В ХХ в. необычайно расширились границы научного познания в физике. Наши представления о пространстве, времени и тяготении полностью изменились благодаря специальной и общей теориям относительности Эйнштейна. Совершив еще более радикальный разрыв с прошлым, квантовая механика изменила сам язык, который мы используем для описания природы: вместо того, чтобы говорить о частицах, имеющих определенные положение и скорость, мы научились говорить о волновых функциях и вероятностях. Слияние теории относительности с квантовой механикой привело к новому видению мира, в котором вещество перестало играть главенствующую роль. Эта роль перешла к принципам симметрии, причем на данном этапе развития Вселенной некоторые из них скрыты от взгляда наблюдателя. На такой основе нам удалось построить удовлетворительную теорию электромагнетизма, а также слабых и сильных ядерных взаимодействий элементарных частиц. Часто ученые чувствовали себя как Зигфрид, который, попробовав крови дракона, с удивлением обнаружил, что может понимать язык птиц.
Но сейчас мы застряли. Годы, прошедшие с середины 1970-х, были самыми бесплодными в истории физики элементарных частиц. Мы расплачиваемся за собственные успехи: теория продвинулась так далеко, что дальнейший прогресс требует изучения процессов, происходящих при энергиях, далеко выходящих за пределы возможностей существующих экспериментальных установок.
Чтобы выйти из тупика, физики еще в 1982 г. начали планировать строительство научной установки беспрецедентных размеров и стоимости, получившей название Сверхпроводящий суперколлайдер (ССК). В этом проекте предполагается прорыть овальный туннель длиной около 85 км к югу от Далласа. Тысячи сверхпроводящих магнитов, расположенных внутри этого подземного туннеля, должны заставить совершить миллионы оборотов по кольцу два встречных пучка электрически заряженных частиц – протонов, пока они не ускорятся до энергии, в двадцать раз большей, чем максимальная энергия, достижимая на существующих ускорителях. В нескольких точках вдоль кольца протоны обоих пучков будут миллионы раз в секунду сталкиваться друг с другом, а громадные детекторы, некоторые весом в десятки тысяч тонн, будут регистрировать результаты этих соударений. Стоимость проекта была оценена в 8 миллиардов долларов.
Идея постройки Суперколлайдера вызвала сильное противодействие, и не только со стороны бережливых конгрессменов, но и со стороны ряда ученых, которые хотели бы, чтобы деньги тратились на исследования именно в их области. Всегда хватало брюзжания по поводу так называемой большой науки, и мишенью многих ворчунов стал ССК. В то же время объединение европейских ученых, известное под названием ЦЕРН, рассматривает возможность постройки похожей установки – Большого Адронного Коллайдера (БАК). Эта установка будет стоить меньше, чем ССК, так как в ней предполагается использовать уже существующий туннель, прорытый под Юрскими горами вблизи Женевы, но по ряду причин энергия частиц на этом ускорителе будет составлять менее половины той, которая планируется на ССК. Во многих отношениях споры в США по поводу ССК похожи на споры в Европе о том, стоит ли строить БАК.
Первое издание этой книги вышло в свет в 1992 г. К этому времени финансирование ССК, остановленное июньским решением Палаты представителей, было восстановлено августовским решением Сената. Будущее Суперколлайдера было бы обеспечено, если бы проект получил заметную иностранную поддержку, но пока что этим и не пахнет. Похоже, что если финансирование проекта и прорвется через конгресс в этом году, то в следующем опять возникнет угроза приостановки финансирования, и так будет каждый год, пока проект не будет завершен. Может случиться, что последние годы ХХ в. станут свидетелями прекращения эпохальных поисков оснований физической науки, возобновление которых произойдет, возможно, спустя много лет.
Эта книга совсем не о Суперколлайдере. Однако споры о проекте заставили меня в ряде публичных выступлений и во время слушаний в конгрессе попытаться объяснить, что же мы пытаемся выяснить, изучая элементарные частицы. Кому-то может показаться, что после тридцати лет работы в области физики это было для меня достаточно легко, но все оказалось не так-то просто.
Для меня самого удовольствие, получаемое от работы, всегда было достаточным основанием для того, чтобы ее делать. Сидя за своим столом или где-нибудь в кафе, я манипулирую математическими формулами и чувствую себя как Фауст, играющий в пентаграммы, прежде чем появился Мефистофель. Очень редко математические абстракции, экспериментальные данные и физическая интуиция соединяются в определенную теорию частиц, сил и симметрий. Еще реже теория оказывается правильной; иногда эксперименты подтверждают, что природа действительно следует тем законам, которые теория предсказывает.
Но это не все. Для физиков, чья деятельность связана с элементарными частицами, имеется и другая побудительная причина для работы, которую значительно труднее объяснить даже самому себе.
Существующие теории ограничены, они все еще не полны и не окончательны. Но за ними здесь и там мы улавливаем проблески окончательной теории, которая будет иметь неограниченную применимость и будет полностью удовлетворять нас своей полнотой и согласованностью. Мы ищем универсальные истины о природе и, когда мы их находим, пытаемся объяснить их, показав, каким образом они выводятся из еще более глубоких истин. Представьте себе пространство научных принципов, заполненное стрелками, указывающими на каждый принцип и исходящими из тех принципов, которыми объясняются последующие. Эти стрелы объяснений уже сегодня выявляют любопытную структуру: они не образуют отдельных, не связанных с другими, скоплений, соответствующих независимым наукам, и они не направлены хаотично и бесцельно. Наоборот, все они связаны, так что если двигаться к началу стрелок, то кажется, что все они выходят из общей точки. Эта начальная точка, к которой можно свести все объяснения, и есть то, что я подразумеваю под окончательной теорией.
Можно уверенно утверждать, что сейчас у нас нет окончательной теории, и похоже, что она не скоро появится. Но время от времени мы ловим намеки на то, что до нее не так уж и далеко. Иногда во время дискуссий с физиками вдруг выясняется, что математически красивые идеи имеют действительное отношение к реальному миру, и тогда возникает чувство, что там, за доской, есть какая-то более глубокая истина, предвестник окончательной теории. Именно это и делает наши идеи привлекательными.
Когда мы размышляем об окончательной теории, на ум приходят тысячи вопросов и определений. Что мы имеем в виду, говоря, что один научный принцип «объясняет» другой? Откуда мы знаем, что у всех этих объяснений есть общая начальная точка? Откроем ли мы когда-нибудь эту точку? Насколько мы сейчас близки к этому? На что будет похожа окончательная теория? Какие разделы современной физики выживут и сохранятся в окончательной теории? Что будет говорить эта теория о феноменах жизни и сознания? И наконец, когда мы откроем эту окончательную теорию, то что же будет дальше с наукой и с человеческим разумом? Мы лишь коснемся этих вопросов в первой главе, оставляя более подробный ответ до остальной части книги.
Мечта об окончательной теории родилась не в ХХ в. В западной цивилизации ее можно проследить вглубь веков до той научной школы, которая расцвела за сто лет до рождения Сократа в греческом городе Милете на берегу Эгейского моря, в устье реки Меандр. Мы, на самом деле, мало знаем о мыслях досократиков, но последующие ссылки и несколько оригинальных фрагментов, дошедших до нас, позволяют предположить, что уже милетцы искали объяснение всех природных явлений с помощью фундаментальных составляющих материи. Для Фалеса, первого среди милетских философов, фундаментальной сущностью была вода; для Анаксимена, последнего философа этой школы, такой сущностью был воздух.
В наши дни воззрения Фалеса и Анаксимена вызывают улыбку. Намного больше восхищают идеи той школы, которая возникла сто лет спустя в городе Абдере на морском берегу Фракии. Там Демокрит и Левкипп учили, что все вещество состоит из крохотных вечных частичек, названных ими атомами. (Заметим, что атомизм имеет корни в индийской метафизике, возникшей задолго до Демокрита и Левкиппа.) Эти ранние атомисты кажутся чудесным образом опередившими свое время, но, с моей точки зрения, не так уж и важно, что милетцы «ошибались», в то время как атомная теория Демокрита и Левкиппа была в определенном смысле «правильной». Ни один из досократиков, ни в Милете, ни в Абдере, не высказал никаких идей, похожих на наши современные представления о том, что? означает успешное научное объяснение: количественное понимание явления. Далеко ли мы продвинулись бы по пути понимания того, почему природа такая, какая она есть, если бы Фалес и Демокрит говорили бы нам, что камень состоит из воды или атомов, но при этом не знали бы, как вычислить его плотность, твердость или электрическое сопротивление? Не умея делать количественные предсказания, мы при этом, конечно, никогда бы не выяснили, кто же прав – Фалес или Демокрит.
Когда мне доводилось преподавать физику в Техасе или в Гарварде для студентов-гуманитариев младших курсов, я чувствовал, что моей главной (и, безусловно, самой трудной) задачей было передать студентам ощущение могущества человека, способного детально рассчитать, что может при определенных обстоятельствах случиться с разными физическими системами. Я учил их рассчитывать отклонение катодных лучей или падение капельки масла не потому, что каждый должен обязательно уметь делать такие вещи, а потому что выполняя эти расчеты, они могут самостоятельно понять, что в действительности означают принципы физики. Наше знание принципов, определяющих эти и другие явления, составляет сердцевину физической науки и драгоценную часть нашей цивилизации.
С этой точки зрения «физика» Аристотеля была не лучше, чем более ранние и менее премудрые рассуждения Фалеса и Демокрита. В книгах «Физика» и «О небе» Аристотель описывает движение снаряда, считая его частично естественным, а частично неестественным. Естественное движение, как и для всех тяжелых тел, направлено вниз, к центру всех вещей, а неестественное движение сообщается воздухом, движение которого можно проследить независимо от того, что привело снаряд в движение. Но насколько быстро летит снаряд по своей траектории и как далеко он улетит, прежде чем упадет на землю? Аристотель не утверждает, что вычисления или измерения слишком трудны или что в данный момент не все еще известно о тех законах, которые могли бы привести к детальному описанию движения снаряда. На самом деле Аристотель не предлагает никакого ответа, ни правильного, ни ошибочного, потому что он не понимает, что такие вопросы стоит задавать.
А почему их стоит задавать? Читателя, как и Аристотеля, может мало заботить, с какой скоростью падает снаряд. Мне самому это безразлично. Важно то, что теперь мы знаем принципы – ньютоновские законы движения и тяготения, а также уравнения аэродинамики – которые точно определяют, где окажется снаряд в любой момент своего полета. Я не утверждаю, что мы на самом деле можем точно вычислить, как движется снаряд. Обтекание воздухом бесформенного камня или оперения стрелы сложно, поэтому наши вычисления будут лишь приближенными, особенно в случае турбулентных потоков воздуха. Существует и проблема определения точных начальных условий. Тем не менее мы можем использовать известные нам физические принципы для решения более простых задач, вроде движения планет в безвоздушном пространстве или стационарного обтекания воздухом шаров или пластин, и этого достаточно, чтобы убедиться, что мы действительно знаем принципы, управляющие полетом снаряда. Точно так же, мы не можем рассчитать ход биологической эволюции, но достаточно хорошо знаем теперь те принципы, которыми она управляется.
Это существенное различие, понимание которого может увязнуть в тине споров о смысле или о самом существовании окончательных законов природы. Когда мы говорим, что одна истина объясняет другую, например, физические принципы (законы квантовой механики), управляющие движением электронов в электрических полях, объясняют законы химии, мы не обязательно подразумеваем под этим, что мы способны последовательно вывести утверждаемые нами истины. Иногда вывод удается завершить, как, например, в случае химических свойств очень простой молекулы водорода. Но иногда задача оказывается чересчур сложной. Подобным образом трактуя научные объяснения, мы подразумеваем не то, что ученые могут реально вывести, а ту необходимость, которая заложена в самой природе. Например, даже до того, как физики и астрономы XIX в. научились учитывать взаимное притяжение планет при точном расчете их орбит, они не сомневались в том, что планеты движутся так, а не иначе, потому что их движение подчиняется законам Ньютона и закону всемирного тяготения или более точным законам, приближенной формой которых являются законы Ньютона. В наши дни, хотя мы и не можем предсказать все, что способны наблюдать химики, мы уверены, что атомы ведут себя в химических реакциях так, а не иначе, потому что физические принципы, управляющие электронами и электрическими полями, не позволяют атомам вести себя иным образом.
Это довольно запутанное место, отчасти потому, что очень трудно утверждать, что один факт объясняет другой, если ты сам не в силах проделать этот вывод. Но я думаю, что мы должны рассуждать именно таким образом, так как это и является содержанием нашей науки: поиск объяснений, вписывающихся в логическую структуру природы. Конечно, мы чувствуем значительно большую уверенность в том, что найдено правильное объяснение, если действительно способны проделать хоть какие-нибудь вычисления и сравнить результаты с наблюдениями, например, в случае химических свойств если уж не белков, то хоть водорода.
Хотя греки и не ставили своей целью подробное и количественное объяснение явлений природы, все же рассуждения, основанные на точных расчетах, безусловно были известны в древности. Тысячелетиями люди знали о правилах арифметики и плоской геометрии, о главнейших периодичностях в движении Солнца, Луны и звезд, включая такие тонкости, как прецессия осей вращения. Кроме того, после Аристотеля начался расцвет математики, продолжавшийся всю эллинистическую эпоху, охватывающую период времени от завоеваний ученика Аристотеля Александра Македонского вплоть до поглощения греческой цивилизации Римом. Изучая философию на младших курсах, я чувствовал некоторое раздражение, когда слышал, что греческих философов Фалеса и Демокрита называют физиками; но когда мы перешли к великим ученым эпохи эллинизма, Архимеду из Сиракуз, открывшему законы рычага, или Эратосфену из Александрии, измерившему длину земного экватора, я стал ощущать себя, как дома среди друзей-ученых. Нигде в мире не было ничего похожего на эллинистическую науку вплоть до расцвета современной науки в Европе в XVII в.
Все же, несмотря на весь блеск, эллинистическая натуральная философия и близко не приближалась к идее о своде законов, точно управляющих всей природой. На самом деле слово «закон» редко употреблялось в античности (Аристотель вообще его не использовал), кроме как в первоначальном смысле человеческих или божественных законов, управляющих поведением людей. (Правда, слово «астрономия» происходит от двух греческих слов: астрон – звезда и номос – закон, но этот термин был значительно менее употребителен в античное время, чем слово «астрология».) Вплоть до работ Галилея, Кеплера и Декарта в XVII в. мы не находим понятия, соответствующего современному «законы природы».
Специалист по античности Петер Грин полагает, что ограниченность греческой науки в значительной степени была обусловлена присущим грекам стойким интеллектуальным снобизмом, их предпочтением статики динамике, размышлений технологии, за исключением военных приложений. Первые три царя эллинистической Александрии поддерживали исследования полета снарядов в связи с очевидными военными приложениями, но грекам показалось бы совершенно неестественным применить точные рассуждения для решения какой-нибудь банальной задачи вроде скатывания шарика по наклонной плоскости, именно той задачи, которая высветила Галилею законы движения. В современной науке полно такого же снобизма – биологи больше занимаются генами, чем воспалением суставов, а физики скорее предпочтут изучать протон-протонные соударения при энергии 20 триллионов электрон-вольт (эВ), чем просто 20 эВ. Но это снобизм тактического порядка, основанный на мнении (правильном или ошибочном), что некоторые явления дают больше для понимания, а не на убеждении, что какие-то явления более важны, чем другие.
Современные мечты об окончательной теории берут начало от Исаака Ньютона. На самом деле количественное научное мышление никогда не прерывалось и ко времени появления Ньютона оно уже получило новый импульс, особенно в трудах Галилея. Но именно Ньютон сумел так много объяснить с помощью своих законов движения и закона тяготения, начиная с формы орбит планет и их спутников и кончая приливами и законом падения яблок, что он должен был впервые почувствовать возможности действительно последовательной объясняющей теории. Надежды Ньютона были выражены в предисловии к первому изданию его великой книги «Математические начала натуральной философии»: «Было бы желательно вывести из начал механики и остальные явления природы, рассуждая подобным же образом, ибо многое заставляет меня предполагать, что все эти явления обусловливаются некоторыми силами…». Двадцатью годами позднее, в «Оптике», Ньютон описал, как, по его мнению, могла бы осуществиться такая программа:
«Мельчайшие частички материи слепляются в результате сильнейшего притяжения, образуя частицы большего размера, но уже менее склонные к притяжению; многие из этих частиц могут опять слепляться, образуя еще большие частицы с еще меньшим притяжением друг к другу, и так далее в разных последовательностях, пока эта прогрессия не закончится на самых больших частицах, от которых зависят уже и химические реакции, и цвет естественных тел, и которые образуют, наконец, тела ощутимых размеров. Если так, то в природе должны существовать посредники, помогающие частицам вещества близко слепляться друг с другом за счет сильного притяжения. Обнаружение этих посредников и есть задача экспериментальной философии».
Великий пример Ньютона породил, особенно в Англии, характерный стиль научного объяснения: вещество полагалось состоящим из крошечных неделимых частиц; частицы действуют друг на друга с «различными силами», одной из разновидностей которых является сила тяготения; зная положения и скорости этих частиц в любой момент времени, и зная, как вычислить силы, действующие между ними, можно воспользоваться законами движения, чтобы предсказать, где они окажутся в любой последующий момент. До сих пор новичкам часто преподают физику в таком духе. К сожалению, несмотря на все успехи ньютоновского стиля рассуждений, это был тупиковый путь.
Мир все-таки сложная штука. Чем больше узнавали ученые о химии, свете и электричестве в XVIII и XIX вв., тем более неосуществимой должна была казаться возможность объяснения этих явлений в ньютоновском духе. В частности, для того чтобы объяснить химические реакции и химическое сродство элементов, рассматривая атомы как ньютоновские частицы, движущиеся под действием сил взаимного притяжения и отталкивания, физики вынуждены были делать столько дополнительных предположений об атомах и силах, что реально ничего нельзя было довести до конца.
Несмотря на это к 1890-м гг. многими учеными овладело странное чувство завершенности науки. В научном фольклоре сохранилась апокрифическая история о каком-то физике, который объявил в конце столетия, что физика практически завершена и все, что осталось, это провести измерения с точностью до нескольких следующих знаков после запятой. Похоже, что эта история восходит к замечанию, сделанному в 1894 г. американским физиком-экспериментатором Альбертом Майкельсоном в речи в Чикагском университете: «Хотя и рискованно утверждать, что будущее Физической Науки не хранит в себе чудес, еще более поразительных, чем открытые в прошлом, вполне вероятно, что большинство важнейших основополагающих принципов уже надежно установлено и что дальнейшие успехи возможны, главным образом, на пути поиска строгих приложений этих принципов ко всем явлениям, привлекающим наше внимание… Один видный физик заметил, что будущее Физической Науки следует искать в шестом знаке после запятой». Присутствовавший в зале во время выступления Майкельсона другой американский физик-экспериментатор Роберт Милликен предположил, что «видный физик», которого имел в виду Майкельсон, был влиятельный шотландец Уильям Томсон, лорд Кельвин. Один приятель говорил мне, что когда он был студентом Кембриджа в конце 1940-х гг., он часто слышал приписываемое Кельвину высказывание, что в физике не будет никаких новых открытий, и все, что осталось – это делать все более точные измерения.
Я не смог обнаружить подобного высказывания в собрании речей лорда Кельвина, но имеется достаточно других свидетельств широко распространенного, хотя и не всеобщего, ощущения завершенности науки к концу девятнадцатого столетия. Когда молодой Макс Планк поступал в 1875 г. в Мюнхенский университет, профессор физики Филипп Джолли отговаривал его заниматься наукой. По мнению Джолли, уже нечего было открывать. Милликен получил тот же совет. Он вспоминал: «В 1894 г. я жил на пятом этаже в доме на Шестьдесят четвертой улице в западной части Бродвея с четырьмя другими аспирантами Колумбийского университета, одним медиком и тремя будущими социологами и политологами, и все время подвергался с их стороны нападкам за то, что я занимаюсь “конченным”, да, именно “дохлым делом” – физикой, в то время как сейчас открываются новые “живые” области общественных наук».
Часто эти примеры самодовольства ученых XIX в. приводятся как предупреждение тем из нас в двадцатом столетии, кто осмеливается рассуждать об окончательной теории. Но это искажает смысл тех самоуверенных высказываний. Майкельсон, Джолли и соседи Милликена, возможно, и не задумались о том, что природа химического притяжения уже была успешно объяснена физиками, а еще менее о том, что механизмы наследования были уже успешно объяснены химиками. Те, кто высказывались подобным образом, могли так говорить только потому, что они перестали верить в мечту Ньютона и его последователей о том, что химию и другие науки можно объяснить с точки зрения законов физики, для них химия и физика были равноправными науками, причем каждая близкой к завершению. Какой бы широко распространенной не была точка зрения о завершенности науки в конце XIX в., она свидетельствовала лишь о самоуспокоенности, которая сопутствует угасанию амбиций.
Но дела стали быстро меняться. Для физиков ХХ в. начался в 1895 г., когда Вильгельм Рентген неожиданно открыл рентгеновские лучи. Важны были не рентгеновские лучи сами по себе; скорее, их открытие воодушевило физиков и заставило их поверить, что есть еще вещи, которые можно открыть, особенно, если изучать разного рода излучения. И открытия быстро последовали одно за другим. В Париже в 1896 г. Анри Беккерель открыл радиоактивность. В Кембридже в 1897 г. Дж. Дж. Томсон измерил отклонение катодных лучей электрическим и магнитным полями и интерпретировал свои результаты как свидетельство существования фундаментальной частицы – электрона, входящей в состав всякого вещества, а не только катодных лучей. В Берне в 1905 г. Альберт Эйнштейн (еще не будучи членом академического сообщества) представил новый взгляд на пространство и время в своей специальной теории относительности, предложил новый способ демонстрации существования атомов и объяснил более раннюю работу Макса Планка о тепловом излучении, введя понятие о новой элементарной частице – световой корпускуле, названной позднее фотоном. Чуть позже, в 1911 г., Эрнест Резерфорд на основании результатов экспериментов с радиоактивными элементами, выполненных в Манчестерской лаборатории, сделал вывод, что атомы состоят из маленького массивного ядра, окруженного облаком электронов. Наконец, в 1913 г. датский физик Нильс Бор использовал эту модель атома и идею Эйнштейна о фотонах для объяснения спектра простейшего атома водорода. Самоуспокоенность сменилась возбуждением; физики почувствовали, что окончательная теория, объединяющая по крайней мере всю физическую науку, может быть скоро построена.
Уже в 1902 г. ранее вполне удовлетворенный Майкельсон смог заявить: «Скоро наступит день, когда нити, идущие от кажущихся совершенно далекими друг от друга областей знания, соединятся в одной точке. Тогда природа атомов, происхождение сил, действующих в химических соединениях, взаимодействие этих атомов с невидимым эфиром, проявляющееся в явлениях электричества и магнетизма, структура молекул и молекулярных соединений, состоящих из атомов, объяснение трения, упругости и тяготения – все это сольется в единое и компактное тело научного знания». Хотя до этого Майкельсон полагал, что физика уже завершена, так как он не думал, что физика должна объяснять химию, то теперь он уже ожидал совершенно иного завершения науки в ближайшем будущем, включающего как физику, так и химию.
Все эти высказывания были несколько преждевременными. На самом деле мечта об окончательной объединяющей теории начала вырисовываться в середине 1920-х гг. после открытия квантовой механики. Вместо частиц и сил ньютоновской механики в физике возник совершенно новый подход, использующий понятия волновых функций и вероятностей. Неожиданно квантовая механика позволила рассчитать не только свойства отдельных атомов и их взаимодействие с излучением, но и свойства атомов, объединенных в молекулы. Наконец-то стало ясно, что химические явления таковы, каковы они есть, благодаря электрическим взаимодействиям электронов и атомных ядер.
Не следует думать, что курсы лекций по химии в колледжах начали читать профессора физики или что Американское Химическое общество вошло в состав Американского Физического общества. Чтобы вычислить силу связи двух атомов водорода в простейшей молекуле водорода, используя уравнения квантовой механики, нужно преодолеть заметные трудности; чтобы иметь дело со сложными молекулами, особенно с теми, которые связаны с биологией, и понимать, как они будут реагировать в разных условиях, нужны особый опыт и интуиция химика. Однако успех квантовой механики в расчете свойств очень простых молекул сделал очевидным тот факт, что химические явления обусловлены физическими законами. Поль Дирак, один из основоположников новой квантовой механики, торжествующе объявил в 1929 г., что «наконец-то полностью известны основополагающие физические законы, необходимые для построения математической теории большей части физики и всей химии, и единственная трудность заключается в том, что в результате применения этих законов мы приходим к слишком сложным для решения уравнениям».
Вскоре возникла новая странная проблема. Первые квантовомеханические расчеты энергий атомов дали результаты, находившиеся в хорошем согласии с опытом. Но когда квантовую механику начали использовать для описания не только электронов в атомах, но и порождаемых этими электронами электрических и магнитных полей, оказалось, что энергия самого атома равна бесконечности! В других вычислениях появились другие бесконечности, так что в течение четырех десятилетий этот абсурдный результат представлялся главным тормозом на пути прогресса физики. В конце концов проблема бесконечностей оказалась совсем не такой ужасной, более того, она стала одним из главных аргументов, прибавивших оптимизма в отношении возможности построения окончательной теории. Если должным образом позаботиться об определении масс, электрических зарядов и других констант, все бесконечности взаимно уничтожаются, но только в теориях специального вида. Поэтому можно думать, что математика подвела нас к какой-то части окончательной теории, поскольку это единственный способ избежать появления бесконечностей. На самом деле новая загадочная теория струн может быть уже указывает тот единственный путь, который позволяет избежать бесконечностей при объединении теории относительности (включая общую теорию относительности, т.е. эйнштейновскую теорию тяготения) с квантовой механикой. Если это так, то нам известна уже значительная часть окончательной теории.
Я совсем не имею в виду, что окончательная теория будет выведена из чистой математики. Помимо всего прочего, почему мы должны верить, что теория относительности, равно как и квантовая механика, логически неизбежны? Мне кажется, что самое большее, на что можно надеяться, это построить окончательную теорию как очень жесткую структуру, которая не может быть превращена в какую-то немного отличающуюся теорию без появления логически абсурдных результатов вроде бесконечных энергий.
Еще один повод для оптимизма связан с тем странным фактом, что прогресс в физике часто основан на суждениях, которые можно охарактеризовать только как эстетические. Это очень удивительно. Каким образом ощущение физика, что одна теория красивее другой, может служить проводником в научном поиске? Этому есть несколько возможных причин, но одна из них относится конкретно к физике элементарных частиц: красота наших сегодняшних теорий может быть «всего лишь грезой» о той красоте, которая ожидает нас в окончательной теории.
В ХХ в. именно Альберт Эйнштейн был наиболее одержим идеей построения окончательной теории. Как пишет его биограф Абрахам Пайс, «Эйнштейн – типичная старозаветная личность, по примеру Иеговы уверенная, что миром правит закон, и его нужно найти». Последние тридцать лет жизни Эйнштейна были большей частью потрачены на поиски так называемой единой полевой теории, которая должна была объединить теорию электромагнетизма Джеймса Клерка Максвелла с общей теорией относительности, т.е. теорией тяготения Эйнштейна. Попытки Эйнштейна не увенчались успехом, и задним числом мы можем сказать, что они были ошибочны. Дело не только в том, что Эйнштейн пренебрег квантовой механикой; круг рассматриваемых им явлений был слишком узок. Электромагнетизм и гравитация являются единственными фундаментальными силами, проявляющимися в повседневной жизни (и единственными силами, известными в те времена, когда Эйнштейн был молодым человеком), но существуют и другие силы в природе, включая слабые и сильные ядерные силы. Прогресс, достигнутый на пути объединения, заключался на самом деле в том, что максвелловская теория электромагнитных сил объединилась с теорией слабых ядерных сил, а не с теорией тяготения, для которой решить проблему с бесконечностями значительно труднее. Тем не менее битва Эйнштейна стала нашей сегодняшней битвой. Это и есть поиск окончательной теории.
Разговоры об окончательной теории очень раздражают некоторых философов и ученых. Появляются обвинения в чем-то ужасном, вроде редукционизма или, еще хуже, физического империализма. Частично, это реакция на разного рода глупости, которые могут быть связаны с окончательной теорией, например, на утверждение, что открытие такой теории в физике будет означать конец науки. Конечно, с появлением окончательной теории не будут прекращены ни научные исследования вообще, ни чисто научные изыскания, ни даже чисто научные изыскания в физике. Чудесные явления, от турбулентности до феномена сознания, будут нуждаться в объяснении, даже если окончательная теория будет построена. Более того, открытие этой теории в физике совсем не обязательно поможет прогрессу в понимании упомянутых явлений. Окончательная теория будет окончательной лишь в одном смысле – она станет концом определенного типа науки, а именно восходящего к древности поиска таких фундаментальных основ мироздания, которые нельзя объяснить с помощью еще более глубоких принципов.