен на Марс, чтобы выполнить задачи миссии. Если двигательная установка на этапе отправки корабля на траекторию в сторону Марса не сможет обеспечить ΔV=3,3 километра в секунду – такая ΔV требуется, чтобы улететь из поля притяжения Земли, – космический аппарат останется на эллиптической околоземной орбите. В этом случае экипаж будет использовать собственную двигательную систему хаба, чтобы аккуратно сместить перигей (самую близкую к Земле точку) орбиты корабля вниз, в самые верхние слои земной атмосферы. После ряда витков удастся снизить апогей (самую далекую от Земли точку) орбиты до высот, куда может добраться многоцелевой пилотируемый корабль «Орион» (такие медленные маневры с применением аэродинамического торможения в атмосфере для смещения апогея были успешно предприняты кораблями «Магеллан» на Венере в 1994 году, «Марс Глобал Сервейор» на Марсе в 1997 году и всеми последующими марсианскими орбитальными аппаратами). Затем небольшой толчок от двигателей обитаемого модуля поднимет перигей орбиты аппарата за атмосферу Земли, делая орбиту круговой и стабилизируя ее. После этого экипаж можно вернуть на Землю (хотя спешки нет, припасов на борту хватит почти на три года). Если двигательная система, выводящая аппарат на траекторию к Марсу, выйдет из строя при ΔV между 3,3 и 3,7 километра в секунду, экипаж может вернуться на околоземную орбиту, используя для тормозного маневра двигательную систему хаба. Для коррекции курса во время полета, системы реактивных маневров на орбите Марса и посадки на Марс хаб может обеспечить ΔV = 0,7 километра в секунду, этого более чем достаточно, чтобы нейтрализовать максимальный избыток ΔV в 0,4 километра в секунду, который способен оставить экипаж бездействовать между Марсом и Землей. Все это, однако, лишь гипотеза. Правильно спроектированный разгонный блок для вывода аппарата на марсианскую траекторию должен содержать несколько двигателей, каждый из которых имеет надежность порядка 0,99. Вероятность того, что сразу два таких двигателя потерпят неудачу, составляет около 1 к 10 000, незначительная часть общего риска миссии.

После того как разгонный блок для вывода корабля на марсианскую траекторию успешно отработал и промежуточная коррекция курса была завершена, хабу предстоит встреча с атмосферой Марса. В течение первых 95 % полета от Земли к Марсу могут быть задействованы несколько вариантов прерывания миссии, в том числе возвращение по свободной траектории и управляемые гравитационные маневры. Однако, когда спускаемый аппарат выходит на траекторию для аэродинамического торможения в атмосфере Марса (как правило, за несколько дней до входа в атмосферу), шансы использовать траекторию свободного возвращения или управляемый гравитационный маневр для возвращения на Землю становится все более незначительными. В какой-то момент, когда до аэродинамического торможения остается от нескольких часов до одного дня, возможность прервать миссию исчезает полностью. Но рано или поздно придется принимать окончательное решение, и не стоит пренебрегать тем фактом, что свободное возвращение возможно в течение первых 175 дней 180-дневного полета. Поскольку во время миссии «Марс Директ» орбитальное рандеву не требуется, точность орбиты захвата не важна до тех пор, пока ее наклон позволяет высадиться в выбранном районе (то есть больше или равен широте желаемого места посадки). Следовательно, после выхода на околомарсианскую орбиту экипаж сможет спуститься на поверхность к форпосту – то есть к первому запущенному ВЗА. Поскольку снижаются требования к точности аэродинамического захвата на орбите, снижаются и требования к точности наведения, навигации и управления, а значит, маневр торможения в атмосфере для миссии «Марс Директ» выглядит наиболее привлекательным. В случае неудачи, если хаб не будет захвачен атмосферой Марса, экипаж может использовать реактивные двигатели посадочного модуля (дающие скорость до 700 метров в секунду), чтобы увеличить эффективность маневра аэродинамического торможения. Теперь экипаж может оказаться не в состоянии спуститься на поверхность в жилом модуле, но корабль уже будет выведен на околомарсианскую орбиту. В распоряжении астронавтов две возможности. Первая: 600 дней остаться на орбите и ждать встречи с одним из ВЗА (самым первым или тем, который следовал за ними на Марс, любой ВЗА можно направить к обитаемому с помощью дистанционного управления), затем пересесть в ВЗА и вернуться на Землю. Во-вторых, астронавты могут подождать всего 90 дней или около того на орбите Марса, пока прилетит ВЗА, который был отправлен вслед за ними, а затем состыковаться с ним до его посадки. У экипажа будет возможность забрать некоторое количество топлива с ВЗА в жилой модуль, тем самым обеспечивая посадку жилого модуля (но жертвуя ВЗА). Или же астронавты переберутся в ВЗА и высадятся на Марс в нем, оставив хаб на орбите. Это можно сделать сразу после стыковки в том случае, если на Марсе уже будет другой жилой модуль. Тогда астронавты продолжат исследования на поверхности планеты, начатые предыдущим экипажем. Если речь идет о первых астронавтах миссии «Марс Директ», то они могут отложить посадку и провести большую часть экспедиции на орбите Марса (где в их распоряжении будут просторные помещения на борту хаба и большой запас продовольствия), а затем осуществить кратковременную высадку на поверхность, используя два ВЗА как базу.

Однако, чтобы в чрезвычайной ситуации найти убежище на поверхности Марса и успешно завершить миссию, туда нужно сначала добраться. По этой причине, выполняя маневр торможения в атмосфере, лучше опуститься в нее слишком глубоко, нежели рисковать вылететь в межпланетное пространство. Так как в миссии «Марс Директ» не требуется выводить корабль на неустойчивую сильно вытянутую эллиптическую орбиту (как принято в традиционных миссиях – поскольку, чтобы покинуть ее, нужно меньше топлива), корабль можно направить на более надежную слегка эллиптическую или круговую орбиту вокруг Марса, с которой почти невозможно сойти. Если корабль войдет в атмосферу слишком глубоко, чтобы оказаться на стабильной орбите, экипаж может просто осуществить посадку хаба. В конце концов, план так или иначе сводится к посадке на поверхность Марса.

То, что рандеву на орбите Марса перед спуском не потребуется, делает миссию гораздо безопаснее, поскольку пропадает необходимость безукоризненно провести маневр торможения в атмосфере, который мог бы закончиться плачевно. Однако в «Марс Директ» мы заменили орбитальное рандеву на «встречу» на поверхности планеты. Как насчет этого? Что ж, давайте разбираться. План «встречи» на поверхности также предусматривает несколько резервных возможностей, призванных обеспечить успех миссии. Прежде всего, ВЗА будет на месте за два года до прибытия экипажа, получая возможность развернуть роботизированные передвижные транспортные средства, чтобы заранее дать исчерпывающую характеристику места встречи, а также поместить ретранслятор в непосредственной близости от наилучшего места посадки. На ВЗА также будет установлен радиомаяк, похожий на систему сигнализации для посадки в аэропорту, что даст экипажу точные данные о положении и скорости при заходе на посадку. Стоит помнить, что оба спускаемых аппарата миссии «Викинг» высадились в пределах 30 километров от предполагаемых мест без активного управления, а пилотируемые лунные спускаемые аппараты миссии «Аполлон» смогли приземлиться в 200 метрах от выбранного места, где находился аппарат «Сервейор». Система наведения с обратной связью и направляющий радиомаяк позволят осуществить посадку в пределах нескольких метров от заданного места. Тем не менее, если посадка будет проведена с ошибкой в десятки и даже сотни километров, «встреча» на поверхность останется благодаря привезенному в жилом модуле роверу, который способен преодолевать расстояния до 1000 километров. Так как экипаж прибыл в полностью оснащенном жилом модуле, а не в маленьком спускаемом аппарате с ограниченным запасом продуктов, астронавты смогут продержаться долго, если высадятся в изолированном месте. На этот случай есть третий и четвертый запасные сценарии. Согласно третьему, если модули окажутся друг от друга на расстоянии, сравнимом с размерами Марса, второй ВЗА, следующий на Марс за пилотируемым хабом (с разницей в несколько месяцев), можно отправить к его посадочной площадке. Четвертый вариант предполагает, что экипаж высадится на Марсе в хабе с достаточным количеством запасов, чтобы прожить на поверхности Марса два года. Если ничего не поможет, астронавты могут просто перетерпеть и дождаться, когда на Земле откроется следующее окно запуска и к ним отправят дополнительное продовольствие и еще один ВЗА.

Поскольку в плане «Марс Директ» для взлета с Марса используется топливо, произведенное на месте, вариант прерывания миссии на этапе спуска в атмосферу Красной планеты не предусмотрен. Если спуск начнется, обратного пути не будет. Тем не менее чрезвычайно сомнительно, что любой посадочный модуль, заправленный для взлета с Марса, действительно сможет успешно подняться на орбиту, отталкиваясь от края плотных слоев атмосферы и трясясь со сверхзвуковыми скоростями. (Такой маневр потребовал бы пролета поднимающегося модуля через сверхзвуковую ударную волну, отходящую от обтекателя, который должен развернуться в атмосфере, чтобы перевести двигатели из режима замедления в режим ускорения!) В обмен на отказ от иллюзорной надежды прервать миссию во время спуска к Марсу (находясь в полностью заправленном взлетном модуле, экипаж традиционной миссии, конечно, предпочел бы иметь такой вариант про запас) экипаж «Марс Директ» получает реальную безопасность. То есть астронавты еще до отлета с Земли знают, что на Марсе их ожидает полностью заправленный ВЗА, который уже благополучно пережил посадку. Кроме того, во время собственного спуска они будут находиться в большом и прочном обитаемом модуле с несколькими герметизированными отсеками и исправно работающей системой жизнеобеспечения, рассчитанной на длительный срок эксплуатации, и на момент посадки в модуле почти не останется ракетного топлива. В противоположность этому, экипаж, спускающийся на Марс в полностью заправленном модуле, предназначенном и для последующего взлета, будет вынужден ютиться в небольшом помещении с системой жизнеобеспечения, рассчитанной на минимальную продолжительность полета, – в модуле, до краев наполненном взрывоопасным ракетным топливом.

Как уже говорилось в предыдущем разделе, миссия «Марс Директ» концентрирует все свои активы на поверхности Марса, а не на орбите, и все системы, необходимые экипажу для 600-дневного пребывания на поверхности, многократно продублированы, а степень надежности увеличивается по мере того, как на Марс прибывают новые обитаемые модули. Когда придет время возвращаться на Землю, у астронавтов на поверхности Марса будут два готовых ВЗА, каждый из которых способен доставить их домой без какой-либо помощи извне, причем оба можно проверить вручную перед вылетом. Это радикальное улучшение по сравнению традиционным планом миссии. Тот предполагает, что экипаж должен подняться с поверхности Марса на единственном доступном для этих целей аппарате, чтобы осуществить критически важную для миссии стыковку с материнским кораблем, который, возможно, прождал на орбите уже полтора года, при этом никто не заботился о продовольствии и запчастях для ремонта. Астронавты миссии «Марс Директ» могут лично проверить свой ВЗА, прежде чем полететь на нем, и у них в базовом лагере есть все необходимые ресурсы для ремонта или корректировки. В случае если оба ВЗА окажутся в плохом состоянии, астронавты могут просто терпеливо ждать несколько месяцев на марсианской базе, пока еще один хаб, загруженный продовольствием, и еще один ВЗА не прибудут согласно расписанию. Да, в таком случае людям придется прожить на Марсе на два года дольше, чем планировалось, но это значительно лучше, чем погибнуть.

 

Варианты с усовершенствованными технологиями

Используемая в плане «Марс Директ» система транспортировки, о которой в этой книге рассказывалось до сих пор, может быть создана с использованием уже существующих технологий: «Сатурн-5» или эквивалентная по грузоподъемности ТРН, химические реактивные двигатели и т. д. Но, конечно, если появятся более совершенные технологии, план следует откорректировать, чтобы воспользоваться ими. Хотя сейчас предлагаются многие формы передовых космических транспортных систем – среди ярких примеров можно назвать ядерный и солнечный электрический (ионный) двигатели, солнечные и магнитные паруса, ракеты на энергии термоядерного синтеза и даже антивещества, – лишь немногие из этих систем могут быть разработаны к моменту первого пилотируемого полета на Марс. Это ядерные ракеты (ЯР) и тесно с ними связанные в технологическом плане солнечные тепловые ракеты (СТР), которые могли бы заменить ракеты с химическими реактивными двигателями в качестве космических транспортных средств, и ракеты, выходящие на орбиту благодаря работе одноступенчатого двигателя (РОСД), которые могли бы заменить одноразовые многоступенчатые ТРН для запуска с Земли. То есть нельзя сказать, что ионные ракетные двигатели, магнитные паруса, термоядерные ракетные двигатели и другие передовые системы никогда не появятся. Напротив, вероятно, именно на них будет держаться лет через сто сфера коммерческих межпланетных перевозок. По этой причине мы рассмотрим перечисленные новшества позже в одной из следующих глав этой книги, когда речь пойдет о более футуристических аспектах колонизации Марса. Однако точно так же, как Колумб не уплыл бы очень далеко, если бы дожидался появления пароходов или самолетов «Боинг-747», так и первому поколению исследователей Марса придется рассчитывать на более примитивные технологии по сравнению с теми, что будут доступны путешественникам следующих поколений. Колумб пересек Атлантику на кораблях, предназначенных для средиземноморского и атлантического прибрежного судоходства. Только после того как в Америке выросли европейские форпосты, появились технологии, позволившие перейти от довольно простых судов, использованных Колумбом, к трехмачтовым каравеллам, клиперам, океанским лайнерам и самолетам. Аналогичным образом обустройство поселений на Марсе подстегнет создание более совершенных космических двигательных установок. По этой причине до сих пор мы рассуждали о полетах на Марс, полностью полагаясь на современное первобытное состояние космических технологий. Это консервативный подход. Но есть технологии, которые потенциально могут быть взяты на вооружение в относительно близком будущем, что могло бы значительно повысить эффективность миссии или сократить издержки. Давайте поговорим об этом подробней.

Ядерные и солнечные электрические ракеты – наиболее вероятные претенденты на то, чтобы заменить собой химические ракеты. Идея таких систем очень проста. Источником тепла является либо ядерный реактор, либо параболическое зеркало для фокусировки солнечных лучей. Жидкость нагревается до очень высоких температур, превращаясь в ультрагорячий газ, который затем вырывается из сопла ракеты, создавая тягу. Другими словами, тепловая ракета – это просто летающий паровой котел. Производительность таких систем ограничена главным образом максимальной температурой, которую может выдержать материал двигателя, и, как полагают, она близка к 2500 °C. Самая высокая скорость истечения и, следовательно, максимальный удельный импульс, получаемый такой ракетой, будут обеспечиваться топливом, имеющим минимально возможную молекулярную массу. Поэтому предпочтение отдается водородному топливу. ЯР или СТР с использованием водородного топлива может достичь удельного импульса в 900 секунд (скорости истечения в 9 километров в секунду), это вдвое больше, чем у лучших водородно-кислородных химических ракетных двигателей.

Такие тепловые ракеты – это не просто теория. В 1960 году в США разрабатывали программу под названием NERVA (сокр. от nuclear engine for rocket vehicle applications, что переводится как «ядерный двигатель для применения в ракете-носителе»), в рамках которой построили и провели наземные испытания около десятка модификаций ядерных ракетных двигателей, развивающих от 10 000 до 250 000 фунтов тяги. Эти двигатели действительно работали и действительно давали удельные импульсы более 800 секунд, что превосходит самые смелые мечтания любого разработчика химических ракет. Вернер фон Браун планировал использовать ЯР в качестве двигательных установок для пилотируемого полета на Марс, который НАСА надеялось осуществить после миссии «Аполлон» в начале 1980-х годов. Но, когда администрация Никсона отменила марсианские планы НАСА, программа NERVA тоже пошла прахом. Двигатели никогда не проходили полетных испытаний, а наземные полигоны остались ржаветь. Многие ветераны программы NERVA все еще работают где-то рядом, хотя большинство из них уже вышли на пенсию. Даже сейчас, когда я пишу эту главу, их бесценный опыт по работе с такими системами испаряется. Тем не менее теперь мы знаем, что их возможно создать.

В период, когда ИИК еще была жива, группа сотрудников НАСА во главе с идейным вдохновителем (но не руководителем) доктором Стэном Воровски из Космического исследовательского центра имени Льюиса НАСА (теперь он носит имя Гленна) в Кливленде предприняла попытку возродить американскую программу исследования и разработки ЯРД. Эта попытка, которую я энергично поддержал, столкнулась со многими препятствиями в политической среде, не последним из которых был тот факт, что чрезмерная оценочная стоимость ИИК убедила Конгресс не тратить ни копейки ни на что, с ней связанное. Также были и другие проблемы. В 1960-е годы движение против ядерной энергетики еще не оформилось в серьезную политическую силу, и испытания ЯРД под открытым небом были обычной практикой, при этом потенциально радиоактивный выхлоп извергался прямо в воздух полигона в Неваде. Сейчас ничего подобного не разрешили бы. Современные испытания ЯРД должны проходить внутри закрытых объектов, содержащих поглотители, которые устранят все радиоактивные продукты из выхлопных газов перед выпуском их в окружающую среду. В зависимости от размера ЯРД полигон может быть очень большим и стоить очень дорого – порядка миллиарда долларов, а также необходимы разрешения экологов, которые способны задержать проведение программы на многие годы. Был потрясающий полигон под названием LOFT, уже сертифицированный Национальной инженерной лабораторией Айдахо, который при незначительных изменениях можно было бы использовать для тестирования небольшой ЯРД примерно с 15 000 фунтами тяги. Это позволило бы сэкономить много времени и денег. Такая небольшая ЯРД была бы достаточно большой, чтобы вывести космический корабль миссии «Марс Директ» с НОО на траекторию к Марсу, а также достаточно маленькой, чтобы быть полезной для множества других проектов, включая запуск беспилотных зондов во внешние части Солнечной системы и вывод военных спутников на геостационарную орбиту. Эти проекты, в отличие от ИИК, имеют реалистичные бюджеты.

По этой причине я и еще несколько человек долго и яростно отстаивали этот вариант. Тем не менее в начале 1990-х годов, когда дискуссия была в разгаре, НАСА еще не приняла «Марс Директ», а ЯРД с 15 000 фунтами тяги был слишком мал, чтобы запустить звездный крейсер «Галактика» к Марсу. То есть из-за громоздкого проекта миссии, предложенного планировщиками из НАСА, считалось, что нужны двигатели с тягой в диапазоне от 75 000 до 250 000 фунтов. Более того, многие из людей, сплотившихся тогда вокруг Воровски, были представителями учреждений, руководство которых надеялось получить огромные деньги для работы по строительству нового гигантского испытательного стенда, и поэтому они оказывали на Воровски соответствующее давление. К тому же начальники Воровски по программе ЯРД были чиновниками из НАСА, которые в целом поддерживали идею сделать разработку большого ЯРД долгосрочной программой и, следовательно, не одобрили бы любой ускоренный и более дешевый проект. Поэтому в конце концов сторонники большого двигателя победили. НАСА мешкало с ИИК, составив план программы ЯРД на 6 миллиардов долларов, причем для применения ЯРД исключительно к НИК, с большими полигонами и срок разработки в двенадцать лет. Когда ИИК отменили, то же сделали с ЯРД. После того как программа была прекращена, крысы бежали с корабля, оставив Воровски бороться за начало программы по небольшим ЯРД. С тех пор все приостановлено.

Я считаю, что мы могли бы запустить программу небольших ЯРД и произвести готовые к полету двигатели с 15 000 фунтами тяги и удельным импульсом в 850 секунд в течение четырех лет при стоимости от 500 миллионов до 1 миллиарда долларов. Эти оценки основаны на детальных обсуждениях и исследованиях, проведенных совместно с ветеранами NERVA и другими специалистами, работающими в этой отрасли в нескольких национальных лабораториях. Стоимость будет немаленькой, однако она сравнима со стоимостью одного запуска шаттла, и это позволило бы создать целый ряд новых космических возможностей для страны. Поскольку такой двигатель имеет широкую сферу применения, его разработка была бы мудрым решением независимо от того, планируем ли мы отправлять людей на Марс или нет.

Однако нельзя отрицать, что запустить программу ядерных космических ракет – трудная задача на сегодняшний день. Если исходить из того, что синица в руке лучше, чем журавль в небе, то можно понять, почему группа инженеров из лаборатории «Филлипс» ВВС США в Альбукерке, Нью-Мексико, выдвинула предложение по разработке солнечных тепловых ракетных систем. СТР – старая концепция, которая впервые была предложена ветераном разработки немецкой ракеты «Фау-2» Краффтом Эрике в 1950 году, но она так и не была запущена. Источником энергии для СТР служит собранный зеркалом солнечный свет, тем самым устраняя необходимость в ядерном топливе, но из-за проблем со сбором солнечного света (нужны зеркала больших площадей) и получаемой благодаря ему энергии трудно сделать СТР с тягой более 100 фунтов. Более того, по понятным причинам система совершенно неэффективна во внешней Солнечной системе. Поскольку тяга очень ограничена, СТР нельзя использовать для космических аппаратов миссии «Марс Директ» на пути от НОО до выхода на расчетную марсианскую траекторию. Но двигатель СТР может быть использован в длительной (до нескольких недель) серии маневров, известных как «толчок в перигее», во время которых двигатель включают примерно на тридцать минут каждый раз, когда космический корабль проходит самую низкую часть своей орбиты. Это позволило бы поднять космический корабль «Марс Директ» с НОО на вытянутую эллиптическую орбиту для того чтобы вскоре улететь от Земли. С этой орбиты космический аппарат полетит на Марс благодаря краткому включению химического двигателя, в то время как ступень с СТР двигателем будет либо отстрелена как отработавшая, либо вернется обратно на НОО, чтобы поднять на нужную высоту другой космический корабль. Поскольку для СТР ΔV, необходимая, чтобы поднять космический аппарат почти до выхода из поля притяжения Земли, составляет около 3,1 километра в секунду, а общая ΔV для выхода на траекторию к Марсу составляет от 3,7 (для груза) до 4,3 километра в секунду (для экипажа), СТР обеспечивает от 72 до 83 % работы двигателя для выхода на траекторию к Марсу. Таким образом, преимущества, предлагаемые СТР, сравнимы с возможностями ЯРД, хотя у СТР они несколько скромнее.

Чем эти системы могут быть полезны для «Марс Директ»? Как мы видели, они не будут использоваться для быстрых полетов на Марс. Если не вдаваться в подробное описание футуристических двигательных систем (двигатели на энергии термоядерного синтеза, антивеществе и т. д.), для которых не используются баллистические траектории, для доставки людей на Марс лучше всего подойдет двухлетняя траектория свободного возвращения, по которой корабль долетит до Марса примерно за 180 дней независимо от того, какая двигательная система используется. Но СТР или ЯР полезны тем, что позволят нам для одной и той же стартовой массы аппарата взять намного больше полезной нагрузки. Как мы уже видели, использование ЯР позволяет доставить на Марс на 60–70 % больше полезной нагрузки, чем в случае водородно-кислородного химического двигателя, который используют, чтобы выйти на траекторию к Марсу. СТР позволила бы увеличить полезную нагрузку примерно на 40–50 % по сравнению с химическими двигателями. Поэтому, если мы используем ту же ракету-носитель с грузоподъемностью 140 тонн к НОО, что мы выбрали для нашей миссии с химическими реактивными двигателями, ЯР или СТР позволит расширить численность экипажа до шести человек (три механика, три ученых для полевых работ, но никаких врачей!) и даст более широкий диапазон масс для всех возможных компонентов миссии.

Альтернативный вариант использования превосходных разгонных возможностей этих систем – уменьшение размера требуемой ракеты-носителя при сохранении всего распределения полезной нагрузки. Вместо ракеты-носителя с «нормой» в 140 тонн, выводимых на НОО, для запуска миссии можно использовать ракету-носитель грузоподъемностью от 85 (для ЯР) до 100 тонн (для СТР) в расчете для НОО. Первый показатель совпадает с грузоподъемностью «Шаттла Си» (в общем-то эта комплектация отличается от стандартного шаттла тем, что вместо орбитального ракетоплана размещается полезная нагрузка, такую ракету НАСА, по собственным оценкам, сможет разработать гораздо быстрее, чем носитель класса «Сатурн-5»). Последнее число (100 тонн) – это грузоподъемность российской ракеты-носителя «Энергия», хотя сравнительно узкий отсек ее головного обтекателя следовало бы расширить для размещения объемного водородного топлива, которого потребуется меньше для вариантов миссии с ЯР или СТР.

Но не исключено, что миссию можно провести вообще без тяжелой ракеты-носителя. В 1990-х годах Соединенные Штаты начали очень амбициозную программу разработки полностью многоразовой ракеты-носителя с одноступенчатым двигателем, способной выйти на орбиту Земли. Вдохновителями этой программы были «космические провидцы» Гэри Хадсон и Макс Хантер. Толчок ее развитию дала успешная демонстрация компактной суборбитальной многоразовой ракеты («Макдоннелл Дуглас DC–X») в рамках программы, разработанной на скорую руку под эгидой команды полковника Питера Уордена из организации противоракетной обороны. (Билл Гаубатц, руководитель программы DC–X, подготовил ракету к демонстрации за 60 миллионов долларов – вспомните эту цифру, когда вам скажут, что задуманный вами проект будет стоить 10 миллиардов долларов, а его разработка затянется навечно.) Проект, позже переданный НАСА и переименованный в Х-33, столкнулся со многими техническими препятствиями, потому что в случае использования водородно-кислородного ракетного двигателя (во всех вариантах конструкции Х-33) РОСД должна иметь сухую массу, равную только 10 % от ее массы в полностью заправленном состоянии. Этого очень сложно добиться, так как водородное топливо крайне неудобно в перевозке и транспортное средство должно иметь систему тепловой защиты, которая способна выдержать повторный вход в атмосферу (одноразовые ракеты могут иметь более тонкую и хрупкую обшивку). Для того чтобы сделать РОСД работоспособными, придется применять технологии, пока находящиеся за пределами наших познаний: нам нужны легкие строительные материалы, двигатели и системы тепловой защиты. Но нет никакой гарантии, что удастся достигнуть требуемых показателей, и фактически программа Х-33 изжила себя и была отменена, когда ее главный подрядчик, «Локхид Мартин», не смог в срок выполнить поставленные задачи, уложившись в рамки допустимого бюджета. Тем не менее можно было бы снова предпринять активные усилия на национальном уровне, ведь американская изобретательность редко подводила при адекватном финансировании и уверенности в том, что проблема будет решена. Давайте предположим, что программа оказалась успешной. Что полезного она принесла бы миссии «Марс Директ»?

Что ж, для того чтобы РОСД действительно были полезны для миссии «Марс Директ», хотелось бы иметь версию двигателей, которые способны одновременно работать и на смеси водорода и кислорода, и на смеси метана и кислорода. (Было бы хорошо, если бы РОСД могла работать сразу и только на метаново-кислородном топливе. По словам лидера программы РОСД Макса Хантера, такой двигатель столь же перспективен для применения в РОСД, как и водородно-кислородный. Большая плотность метанового топлива позволяет использовать более компактные и, следовательно, более легкие баки, компенсируя тем самым меньший удельный импульс по сравнению с водородом.) В этом нет ничего невозможного. Двигатели «Пратт энд Уитни RL-10», которые предназначены для работы на смеси водорода и кислорода, были успешно испытаны на стенде с использованием метаново-кислородного топлива. Кроме того, есть информация, что некоторые российские технологии позволяют запускать двигатели, предназначенные для смеси водорода и кислорода, с керосином и кислородом, хотя этот вид топлива менее удачен, чем трехкомпонентный вариант: водород, метан и кислород (потому что метан гораздо больше похож на водород, чем керосин).

Хорошо, предположим, что это нам нужно. РОСД имеет сухую массу 60 тонн, несет 600 тонн ракетного топлива (86 тонн водорода и 514 тонн кислорода) и может доставить на НОО полезную нагрузку в 10 тонн. То есть мы запускаем одну такую ракету с 10 тоннами полезной нагрузки, необходимой для марсианской миссии, и оставляем ее на орбите. В результате серии из более чем двадцати дополнительных рейсов РОСД мы доставляем на НОО еще 200 тонн ракетного топлива к орбитальной РОСД вместе с дополнительными 30 тоннами полезного груза. (Этот груз включает в себя 20 тонн жидкого водорода, который не сгорит в качестве топлива во время полета, а будет использован как водородное сырье для производства марсианского топлива. Его по-прежнему можно хранить вместе с остальными запасами водорода в топливных баках.) Итак, теперь у нас есть обращающаяся вокруг Земли РОСД, загруженная 40 тоннами груза и достаточным количеством топлива, чтобы отправить корабль к Марсу по траектории минимальной энергии. Назовем этот космический аппарат «ВЗА/РОСД 1». Ракета устремляется к Марсу, чтобы провести маневр аэродинамического торможения в его атмосфере и высадиться на планету с полным грузом, перевезенном на обычном для «Марс Директ» ВЗА (любая РОСД, предназначенная для спуска в атмосферу Земли, имеет более чем достаточную тепловую защиту чтобы пройти через атмосферу Марса). Как и в стандартной версии плана «Марс Директ», теперь будут запущены реактор и химический завод, чтобы превратить 20 тонн привезенного водорода в 332 тонны двухкомпонентного топлива из метана и кислорода (320 тонн для полета на Землю и 12 тонн для заправки роверов) и 9 тонн воды. (Придется произвести больше метана и кислорода, чем в стандартном варианте «Марс Директ», потому что РОСД имеет одну ступень, в то время как ВЗА «Марс Директ» является двухступенчатым аппаратом и содержит сравнительно массивные конструкции, необходимые для многоразовых операций. У каждой из них свои требования к топливу.) В это время еще одна РОСД поднимается на НОО с 10 тоннами груза. В ходе серии из 24 дополнительных полетов другой РОСД в первую загружаются еще 20 тонн полезного груза, дополнительные 220 тонн ракетного топлива, а в результате последнего полета – экипаж. Эта РОСД, или «хаб/РОСД 1», теперь уже с экипажем, 30 тоннами груза и достаточным количеством топлива, готова отправить аппарат на Марс по быстрой траектории для соединения за 180 дней. Предположим, что загрузка второй РОСД закончится незадолго до открытия стартового окна с Земли на Марс. В это время на поверхности Марса завершается заправка первой РОСД, и экипаж может стартовать к Марсу. Прибыв на Красную планету через 180 дней, он встречается на поверхности с ВЗА/РОСД 1. Вскоре после прибытия экипажа на место прибывает вторая беспилотная грузовая РОСД, ВЗА/РОСД 2, и начинает производить топливо для следующего пилотируемого полета (или же при необходимости выступает для экипажа хаба/РОСД 1 запасным вариантом), как и в стандартной последовательности этапов миссии «Марс Директ». Экипаж остается на поверхности в течение 600 дней, а затем оставляет свой хаб/РОСД 1 на поверхности и летит в ВЗА/РОСД 1 обратно на Землю. Вскоре после того как он покинет Марс, на базу прибудет другая РОСД (хаб/РОСД 2) с командой из четырех астронавтов, чтобы продолжить исследование Марса. Их будет сопровождать другая беспилотная РОСД, возвращаемая на Землю, ВЗА/РОСД 3. Экипаж хаба/РОСД 2 вернется на Землю в ВЗА/РОСД 2, и так далее, последовательность миссий может продолжаться таким образом сколь угодно долго, причем каждая миссия добавит к марсианской очередной хаб/РОСД. Все РОСД, не остающиеся на Марсе, вернутся на Землю для повторного использования, что делает план потенциально высокоэкономичным.

Заметим, что каждая пилотируемая марсианская миссия, проведенная по этому сценарию, потребует в общей сложности 49 рейсов РОСД. Это было бы совершенно нелепо, если бы РОСД эксплуатировались аналогично существующим ракетам-носителям – с частотой запусков около одного в месяц. Однако если сторонники РОСД приложат усилия, то эти ракеты можно было бы запускать как самолеты, быстро возвращая их на Землю, чтобы частота полетов выросла хотя бы до нескольких раз в неделю. План, по всей вероятности, жизнеспособный. Однако этот подход очень высокотехнологичен. Помимо требований к производительности и эксплуатационным качествам РОСД, которые до сих пор не достигнуты, необходимо, чтобы и жидкий кислород, и жидкий водород можно было бы перемещать из одного орбитального РОСД в другой в условиях невесомости. Сейчас и жидкий кислород, и жидкий водород являются криогенными (ультрахолодными) жидкостями, и перемещение таких жидкостей в условиях микрогравитации из одного бака в другой еще никогда не проводили. Эта операция чревата проблемами. В эластичном баллоне криогенные жидкости замерзнут, а насосы не будут работать, потому что в невесомости нет никакого способа заставить жидкость двигаться к точке всасывания (насос втянет небольшой объем и остановится, потому что новая жидкость к нужной точке не потечет). Можно было бы привести бак в движение, медленно ускоряя транспортное средство ракетными двигателями или разместить их на вращающейся платформе, также предлагались капилляры и другие устройства, которые используют поверхностное натяжение жидкости, чтобы управлять ее движением. Кроме того, по меньшей мере для кислорода существует возможность контролировать движение жидкостей с помощью магнитов. (Жидкий кислород – парамагнетик, его можно притянуть магнитом.) Короче говоря, пока ситуация не безнадежна, но нужно проделать большую работу, чтобы на этот план можно было положиться.

К настоящему моменту я склоняюсь к старомодному варианту «Марс Директ» с одноразовыми ТРН, химическими реактивными двигателями, роверами, запряженными лошадьми (ну, не совсем), и остальными примитивными атрибутами наших нынешних Темных веков освоения космоса. Возможно, существуют более удобные способы добраться на Марс, и, когда они окажутся доступны, мы будем их использовать. Но, скорее всего, этого не произойдет до тех пор, пока мы не начнем использовать то, что имеем сейчас, чтобы попасть на Марс и сдвинуться с мертвой точки. Что морские волки говорят о тех, кто покорил семь морей? Железные люди и деревянные корабли, а не деревянные люди и железные корабли. То же применимо и к Марсу.

Мы можем долететь на Марс, используя то, что у нас есть сейчас.

 

ΔV и гиперболическая скорость

В этой главе я много говорил о ΔV и гиперболической скорости. Это два различных понятия, но они взаимосвязаны.

Изменение скорости, или ΔV, измеряется в единицах скорости, таких как километры в секунду (км/с), и является фундаментальным понятием ракетостроения. Если у вас есть космический корабль с известной сухой массой М (то есть без топлива), определенное количество топлива, Р, и ракетный двигатель со скоростью истечения С, следующее уравнение, известное как «ракетное уравнение», показывает, насколько большую ΔV может произвести система:

(М + Р)/М = exp(ΔV/C) (1)

Величина (М + Р)/М, известная как «отношение масс» аппарата, возрастает по экспоненте пропорционально ΔV/C. Если ΔV/C = 1, то отношение масс равно е1 = 2,72. Если ΔV/C = 2, отношение масс равно е2 = 7,4. Если ΔV/C = 3, отношение масс равно 20,1. Если ΔV/C = 4, отношение масс равно 54,6. Экспоненциальная зависимость очень «сильная»: небольшое увеличение ΔV или уменьшение С может привести к очень большому скачку отношения масс. На самом деле ситуация еще хуже, потому что сухая масса М должна включать не только полезную нагрузку, которую вы пытаетесь запустить, но также массу топливных баков, в которых будет храниться топливо, и достаточно больших двигателей, которые будут разгонять космический корабль с его ракетным топливом, и оба этих паразитных веса также возрастают пропорционально Р. Поэтому при росте ΔV/C масса космического аппарата растет быстрее, чем по экспоненциальному закону, поэтому сильно зависит от легкости строительных материалов и плотности используемого топлива, и где-то между ΔV/C = 2 и ΔV/C = 3 масса космического корабля с одной ступенью будет уходить в бесконечность! По этой причине ракетостроители готовы на все ради того, чтобы уменьшить ΔV и увеличить С.

Кстати, если вам интересно, вы можете получить скорость истечения для ракеты в метрах в секунду путем умножения ее удельного импульса, Isp, на 9,8. Если вы хотите получить С в километрах в секунду, умножайте Isp на 0,0098.

С (м/с) = 9,8I sp

С (км/с) = 0,0098I sp (2)

Рис. 4.3. Соотношения между средним временем полета, стартовой скоростью (ΔV) и массой космического корабля для 20-тонного аппарата, покидающего низкую околоземную орбиту (НОО) в направлении Марса. Двигатели водородно-кислородные с удельным импульсом 450 секунд. Обратите внимание на то, что масса миссии резко возрастает для полетов длительностью менее 170 дней

Рис. 4.4. Путешествие с Марса на Землю. Соотношения между средним временем полета, стартовой скоростью (ΔV)и массой космического корабля для 20-тонного аппарата, покидающего низкую околомарсианскую орбиту (ОМО) в направлении Земли. Двигатели метаново-кислородные с удельным импульсом 380 секунд. Обратите внимание на то, что масса миссии начинает резко расти, когда длительность полетов становится меньше 170 дней

Гиперболическая скорость в виде относительной скорости вылета с планеты или прилета на планету – это не то же самое, что ΔV, или изменение скорости, которое должно быть создано двигателями ракеты. Тем не менее они связаны друг с другом и с максимальной скоростью повторного входа в атмосферу прибывающего космического аппарата следующим уравнением:

(V0 + ΔV) 2 = V e 2 + v h 2 = V r 2 , (3)

где V0 – скорость космического аппарата в самой нижней точке орбиты, с которой происходит старт, ΔV – изменение скорости, создаваемое ракетными двигателями космического корабля, V – вторая космическая скорость для планеты (11 километров в секунду для Земли, 5 километров в секунду для Марса), Vh – гиперболическая скорость космического аппарата, а Vr – скорость повторного входа в атмосферу. На рисунках 4.3 и 4.4 мы показываем соотношения между временем полета, стартовой скоростью (или «гиперболической скоростью»), ΔV и массой миссии для 20-тонного космического корабля, покидающего НОО Земли или Марса для межпланетного полета.