Верные спутники
Это случилось очень давно, быть может три — четыре тысячи лет назад.
Египетская женщина готовила еду для своей семьи.
В маленькой клетушке, пристроенной к стене глинобитной хижины с плоской крышей, хранятся ячменные зерна — основное достояние египетского крестьянина, его радость и надежда на будущее. С помощью ручной мельницы с двумя тяжелыми каменными жерновами можно превратить эти зерна в муку грубого помола, а потом замесить пресное тесто для ячменных лепешек. И женщина спешит с глиняным кувшином к колодцу. Внутрь колодца ведут винтообразно расположенные каменные ступеньки.
Но что это? Почему так тревожно забилось сердце, отчего вдруг ослабли привычные к работе руки?
Всем своим телом ощутила женщина, что со дна колодца уже не тянет обычной свежестью. Случилось то, чего она с тайным страхом ожидала давно: вода иссякла, колодец высох. Грозный шему — засушливый, знойный период года — сделал свое дело.
Быть может, у соседей колодцы еще не высохли и добрые люди одолжат немного бесценной влаги? Но времени нет — вот-вот придут голодные, уставшие муж и сыновья.
И отчаяние подсказывает неожиданный выход. Вон там, у забора, в амбарчике, похожем на улей, стоит глиняный сосуд, в котором бродит молодое вино. Что, если попробовать замесить на нем тесто? Быть может, лепешки не будут слишком противны на вкус?
Раздумывать некогда, и женщина замешивает тесто на мутном виноградном соке, от которого уже тянет слабым запахом спирта. Дальше она делает все так, как делали ее деды и прадеды.
Прежде всего надо разогреть хлебную печь, которая устроена здесь же, во дворе, под навесом. Это круглое углубление из обожженной глины с приподнятыми над землей краями. Углубление накрыто сверху глиняной крышкой в форме колокола.
Какая странная, убогая печь! Но по тем временам она была последним словом печной техники.
Ученые-археологи, производя раскопки в местах стоянок доисторических людей, установили, что примерно пятнадцать тысяч лет назад, когда появились первые оседлые поселения, люди научились выращивать хлебные злаки. Собранные зерна съедали сырыми. Потом стали дробить их между двумя камнями.
Прошла, быть может, не одна тысяча лет, прежде чем кто-то попробовал поджарить зерна и нашел, что они от этого стали вкуснее. Миновали новые тысячелетия, и из дробленых зерен научились варить кашу. И только сравнительно недавно, несколько тысяч лет назад, появилось подобие хлеба — пресные лепешки. Но печей еще не было, и лепешки пекли на раскаленных камнях, а позже — между двумя плоскими глиняными досками.
А женщина древнего Египта уже имела в своем распоряжении такое сравнительно сложное сооружение, как специальную хлебную печь.
Вот она вновь берется за тесто и убеждается с удивлением, что его стало больше, оно вспучилось и издает кисловатый запах. Неужели зря истрачена драгоценная мука?
Лепешки все же раскатаны и испечены. С горькой досадой отламывает женщина кусочек, кладет его в рот и… на лице женщины крайнее изумление.
Да и как не изумиться такому чуду? Ведь прежде даже самая лучшая пресная лепешка из ячменя была безвкусна, тяжела и груба настолько, что застревала в горле, а лепешка, замешенная на забродившем виноградном соке, оказалась легкой, пористой, приятного вкуса и аромата.
Остались довольны лепешками вернувшиеся с работы мужчины. Попробовали лепешки соседи и тоже одобрили. Теперь уже все хозяйки в селении стали замешивать муку на забродившем виноградном соке. Потом заметили, что тесто поднимается еще лучше, если пользоваться не виноградным соком, а осадком, взятым со дна бродильного сосуда.
Ничего еще не зная о существовании микробов, люди стали ими пользоваться для получения хорошего хлеба.
Быть может, рассказанная выше история произошла не совсем так, но это и неважно. Ведь нечто подобное могло случиться не один раз и в различных местностях. Важно другое: новый способ приготовления хлеба на дрожжах стал важным событием в истории человечества, так как дал незаменимый продукт питания.
Ныне любая домашняя хозяйка знает, что для приготовления хлеба нужно замесить муку, прибавить в нее дрожжи и подождать, пока тесто увеличится в объеме, или, как обычно говорят, «подымется». Казалось бы, все очень просто. А между тем превращение муки в тесто — это ряд очень сложных химических преобразований, которые совершаются при содействии различных микробов.
Мука сама по себе содержит немало микробов. Так, например, в каждом грамме ржаной муки ученые обнаружили более тридцати тысяч микробов. Среди них есть и бактерии, вырабатывающие молочную кислоту. Как только муку смочат водой, молочнокислые бактерии начинают свою работу. Они поглощают сахар, содержащийся в муке, разлагают его, накапливают в тесте молочную кислоту.
Однако полакомиться сахаром любят далеко не одни только молочнокислые бактерии. Тесто — прекрасная пища для множества микробов, которые носятся в воздухе вместе с мучной пылью. С того самого момента, как тесто замешено, в нем разгорается борьба невидимок за место и пищу. И от того, какие микробы возьмут верх — полезные или вредные, — зависит качество хлеба.
Хороший, пористый, вкусный хлеб получается благодаря жизнедеятельности молочнокислых бактерий и дрожжевых грибков. Значит, надо помочь их развитию в тесте. К этому, собственно, и сводится искусство хлебопечения.
Молочнокислые бактерии есть в муке. Дрожжевые клетки могут попасть в тесто из воздуха. Но, пока они успеют размножиться, место будет занято: в тесте разовьются микробы, вызывающие гниение. Поэтому при замешивании теста в него сразу же вносят свежие дрожжевые грибки: ведь в большом числе им уже легче отвоевывать себе место. Помогают в этом и верные союзники дрожжей — молочнокислые бактерии.
Тесто держат в тепле. Это содействует развитию микробов-друзей. В теплоте они быстро размножаются и помогают друг другу.
Дрожжевые клетки превращают крахмал в сахар, который поддерживает существование молочнокислых бактерий.
Молочнокислые бактерии выделяют кислоту, убивающую гнилостных бактерий и других микробов-вредителей. А на дрожжи молочная кислота не действует. Дрожжи сами потребляют в пищу часть молочной кислоты. И это очень важно для молочнокислых бактерий, так как они выделяют кислоту непрерывно. Если бы не дрожжи, то очень быстро наступил бы момент, когда молочнокислые бактерии сами погибли бы в выделенной ими кислоте.
Бактерии молочнокислого брожения (увеличение в 1000 раз).
Дрожжи вырабатывают еще витамины, которые необходимы бактериям. А сами дрожжи под защитой молочнокислых бактерий бурно размножаются и быстро разлагают весь оставшийся в тесте сахар на спирт и углекислый газ.
Тесто постепенно приобретает кисловатый вкус, а в его толще скапливается пузырьками углекислота. Пузырьки газа «поднимают» тесто, оно становится пористым. Когда тесто помещают в жаркую печь, то содержащийся в тесте спирт также переводится в газообразное состояние. Это еще больше увеличивает пористость испеченного хлеба.
Дрожжевые грибки, применяемые в хлебопечении и пивоварении; разлагают сахар на спирт и углекислоту (увеличение в 1000 раз).
Несколько по-иному происходит брожение в тесте из ржаной муки. Но и здесь оно возможно лишь благодаря жизнедеятельности бактерий и грибков. Таким образом, хлеб, который мы едим ежедневно, не может быть выпечен без помощи обитателей страны невидимок.
Совместная работа молочнокислых бактерий и дрожжевых грибков в толще хлебного теста — один из примеров взаимопомощи в мире микробов. Молочнокислые бактерии и дрожжевые грибки выступают здесь как сообщество микробов, в котором главную роль играют грибки, а подсобную — бактерии. А бывает и так, что они меняются ролями. Есть огромная область, где молочнокислые бактерии господствуют почти безраздельно.
Рассказ об их замечательных делах можно начать с… квашеной капусты.
Чтобы заквасить капусту, ее измельчают и укладывают в бочку как можно плотнее. При этом добавляют немного соли и обычно думают, что именно соль предохраняет капусту от порчи. На самом деле соль нужна для того, чтобы ускорить выделение из капусты сока, содержащего сахар. Сок выделяется и вскоре начинает бродить, так как в нем размножаются молочнокислые бактерии.
Бактерии молочнокислого брожения (сильно увеличено).
Но как могут они жить в капустном соке?
Дело в том, что существует две группы молочнокислых бактерий. Одни живут в молоке и сбраживают молочный сахар, другие поселяются на поверхности растений и сбраживают сахар растительных соков. Каждая группа, в свою очередь, делится на бактерий, обладающих различными свойствами.
Есть молочнокислые бактерии, сбраживающие лишь молочный сахар или живущие только в хлебном квасе. Есть особые молочнокислые бактерии кислых огурцов, а есть и такие, что специально приспособились к жизни в капустном соке.
Но результат работы всех этих бактерий одинаков: в молоке, в квасе, в огуречном и капустном рассоле они образуют молочную кислоту.
В капустном соке много сахара. Перерабатывая этот сахар в молочную кислоту, молочнокислые бактерии препятствуют развитию гнилостных микробов. Молочная кислота постепенно накапливается в заквашенной капусте, и она приобретает особенный вкус и аромат.
А когда кислоты накопится очень много, то прекращается также и развитие самих молочнокислых бактерий. Но теперь в кислой капусте уже никакие бактерии не будут размножаться. Опасность представляют только плесневые грибки, которые не боятся кислоты. Но грибам нужен воздух, а заквашенная капуста лежит плотным слоем, под грузом. Поэтому плесень может появиться только на самой поверхности заквашенной массы.
Подобным же образом сохраняются свежие корма для животных. Ведь квашеная капуста — это то же самое, что в сельском хозяйстве известно под названием силоса. Только для силоса чаще пользуются не капустными листьями, а другими растениями, содержащими сахар: подсолнечником, кукурузой, ботвой сахарной свеклы. И заквашивают силос не в бочках, а в громадных башнях или специальных траншеях и ямах.
Силос — это театр военных действий самых разнообразных микроорганизмов. В каждой силосной башне постоянно кипит, бьет ключом скрытая жизнь.
На поверхности растений всегда много микробов. Все они попадают в силос. В результате в каждом грамме силосной массы десятки миллионов разных бактерий, а молочнокислых среди них только единицы. Чтобы полчища вредных микроорганизмов были побеждены единичными бактериями молочнокислого брожения, надо создать для последних особо благоприятные условия. Это достигается правильной укладкой силоса.
Если силос плохо утрамбован, он испортится, так как при доступе воздуха размножатся гнилостные бактерии и плесневые грибки. В слишком плотно уложенном силосе разовьются бактерии, превращающие сахар в масляную кислоту, которая также портит силос, придает ему прогорклый вкус. Зато в правильно уложенном силосе, особенно когда в нем много сахаристых веществ, создаются необходимые условия для быстрого размножения молочнокислых бактерий. Уже через три — четыре дня они по численности обгоняют всех остальных микробов вместе взятых.
Чтобы помочь молочнокислым бактериям, в силос добавляют специальные закваски. Приготовляются закваски из активных молочнокислых бактерий, выделенных и размноженных микробиологами в лабораторных условиях.
Но вот силос готов. Слой за слоем его вынимают из башни и дают в корм сельскохозяйственным животным, главным образом молочному скоту. Животные поедают силос охотно. Он вкусен, сочен, питателен, в нем много витаминов.
Казалось бы, на этом роль молочнокислых бактерий окончена. Но это не так. Приготовив прекрасный корм для животных, бактерии в дальнейшем помогают усвоению корма.
В кишечнике животных обитает много различных микроорганизмов. Они содействуют пищеварению — разлагают наиболее грубые части растительных тканей. Однако в кишечнике животных наряду с полезными есть еще гнилостные и другие вредные микробы. Они выделяют яды, которые попадают в кровь и постепенно отравляют организм. Вот тут-то и вступают в дело молочнокислые бактерии. Развиваясь в кишечнике животных, они выделяют молочную кислоту и тем самым задерживают развитие вредных микробов. В результате животные меньше болеют, быстрее растут, лучше усваивают корм, дают больше молока.
Первые струйки молока готовы уже брызнуть из набухшего вымени коровы, а молочнокислые бактерии тут как тут. Одни притаились на поверхности вымени, на шерсти животного, другие носятся на пылинках в воздухе скотного двора.
Молоко — лакомая пища для многих бактерий. А там, где обитают животные, их всегда очень много. Поэтому оградить молоко от проникновения в него микробов практически невозможно.
Молоко считается чистым, если в каждом кубическом сантиметре сразу же после дойки находится менее тысячи микроорганизмов. Обычно их бывает больше. Через три часа после дойки в молоке находят более двухсот тысяч бактерий на каждый кубический сантиметр, а через четыре часа — уже до шестидесяти миллионов.
Предотвратить бурное размножение микробов в молоке можно только одним способом — пастеризацией. Так и делают, когда хотят сохранить молоко в свежем виде. Но в те времена, когда способа пастеризации еще не знали, микробы в молоке размножались беспрепятственно. И все же люди сохраняли молочные продукты длительное время. В этом им помогали молочнокислые бактерии. Ведь дело не в том, много или мало микробов в молоке, а в том, какие там микробы — полезные или вредные.
В благоприятных условиях одна молочнокислая бактерия за сорок восемь часов может дать поколение в 500 000 000 000 себе подобных. В молоке быстро накапливается молочная кислота, которая препятствует развитию вредных микробов. А белковая часть молока под действием кислоты свертывается и выпадает в виде сгустка. Получается всем известная простокваша, а сверху отстаивается слой молочного жира в виде сметаны.
Кисломолочные продукты — один из величайших даров природы. Человечество пользуется ими с древнейших времен, наверное, намного раньше, чем хлебом. Для многих кочевых народов молочные продукты составляют основу питания. Можно сказать, что молочнокислые бактерии буквально спасли эти народы от голодной смерти.
Кефир на Кавказе, мацун и мацони в Закавказье, катык у калмыков, донское кислое молоко, арык бурятов, кумыс у татар и киргизов, ягурт у болгар, айран у казахов — все это плоды работы молочнокислых бактерий.
Родина кефира — горные местности Кавказа. Для приготовления кефира молоко заквашивают так называемыми кефирными зернами. Они состоят из молочнокислых микробов и особых кефирных дрожжей, которые образуют в этом древнем напитке спирт и углекислый газ.
Грузинская простокваша мацони и армянская мацун приготовляются из кипяченого молока буйволицы, козы или коровы. Заквашивается такая простокваша смесью молочнокислых бактерий и дрожжей.
Особым вкусом отличается кумыс — кислое молоко кобылицы. Для получения кумыса также пользуются особой закваской из молочнокислых бактерий и дрожжей. По описаниям Геродота, древнегреческого историка, способ приготовления кумыса и его целебные свойства были известны еще древним скифам.
Приготовление кумыса — напитка из кислого кобыльего молока — было известно еще древним кочевым народам.
Благотворное действие на человеческий организм кисломолочных продуктов привлекло внимание Ильи Ильича Мечникова. Посвятив последние годы своей жизни изучению причин старости, он пришел к выводу, что в преждевременной старости повинны бактерии, которые живут в кишечнике человека и своими ядовитыми выделениями постоянно отравляют организм.
Но как уничтожить этих вредоносных квартирантов?
Вот тут-то Мечников и вспомнил, что безвредные для человека молочнокислые бактерии являются злейшими врагами микробов, вызывающих гниение. Не в этом ли скрыта разгадка долголетия многих людей в странах, где кислое молоко является одним из основных продуктов питания?
«Надо, — решил Мечников, — регулярно употреблять в пищу кислое молоко. Молочная кислота будет угнетать гнилостные микробы, парализует их вредное действие».
Наиболее подходящей для этой цели Мечников считал болгарскую простоквашу — ягурт — и сам несколько лет питался почти исключительно этим продуктом.
Позже было установлено, что болгарская палочка не приживается в кишечнике человека. Но сама идея Мечникова была плодотворной, и ее не забыли. Ученые отыскали такой вид молочнокислых бактерий, которые приспособлены к жизни в кишечнике человека и животных. Эти бактерии получили название ацидофильных. С их помощью стали готовить особую простоквашу — ацидофилин.
Но кислое молоко — это лишь первичный результат работы молочнокислых бактерий. Если простоквашу отжать, отделить от сыворотки, получится творог. Это тоже ценный продукт питания. Чтобы сохранить его, уберечь от нападения плесневых грибков, творог стали присаливать и спрессовывать. Так был получен самый примитивный и, наверное, самый древний сыр — брынза.
Тысячи лет готовили сыр кустарным способом. Делали это наугад. И, конечно, в сыр попадали не только молочнокислые, но и другие бактерии. Поэтому сыр часто портился, а в других случаях неожиданно приобретал приятный, острый вкус и аромат.
«Болгарская палочка», полученная И. Мечниковым из болгарской простокваши ягурта (слева), и ацидофильные бактерии (увеличение в 1000 раз).
Каждый такой случай запоминали и в дальнейшем старались соблюдать условия, которые однажды позволили получить сыр лучшего качества.
Было, например, замечено, что сырную массу полезно подогревать один и даже два раза. И так стали делать, хотя не понимали, почему подогревание приносит пользу. Производство сыра вообще казалось процессом загадочным, малопонятным.
Лишь четверть века назад микробиологи узнали тайну сырной головки. И все загадки сразу рассеялись. Оказалось, что в период обработки и созревания сырной массы в ней сменяют друг друга многочисленные поколения микроорганизмов. Живут они сообществами и по мере созревания сыра одно сообщество микробов уступает место другому.
Подогревание сырной массы до 59 градусов вносит в этот естественный порядок существенную поправку. Оно задерживает развитие обычных молочнокислых бактерий, но зато расчищает место для теплолюбивых бактерий — сырных палочек. Резкая смена микробного населения также резко изменяет и качество сыра. В данном случае получается сыр типа советского или швейцарского. Если же вторичное подогревание сырной массы довести только до 40 градусов, то резкой смены микробного населения не будет, и сыр получится другого вкуса и аромата — латвийский или голландский.
Всего этого не могли знать сыроделы прошлого, но практический опыт подсказывал, как надо поступать, и они хотя и ощупью, но отыскивали правильный путь.
Из поколения в поколение передавались лучшие рецепты приготовления сыра. Из поколения в поколение эти рецепты совершенствовались. Люди научились из обычного молока приготовлять сыры, различные по внешнему виду, цвету, вкусу и аромату. Сыроварение превратилось в особую отрасль промышленности.
Культурные плесневые грибки, необходимые для созревания мягких сыров — камамбера (слева) и рокфора (справа).
Так из глубины веков сопровождают повсюду человека крошечные могущественные невидимые, но вездесущие молочнокислые бактерии. Они — наши верные спутники и помощники.
Проникнув в скрытые процессы, происходящие в тесте, кислом молоке, квашеных овощах и силосе, в сырной массе и при сбраживании кваса, ученые получили возможность вмешиваться в ход этих процессов. Кисломолочные продукты готовятся ныне по рецептам, предупреждающим случайности и неудачи.
Ванны для заквашивания молока и превращения его в сырную массу на сыроваренном заводе.
Микробиологи выделили и размножили чистые культуры дрожжей и различных молочнокислых бактерий. На хлебозаводах всегда есть свежие дрожжи, свободные от примеси других микроорганизмов.
Простокваша, кефир, ацидофилин, кумыс готовятся на молочных заводах с помощью заквасок из заранее отобранных и проверенных бактерий.
А на сыроваренных заводах можно найти целую коллекцию заквасок. Каждая состоит из сообщества микробов, вырабатывающих сыр определенного сорта.
Питомники микробов есть на любом заводе, где пользуются услугами невидимок.
Подобных заводов тысячи. Если мы совершим короткое путешествие лишь по некоторым из них, перед нами откроется еще одна сторона деятельности микроорганизмов — их работа в химической промышленности.
Можно ли простые дрова превратить в сахар и спирт, из картофеля получить сок лимонов, ананасов, яблок и груш, из кукурузы — взрывчатые вещества, а из ржаной муки — искусственный каучук?
Многие, наверное, скажут, что таких чудес на свете не бывает. А между тем все эти чудесные превращения совершаются в действительности, в стране невидимок.
Чудеса без чудес
В Северной Африке по правому берегу Нила тянется цепь невысоких известняковых гор. Весь этот известняк создан в незапамятные времена микроскопическими жителями моря и со временем превратился в прочный камень — великолепный строительный материал.
Несколько тысяч лет назад жители Египта уже пользовались известняком для сооружения храмов, дворцов, гробниц и памятников.
От зари до зари тысячи рабов, изнемогая от усталости, выламывали из гор огромные каменные глыбы. Тысячи рабов волоком тащили камни по укатанной дороге к месту строительства.
Работа шла медленно. Но проходили годы, десятилетия, и под палящими лучами южного солнца все выше и выше поднимались остроконечные вершины гигантских пирамид, вечных надгробий владыкам Египта — фараонам.
Как-то, проникнув в потайные залы одной из больших пирамид, ученые обнаружили там рисунки, изображающие способ приготовления виноградного вина.
Безвестный художник изобразил на камне, как в те времена собирали виноград, как его давили ногами, как отделяли сок от раздавленных ягод.
Конечно, в те времена, когда египетский художник расписывал стены пирамиды, никто не подозревал об истинных причинах брожения. И все же люди издревле научились делать вина разного вкуса, цвета и аромата: красные и белые, кислые — столовые и сладкие — десертные. Качество вин объясняли лишь сортами винограда и различием в способах приготовления.
Только после открытий Луи Пастера поняли, что решающая роль в виноделии принадлежит дрожжам, тем самым микроскопическим живым шарикам, которые поднимают тесто и вместе с молочнокислыми бактериями готовят для нас кефир и кумыс, квас и сыр.
Оказалось, что в произвольном брожении виноградного сока тоже нет ничего чудесного. Дрожжи находят сладкий сок повсюду только потому, что они широко распространены в природе.
Летом дрожжи живут на ягодах и плодах. Клюнет ягоду птица, пробуравит кожицу яблока личинка бабочки плодожорки или поранится оболочка плода при падении на землю — и дрожжи проникают в образовавшиеся отверстия. А там, где есть сладкий сок, дрожжи начинают быстро размножаться и вызывают брожение — разлагают сахар на спирт и углекислый газ.
Размножившиеся дрожжи вместе с остатками плодов попадают в почву и здесь зимуют.
Но вот наступает весна, и дрожжи вновь пускаются в путешествие. Ветром вместе с пылью на теле птиц и насекомых переносятся они на наземные части растений и ждут там своего часа.
Посмотрите когда-нибудь внимательно на гроздь зрелого винограда. Виноградины, налитые сладким соком, особенно красивы благодаря тому, что их поверхность подернута, словно инеем, матовым налетом. Это и есть дрожжи. При раздавливании ягод винограда дрожжи попадают в сусло и принимаются за работу.
Поверхность зрелой виноградины часто имеет матовый налет. В микроскоп видно, что этот налет состоит из дрожжевых грибков, которые сбраживают виноградный сок при кустарном приготовлении вина (увеличение в 1000 раз).
Однако естественное брожение не всегда проходит удачно. Вино может получиться мутным или с неприятным привкусом. Это происходит потому, что дрожжи бывают разных видов. Они различаются по величине и форме клеток, по способности сбраживать те или иные сладкие жидкости.
Одни виды дрожжей хорошо размножаются в хлебном тесте, другие — в виноградном соке, третьи предпочитают жить в пивном сусле.
Но даже дрожжи одного и того же вида не всегда одинаковы.
Каждый вид дрожжевых грибков включает в себя несколько пород или, как еще говорят, несколько рас дрожжей.
Ведь в естественной обстановке дрожжи могут попадать в различные условия. Если они неблагоприятны для жизни, дрожжи гибнут, в благоприятных же быстро размножаются. Иногда дрожжи оказываются в подходящих, но непривычных условиях. Тогда дрожжевые клетки постепенно приспосабливаются к изменившимся условиям и сами изменяются — дают новые расы.
Винные дрожжи, выделенные из винограда разных местностей, отличаются не только по внешнему виду, но и по своим свойствам. Приготовленные с помощью таких дрожжей вина имеют особый вкус и аромат. Поэтому, для того чтобы получить хорошее вино, например шампанское или токайское, мало вырастить подходящий сорт винограда. Надо еще иметь дрожжи, обитающие на родине этих вин — во Франции и Венгрии.
Отдельные сорта пива также обязаны своим вкусом, цветом и крепостью разным расам пивных дрожжей, сбраживающих ячменный солод.
Особые расы винных дрожжей хорошо развиваются в соках плодов и ягод. Сбраживая сахар, содержащийся в этих соках, дрожжи превращают их в плодовые и ягодные вина.
Было время, когда умели делать только виноградные вина. Опьяняющее действие вина объясняли тем, что в нем появляется особый «огненный дух».
А нельзя ли его выделить из вина, этот «огненный дух»? Такую задачу поставили перед собой алхимики в средние века. К этому времени люди уже научились перегонять жидкости. Они знали, что вода и многие другие жидкости при нагревании превращаются в невидимый пар, который можно потом охладить. Тогда сгустившиеся пары вновь превратятся в жидкость.
«А что, если выпаривать вино? — решили алхимики. — Не удастся ли таким путем поймать „огненный дух“ вина?»
Мысль оказалась удачной, так как спирт испаряется при более низких температурах, чем вода. Нагревая вино, алхимики получали пары, которые при охлаждении превращались в прозрачную, жгучую на вкус и горящую голубым пламенем жидкость. Это и был «дух вина», который назвали спиртом, от латинского слова «спиритус», что значит «дух».
Вначале спирт применяли только как лекарство от разных болезней. Потом оказалось, что он может найти применение почти повсюду: в медицине и в химии, в научных лабораториях и в промышленности.
Нужда в спирте все росла, и получать его из вина стало невыгодно: ведь виноградное вино само по себе ценный продукт.
Но как получить много дешевого спирта и сохранить виноградные вина?
Выход нашли, когда узнали, что спирт получается в результате распада сахара под воздействием дрожжевых грибков. Значит, спирт можно получить не только из виноградного вина, а из любого продукта, в котором есть сахар или крахмал, который можно превратить в сахар при помощи солода.
Спирт стали вырабатывать из пшеницы, ржи, кукурузы, сахарной патоки, картофеля.
А потребность в спирте все росла. Особенно много спирта стала потреблять химическая промышленность. Это случилось после того, как советские ученые нашли способ получать из спирта искусственный каучук, а из него — резину для покрышек автомобилей и самолетов, изоляционные материалы для электропроводов и много других предметов, необходимых в быту, промышленности и на транспорте.
Нужно было отыскивать новые источники дешевого спирта. Картофель и кукуруза, конечно, доступней и дешевле, чем виноградный сок, но это все же ценные продовольственные культуры. Расходовать их для получения спирта тоже невыгодно.
И вот оказалось, что древесина по своему химическому составу очень близка к сахару. Если древесные опилки обработать крепкими кислотами, то они делаются сладкими.
Дальше все происходит уже в известном порядке: осахаренной древесной массой вскармливают дрожжи, и они разлагают сахар на углекислый газ и винный спирт.
Наша промышленность освоила способ, благодаря которому можно получать из ста килограммов сухой древесной массы до тридцати пяти литров винного спирта.
Запасы сырья, пригодного для переработки в спирт, выросли почти беспредельно. Ведь если спирт можно получать из древесины, его можно добыть также из отходов бумажного производства, из соломы и даже торфа.
Целое море спирта вырабатывают на заводах ежегодно. Весь этот спирт приготовлен дрожжевыми грибками. Из спирта и с его помощью получают сотни и тысячи ценнейших продуктов. Значит, все они также обязаны своим происхождением невидимым работникам природы.
Подвал винодельческого завода, где вино выстаивается несколько лет и приобретает в результате брожения хороший вкус и аромат.
Давным-давно было известно, что слабое виноградное вино, если его оставить бродить, становится кислым, превращается в уксус. При этом на поверхности вина образуется пленка, состоящая из миллиардов палочковидных уксуснокислых бактерий.
Дрожжи непрерывно разлагают сахар на спирт и углекислый газ. Но когда в бродящей жидкости накопится много спирта, то он начинает сдерживать развитие самих дрожжей. Они уступают место уксуснокислым бактериям, которые и разлагают накопленный дрожжами спирт на воду и уксусную кислоту.
Раньше уксус так и готовили: брали молодое виноградное вино и ждали, пока оно скиснет. Но раз уксус получается в результате переработки спирта бактериями, значит его можно добывать не только из виноградного вина, но также из всех тех продуктов, в которых в результате брожения накапливается спирт.
И действительно, уксус теперь получают из пива, яблок, груш, слив, персиков, различных ягод и даже меда.
А для промышленного, ускоренного способа приготовления уксуса используют… обыкновенные древесные стружки.
Большие бочки или чаны наполняют буковыми стружками, которые предварительно заливают уксусом. В уксусе всегда много уксуснокислых бактерий, и они оседают на стружках. Затем в чаны со стружками сливают разбавленный винный спирт. Пока жидкость медленно просачивается сквозь толщу стружек, весь спирт, который в ней содержится, успевает превратиться в уксусную кислоту.
Сверху в чаны добавляют новые порции разбавленного спирта, а снизу постоянно вытекает готовая уксусная кислота. Процесс идет непрерывно и может продолжаться десятки лет.
В зависимости от того, из какого продукта готовится уксус, подбираются соответствующие виды и расы бактерий. Потому что и уксуснокислые бактерии не одинаковы. Они, как и дрожжи, бывают разных видов и рас, с различными свойствами.
Бактерии уксуснокислого брожения (увеличение в 1000 раз).
При производстве уксуса дрожжи и уксуснокислые бактерии работают раздельно. Сначала дрожжи перерабатывают сахар в спирт, потом уксуснокислые бактерии превращают спирт в уксус.
А иногда дрожжи и уксуснокислые бактерии работают совместно или в содружестве с другими бактериями и плесневыми грибками.
Многим, наверное, приходилось пробовать чайный квас. Это продукт жизнедеятельности чайного, или японского, гриба, который в виде толстой морщинистой пленки разрастается на поверхности сладкого чая. Только на самом деле это вовсе не гриб, а миллиарды уксуснокислых бактерий и дрожжей. В сладком чае они прекрасно уживаются. Дрожжи вырабатывают из сахара спирт, а уксуснокислые бактерии превращают часть спирта в уксус. В результате и получается приятный на вкус напиток.
В Японии издавна научились использовать «дружбу» дрожжей с одним плесневым грибком, научное название которого довольно мудреное — аспергиллюс оризе.
Грибок этот может заменить солод, так как быстро осахаривает крахмал. А вместе с дрожжами он участвует в приготовлении рисовой водки — сакэ. Грибок осахаривает рисовый крахмал, а дрожжи сбраживают сахар в спирт.
Есть еще в природе грибки — амиломицеты, которые способны работать «по совместительству». Сначала грибки осахаривают крахмал, а потом сами же сбраживают сахар в спирт.
Проникая все дальше и дальше в страну невидимок, ученые встречали там новые микроорганизмы с еще не известными свойствами. Многие из них оказались способными производить ценные продукты, которые раньше были очень редкими или добывались с большим трудом.
Лимонную кислоту в прошлом получали из сока лимонов. Но лимонные деревья живут только на юге, растут медленно и требуют тщательного ухода. А для того чтобы выделить из сока лимонов кристаллы лимонной кислоты, надо было еще затратить немало труда.
И вот в конце прошлого века нашли микроскопический плесневый грибок, сбраживающий сахар в лимонную кислоту. Казалось, проблема была решена. Нужно только иметь под рукой сахарный раствор и чудесный грибок, а все остальное он сделает сам. Лимонную кислоту можно будет получать везде, в любом количестве.
Так думали, но не так получилось в действительности.
Когда на сахарном растворе разводили грибок, он безотказно производил лимонную кислоту, но… сам же и поедал ее. Оказалось, что лимонная кислота — это пища, которую грибок готовит для себя, сбраживая сахар.
Как тут быть? Никто не знал этого. А между тем фабриканты — владельцы предприятий, вырабатывающих лимонную кислоту из сока лимонов, — торжествовали. Страшный конкурент из мира микробов, казалось, потерпел решительное поражение.
Но вот в конце прошлого века этой проблемой заинтересовался Сергей Павлович Костычев. И вскоре он нашел способ, как «обмануть» плесневый грибок — заставить его производить лимонную кислоту, но не пользоваться ею как питательным продуктом. Для этого оказалось достаточным изменить режим и температуру брожения.
В нашей стране есть специальные заводы, где лимонную кислоту вырабатывают при помощи плесневых грибков. Теперь даже из обычной картошки получают вдвое больше лимонной кислоты, чем из лимонов. Для того чтобы вырастить лимонные деревья, нужно несколько лет, а при помощи грибков можно любое количество лимонной кислоты получить в течение пяти дней.
Лимонная кислота применяется в пищевой промышленности, при окрашивании тканей, в фотографии и медицине.
В дальнейшем были найдены и такие грибки-химики, которые образуют яблочную, щавелевую и некоторые другие кислоты. Грибки эти «взяли в плен», проверили их в лабораторных условиях, «приручили» и также заставили работать на человека.
Если масло хранить дома в неподходящих условиях, оно портится, приобретает прогорклый вкус. Это всегда неприятно. А на складах иногда портятся тонны масла. Это уже бедствие.
Масло портится потому, что в нем в результате деятельности сообщества различных микробов накапливается горькая масляная кислота. Она же часто портит силос в силосных башнях.
Однако некоторые соединения этой кислоты напоминают своим ароматом хорошие яблоки, груши, ананасы, клубнику и другие душистые фрукты и ягоды.
И вот, казалось бы, очень вредные микробы стали полезными. Всей компанией их выделили из масла, очистили от посторонних микроорганизмов и заставили работать на заводах. Маслянокислые микробы вырабатывают масляную кислоту, но, конечно, не из масла, а из более дешевого сырья: картофеля, зерна, отходов сахарного производства.
Соединения масляной кислоты применяются при производстве духов, туалетного мыла, конфет, фруктовых вод, искусственного рома.
Переселились на заводы и молочнокислые бактерии — прославленные защитники молочных продуктов от гнилостных микробов.
На заводах молочнокислые бактерии вырабатывают молочную кислоту, потребность в которой все растет. Ведь без нее не отпечатаешь рисунка на ситцевой ткани, не придашь необходимой мягкости кожам для обуви, не приготовишь многих лекарств в аптеках.
А глицерин, который раньше получали только из жира животных, теперь можно в любом количестве добыть с помощью микробов из осахаренного крахмала.
Еще Луи Пастер заметил, что при брожении сахара дрожжи вырабатывают не только спирт, но и глицерин. И вот, изменив условия брожения, добились того, что дрожжи стали накапливать глицерин в большем количестве. Есть заводы, где из сахара или крахмала дрожжи готовят и спирт и глицерин.
Многим знаком резкий, характерный запах кинопленки. Это запах ацетона — ароматической летучей жидкости. Ацетон применяется во многих отраслях химической промышленности, в кинематографии, для производства лаков и взрывчатых веществ.
Ацетон можно получить химическим путем. Но можно делать его и при помощи микробов. Есть особые ацетоновые бактерии, которые готовят ацетон из кукурузной и ржаной муки и даже картофеля. При этом получается не только ацетон, а еще один ценный продукт — бутиловый спирт, который необходим в производстве искусственного каучука.
Так работают невидимки на химических заводах. А если вы выйдете за ворота промышленных предприятий, то вновь на каждом шагу увидите следы деятельности наших друзей — полезных микробов.
Быть может, завод стоит на берегу реки. Тогда обратите внимание на воду — она грязна, покрыта сверху какими-то жирными радужными пятнами, дурно пахнет.
Ведь заводы строятся обыкновенно на окраине городов и населенных пунктов. Река принимает в себя много городских отбросов и сильно загрязняется. В ней всегда много бактерий, в том числе и болезнетворных. А на окраине города в реку стекают отработанные воды металлургических, коксобензольных и химических заводов. И без того грязная, зараженная вода покрывается пленками нефти, в нее попадают карболка, нафталин, бензол, салициловая кислота и другие ядовитые вещества.
Казалось бы, все живое должно погибнуть в такой реке на всем ее протяжении. Но спуститесь вниз по течению. Вы увидите, как постепенно исчезают с поверхности воды радужные пятна нефти, куда-то девается муть, взвешенная в толще воды. Всего несколько километров ниже по течению, а вода в реке уже вновь пригодна для питья: она утратила резкий запах карболки, стала чистой и прозрачной.
Что же случилось? Каким образом произошло самоочищение воды в реке?
Оказывается, и в этом случае потрудились полчища крошечных санитаров — микробов.
Бактерии деятельно разлагают все органические остатки, попадающие в реку с городскими сточными водами. Кусочки растительной и животной ткани, остатки пищи — все превращается в простые минеральные соли.
А когда в воду попадают сточные воды заводов, ими занимаются другие бактерии, для которых даже карболка, нафталин, керосин, парафин, нефть, бензол и салициловая кислота — лакомая пища.
Вода очищается от грязи и вредных примесей, а вместе с тем иссякают и запасы пищи для бактерий. Они либо гибнут сами собой, либо попадают на обед инфузориям, амебам и другим простейшим обитателям пресных вод. Эти великаны мира невидимок истребляют также болезнетворных бактерий, попавших в реку вместе с городскими сточными водами.
Но вот мы удаляемся в сторону от речных берегов и попадаем на колхозные и совхозные поля. На полях убирают лен. Стебли льна расстилают на земле рядами, под открытым небом. Это делается для того, чтобы под влиянием росы и дождя, тепла и света льняные волокна в стеблях отделились от кожицы и древесины. Конечно, ни роса, ни дождь, ни тепло сами по себе этого не сделают. Они лишь необходимые условия для развития свето- и воздухолюбивых микробов.
Быстро размножаясь на льне, микроорганизмы прежде всего разрушают вещества, которые склеивают льняные волокна, а сами волокна остаются неповрежденными. Стебли льна после этого уже легко расчесать и превратить в пряжу.
То же самое, только гораздо быстрее, происходит при замачивании стеблей льна в воде рек и прудов. Но здесь уже работают другие микроорганизмы, не нуждающиеся в кислороде воздуха.
Замачивание льна производят также в заводских условиях. При этом применяют закваску из чистых культур микроорганизмов. Закваска представляет собой сухой порошок, содержащий споры бактерий, разлагающих части льняных стеблей. Чтобы оживить бактерии, порошок разбалтывают в воде и вносят в чаны, где замачивается лен. Применение таких заквасок улучшает качество льняного волокна — прославленного шелка севера.
Бациллы водяной мочки льна (увеличение в 650 раз).
Оглянитесь вокруг. Повсюду работают микробы, повсюду следы их замечательной деятельности. Они даже работают в партиях геологов-разведчиков, помогают отыскивать подземные клады.
Там, где в недрах земли залегает нефть, всегда есть и нефтяные газы, образуемые бактериями, живущими в нефтяных пластах. Даже по самым мельчайшим трещинкам в горных породах газы просачиваются из недр к поверхности земли. И вот тут-то, на месте выхода газов, образуются скопления других бактерий, для которых эти газы — жизненно необходимый продукт.
Выделения нефтяных газов помогают геологам отыскивать залежи нефти. Но обычно газов выделяется так мало, что их трудно отыскать даже с помощью специальных приборов. А бактерии найдут эти газы всегда. Скопления этих бактерий отыскать легче. Они «укажут» места выделения газов, а газы поведут геологов к подземным кладовым нефти.
Нефтяной газ сильно сжат давлением земных слоев и, в свою очередь, давит на нефть. Когда нефтяники бурят скважины к залежам нефти, она под напором газа устремляется вверх и выносится на поверхность. Проходит некоторое время, и нефти в залежи становится все меньше и меньше. Давление внутри земных слоев, а следовательно, и напор газа ослабевают, нефть уже не поднимается по скважине. Добывать ее становится трудно, а иногда и совсем невозможно.
Вот если бы газа было больше, он продолжал бы вытеснять нефть, и тогда многие истощенные скважины могли бы снова давать жидкое золото.
Но ведь нефтяной газ — продукт жизнедеятельности бактерий. Нельзя ли заставить их работать более активно?
Исследовав бактерий, живущих в нефтяных пластах, советские ученые решили и эту задачу. Если ввести в скважину специальные питательные вещества, то газообразующие бактерии будут размножаться очень быстро. Это, в свою очередь, приведет к ускоренной выработке газа, а значит, повысит давление в нефтяных пластах.
Такие опыты уже проводятся учеными в нефтяных районах Второго Баку.
Страна невидимок — это поистине «страна чудес». А ведь микробиология, изучающая эту страну, — еще молодая наука, она делает, по существу, только первые шаги. Сколько же предстоит ей еще открыть нового и чудесного!
На линии химической обороны
Об этом человеке мы знаем очень мало.
Известно лишь, что Вячеслав Авксентьевич Манасеин был способным врачом и преподавал в Военно-медицинской академии в Петербурге. Известно также, что он много лет затратил на то, чтобы доказать недоказуемое: что бактерии якобы не могут вызывать болезни животных и человека.
Удивляться этому не следует, так как речь идет о времени, когда Пастер только начинал свое путешествие в стране невидимок и по поводу происхождения болезней существовало невообразимое множество самых противоречивых теорий.
Профессор Петербургской военно-медицинской академии досадно заблуждался в отношении роли бактерий в природе. А между тем его имя часто упоминается теперь на страницах журналов и в научных трудах, издаваемых в различных странах. И все это благодаря нескольким страничкам, на которых ученый скупо, но ясно описал один поставленный им опыт.
Манасеин был страстным исследователем. И, раз взявшись доказать, что бактерии — самые безобидные существа на свете, он проявил почти невероятную настойчивость. В его лаборатории был настоящий зверинец из смеси самых различных бактерий, а рядом пышно разрастались и отливали разными цветами бархатистые колонии микроскопических плесневых грибков.
И вот, производя сотни опытов с бактериями и грибками, Манасеин обнаружил чудесные свойства плесневого гриба — зеленого кистевика, который принадлежал к виду микроскопических грибков, носящих общее название пенициллиумов.
В самой зеленой плесени не было ничего удивительного. Она широко распространена в природе и быстро появляется на отсыревших пищевых продуктах, на залежалой коже, даже в чернилах. Но, делая бесчисленные посевы и пересевы зеленой плесени, Манасеин заметил, что грибок-кистевик ведет себя очень странно. Если его выращивать вместе с другими плесневыми грибками, то он задерживает развитие своих соседей и расчищает себе место. Сколько раз ни повторял Манасеин этот опыт, результат всегда был один: зеленая плесень выходила победительницей в борьбе за место и пищу.
Зеленая плесень «пенициллиум нотатум», которая используется для производства чудесного лекарства пенициллина.
«А что, если испытать силу зеленой плесени на других соседях — на бактериях?»
Как только мелькнула эта мысль, Манасеин тотчас посеял зеленую плесень рядом с колониями различных бактерий.
Результат опыта превзошел все ожидания. Много раз потом повторял ученый этот опыт: выращивал бактерий и в ту же среду высевал споры зеленой плесени — пенициллиум. И всегда плесень нормально развивалась, а бактерии быстро отступали.
Свои опыты с зеленой плесенью Манасеин коротко описал на тех нескольких страничках, которые навсегда вошли в историю науки. Это было в 1871 году.
А годом позже другой русский ученый, профессор Алексей Герасимович Полотебнов, практически использовал открытие Манасеина. Из зеленой плесени пенициллиума и миндального масла Полотебнов приготовил мазь для лечения плохо заживающих, гноящихся ран. Новое лекарство себя оправдало. Ни одно из лечебных средств, известных в то время, не давало такого быстрого и стойкого излечения.
Манасеин и Полотебнов сообщили о своих открытиях, но на них почти не обратили внимания. Слишком уж необычным было представление о плесени как лекарстве.
«Лечить раны какой-то плесенью? Заниматься подобной чепухой под стать лишь деревенским знахарям, а не ученым-медикам!» — пренебрежительно говорили многие знаменитые врачи того времени.
А еще через пять лет врач Н. В. Лебединский закончил большой научный труд, в котором подробно описывал чудодейственные свойства зеленой плесени.
Доклад Лебединского внимательно выслушали, похвалили и присудили автору ученую степень доктора наук. А потом и доклад и научный труд о зеленой плесени забыли. Никому и в голову не пришло, что исследования Манасеина, Полотебнова и Лебединского означают начало новой эры в истории медицины, открывают еще неизведанные пути в изучении страны невидимок.
Прошло почти шестьдесят лет. И вот в 1929 году английский ученый Александер Флеминг снова и совершенно случайно делает то самое открытие, о котором в свое время сообщали русские врачи. Флеминг был микробиологом и много лет посвятил исследованию болезнетворных микробов. Изучал он и золотистых стафилококков — такое красивое, звучное имя было присвоено учеными вреднейшей бактерии, вызывающей заражение крови.
Однажды Флеминг, просматривая чашечки Петри, где на поверхности студня разрастались пышные колонии золотистого стафилококка, заметил не без досады, что опыт испорчен. В чашечки с посевом золотистого стафилококка попала какая-то плесень.
Но Флеминг, человек наблюдательный, обратил внимание и на другое: в чашечке, где была плесень, произошло что-то необычное. Плесень разрасталась, а вокруг нее лежала зона совершенно чистого студня. Бактерии исчезли, словно их тут никогда и не бывало.
Флеминг теперь уже намеренно повторил опыт. Он посеял плесень вместе с золотистым стафилококком и получил тот же результат — плесень вытесняла бактерий. Что же это за плесень? Ответить на этот вопрос, имея под рукой микроскоп, было нетрудно. Она оказалась обычной зеленой плесенью, одной из разновидностей грибков-пенициллиумов.
Флеминг отделил кусочек плесени и посеял ее на жидком бульоне. Плесень быстро разрослась и вскоре покрыла поверхность жидкости сплошной пленкой.
И что же? Эта жидкость так же губительно действовала на других микробов, как и сама плесень. Флеминг проделал множество опытов. Он разбавлял жидкость, взятую из-под плесени, в два, в три, в пять, наконец в десять раз. Ее свойства не изменялись. Даже разведенная в восемьсот раз, жидкость сохраняла способность приостанавливать развитие некоторых бактерий.
Тогда Флеминг сделал совершенно правильный вывод: зеленая плесень обладает средством химической защиты, она выделяет особое вещество, которое губительно действует на бактерий.
Во времена Флеминга такой выход уже ни для кого не явился неожиданным. Он был подготовлен всем предшествующим развитием науки.
Предки современных микробов первыми заселили Землю. Многие миллионы лет они были полными хозяевами нашей планеты. А ведь ни одно другое живое существо не обладает такой способностью к размножению, как микроорганизмы. Вспомним: только несколько суток надо, чтобы при благоприятных условиях потомство одной бактерии покрыло всю Землю.
Значит, с того самого времени, как микробы появились на Земле, они вынуждены были вести непрестанную борьбу за место и пищу.
Много позже, когда на Земле из одноклеточных организмов возникли многоклеточные животные и растения, они уже обладали специальными органами для защиты и нападения: жалами, клешнями, зубами, когтями, шипами. Даже быстрые ноги и сильные плавники помогали нападать или уйти от врага.
У микробов ничего этого не было. И вот в результате длительного приспособления к условиям жизни они приобрели способность вырабатывать и выделять особые вещества — средства химической защиты.
Ученые назвали эти вещества антибиотиками, от слов «анти» — против и «био» — жизнь.
Конечно, каждый микроб очень мал, а количество выделяемого им антибиотика ничтожно, но микробы живут колониями. Это позволяет им объединять свои силы в борьбе с врагами. Химические вещества, которые выделяет каждый микроб, сливаются и образуют вокруг колонии защитную отравленную зону, страшную даже для таких гигантов страны невидимок, как амебы.
Всего этого, конечно, не мог не знать английский ученый Флеминг, когда он обнаружил, что зеленая плесень пенициллиум выделяет вещество, задерживающее рост гноеродного микроба — золотистого стафилококка.
И у Флеминга, естественно, возникла идея:
«А нельзя ли получить это вещество в чистом виде? Нельзя ли превратить антибиотик, выделенный зеленой плесенью, в лекарство, в порошок, который бы хорошо сохранялся, который в любой момент можно было бы вынуть из аптечного шкафа и предложить больному?»
Идея эта захватила Флеминга, и он тотчас же принялся за работу. Но его подстерегала неудача за неудачей. Сколько ни пытался ученый выделить чудесное вещество, вырабатываемое грибком пенициллиумом, ему это не удавалось. Но Флеминг уже твердо знал, что такое вещество существует, и даже дал ему имя — «пенициллин».
Резервуары, в которых выращивается зеленая плесень на заводах по выработке пенициллина. Каждый такой резервуар вмещает до пятидесяти тысяч литров питательной среды, продуваемой снизу потоком воздуха, без которого грибок развивался бы только на поверхности раствора.
Схема устройства резервуара.
Он сохранил также найденный им грибок. И это очень помогло исследователям в дальнейшем. Ведь грибков пенициллиумов в природе много, но далеко не все способны выделять антибиотики такой силы, как грибок, случайно обнаруженный Флемингом.
Лишь через одиннадцать лет американским ученым удалось решить задачу, над которой бесплодно бился Флеминг. Они выделили антибиотик зеленой плесени в чистом виде. Но и их вначале ожидало горькое разочарование. Оказалось, что чистый пенициллин быстро распадается на составные части и теряет все свои лечебные свойства. Только в начале второй мировой войны, когда был наконец найден способ высушивания пенициллина, человечество получило новое лечебное средство еще невиданной силы.
Пенициллин легко справлялся с возбудителями таких опасных болезней, как воспаление легких, гнойное заражение ран, воспаление брюшины, общее заражение крови, воспаление мозговых оболочек, скарлатина и некоторые другие болезни.
И, что самое главное, пенициллин был безвреден для организма человека.
Производство пенициллина оказалось в руках американских предпринимателей. Они охотно продавали пенициллин, но не открывали секрета его производства. Не выдавали они и грибка, обнаруженного Флемингом.
А между тем в годы Великой Отечественной войны советского народа против гитлеровских захватчиков от пенициллина зависела жизнь сотен тысяч бойцов Советской Армии.
Можно ли было в таких условиях рассчитывать лишь на заграничное лекарство, которое приходилось доставлять на самолетах из другого полушария?
Нужен был свой, советский пенициллин. За решение этой задачи взялась З. В. Ермольева. Вместе со своей помощницей, Т. И. Балезиной, она работала с неослабевающим напряжением, ставя все новые и новые опыты.
Дни слагались в недели, недели — в месяцы, месяцы вырастали в годы. Но неудачи только укрепляли упорство исследователей. И вот наконец первый советский пенициллин в руках ученых.
Он был добыт из разновидности зеленой плесени, которая выделяла антибиотик еще большей лечебной силы, чем пенициллин американский.
Пенициллин — одно из величайших достижений науки. Он спасает ежегодно сотни тысяч человеческих жизней.
Но дело не только в этом. Открытие пенициллина показало, что в стране невидимок скрыты самые сильные и надежные лечебные средства.
А так как каждый микроб — возбудитель болезни должен иметь в природе микробов-врагов, то, видимо, нет на свете заразной болезни, против которой нельзя было бы найти верное средство — антибиотик. Надо только найти его.
И вот уже тысячи лабораторий мира переключаются на поиски микробов, которые подавляют или убивают микробов — возбудителей заболеваний человека, животных, растений.
Новые цели потребовали изменить и методы исследования. Еще со времен Левенгука основной задачей охотников за микробами было выделить одну микробную клетку отдельно от других. Только после того, как были получены чистые культуры микробов, без примеси посторонних, стало возможным углубленное изучение этих загадочных существ.
Благодаря чистым культурам удалось найти, изучить и обезвредить многие болезнетворные микроорганизмы.
Благодаря тем же чистым культурам были пойманы, изучены, размножены и «приручены» полезные микроорганизмы, которые работают в промышленности и сельском хозяйстве.
Чистые культуры стали основой основ микробиологии. Но они не могли помочь тем, кто выслеживал новые антибиотики.
Ведь нельзя отыскать микробов-врагов, если изучать лишь отдельные виды микроорганизмов. Для этого надо было наблюдать совместную жизнь микробов, их сообщества. Только так можно было заметить, что одни из них живут в тесном содружестве, а другие, наоборот, в непримиримой борьбе — антагонизме.
От изучения чистых культур пришлось перейти к изучению сообщества микроорганизмов.
Сделать это было в общем нетрудно. Ведь микробиологи-почвоведы уже давно изучали именно сообщества микроорганизмов, обитающих в почве. Гораздо труднее оказалось подобрать к каждому болезнетворному микробу его антагониста — врага.
Делают это обычно так. На питательную среду в чашечку Петри высевают вредный болезнетворный микроб, к которому хотят найти антагониста. В ту же чашечку наносят сверху, небольшими участками, чистую культуру другого микроба, который хотят испытать. В дальнейшем в чашечке одновременно развиваются и вредный микроб и тот, который испытывается.
Теперь микробиологу остается только наблюдать и надеяться. Проходит положенное время, и колонии обоих микробов разрастаются так, что уже соприкасаются, нарастают одна на другую. Значит, оба микроба прекрасно уживаются. А это, в свою очередь, означает, что опыт не удался. Приходится все начинать сначала.
Перед глазами исследователей проходят сотни, тысячи чашечек Петри. Испытываются сотни, а иногда и тысячи видов микроорганизмов. И каждый раз новые ожидания, новые надежды.
Но вот как будто бы найдено! В одной из чашечек вредный микроб разросся по всей поверхности студня и только вокруг колонии испытываемою микроба осталась чистая зона. Похоже, что именно этот микроб выделяет какой-то антибиотик, угнетающий развитие микроба-вредителя.
Но радоваться преждевременно. Сделан пока лишь первый шаг. Найденный микроб надо еще размножить и тщательно изучить. И тут уж, конечно, не обойтись без чистых культур.
Потом надо каким-то способом выделить антибиотик, чтобы испытать и его. Ведь различные антибиотики не только поражают разных микробов. Их действие также неодинаково. Одни антибиотики убивают бактерий, другие, как, например, пенициллин, только приостанавливают их размножение, третьи растворяют бактериальные клетки. Знать, как действует антибиотик, очень важно.
Если все идет хорошо, начинают опыты на животных. И лишь в самом конце утомительных, иногда многолетних исследований может выясниться, что антибиотик слишком быстро распадается или проявляет свою силу только в лабораторных условиях, а в теле животных не действует.
А может быть и так, что антибиотик, на который возлагалось столько надежд, окажется ядовитым не только для болезнетворного микроба, но и для организма человека. В любом из этих случаев есть только один выход из положения — опять начинать все заново.
Следовательно, чтобы найти, выделить и проверить каждый антибиотик, приходится затрачивать огромное количество времени, силы многих людей. И все же на счету охотников за антибиотиками немало ценных находок.
Особенно много микробов, выделяющих антибиотики, оказалось в почве. Да это и понятно. Ведь какой смысл выделять антибиотики тем микробам, которые постоянно живут в воде? Выделенные микроорганизмами отравляющие вещества все равно растворятся в массе воды. А в почве микробы живут отдельными скоплениями, и создание отравленной зоны служит им надежной защитой.
Советский микробиолог академик Н. Г. Холодный нашел очень простой способ, позволяющий увидеть под микроскопом многообразную жизнь почвенных микроорганизмов в естественной обстановке. Острым ножом он делал вертикальный разрез в почве и вставлял в это отверстие небольшое четырехугольное стекло, а потом его закапывал. Поверхность стекла покрывалась прилипшими к нему почвенными частичками, среди которых поселялись и размножались различные микробы, живущие обычно в почве.
Если через некоторое время такое стекло вынуть и высушить, то под микроскопом можно увидеть как бы фотографию микроскопической жизни в почве. Бактерии и их споры, нити грибков, амебы и инфузории, отдельные скопления микробов — все здесь предстанет перед исследователем в том положении и взаимодействии, как это и бывает на самом деле.
Вот полчища бактерий набросились на отмирающие нити грибков и разлагают их. А за бактериями, в свою очередь, охотятся амебы, тело которых прямо-таки набито остатками бактерий и грибков. Грибки вынуждены постоянно защищаться от нападения бактерий, а бактерии — от амеб. Но те и другие обладают только одним средством защиты — химическим.
Так, пользуясь новыми методами изучения почвы, советские ученые увидели в ней почти неисчерпаемую кладовую антибиотиков.
Это было в 1935–1937 годах. А через год агроном-микробиолог Любо нашел почвенную бактерию, выделяющую вещество, убивающее гноеродных микробов. Любо выделил это вещество в чистом виде и назвал его тиротрицином. Новый антибиотик оказался ценным лекарством, которое быстро излечивало гнойные раны и было безвредно для человека.
Советские ученые Г. Ф. Гаузе и М. Г. Бражникова также решили отыскать в почве врага гноеродного микроба — золотистого стафилококка. Для этого они придумали особый тактический прием.
В небольшом деревянном ящике ученые поместили смесь различных огородных почв. Ящик поставили в темное место и ежедневно в течение двух недель поливали водой. За это время различные микробы, массами населявшие плодородную огородную почву, размножались и постепенно использовали все запасы питательных веществ. Теперь все они должны были погибнуть от недостатка пищи.
Именно этого момента и ждали исследователи. Почву в ящике они стали поливать культурой живых гноеродных стафилококков.
Это не могло, конечно, спасти все почвенные микроорганизмы от голодной смерти. Но если в почве есть микроб, который способен разрушать живые клетки золотистого стафилококка, то такой микроб выживет. Он будет питаться за счет вещества убитых клеток стафилококка.
В этом и заключался план, заранее разработанный Гаузе и Бражниковой.
Свыше года поливали они землю культурой стафилококка. И наконец наступил день, когда, по расчетам ученых, можно было проверить, удался ли опыт, на который было затрачено столько времени.
В две пробирки они налили свежую культуру стафилококков и в одну из них добавили щепотку земли из ящика. Уже на следующий день пробирки имели разный вид. В той пробирке, куда землю не добавляли, стафилококки бурно размножались. А жидкость в другой пробирке была почти прозрачной. Лишь какая-то тонкая пленка покрывала ее. В этой пленке исследователи обнаружили под микроскопом множество палочковидных бактерий, многие из которых имели внутри споры.
После выделения этой почвенной палочки в чистую культуру удалось установить, что она выделяет вещество, убивающее не только золотистого стафилококка, но и некоторых других болезнетворных бактерий. Новый антибиотик получил название советского грамицидина. Он успешно применяется при лечении нагноений, ангин, дизентерии.
В почве живут также особые микробы — лучистые грибки, похожие одновременно и на плесневые грибки и на бактерии. Называют их акциномицетами. Советский ученый Николай Александрович Красильников обнаружил, что многие акциномицеты выделяют антибиотики. Один такой антибиотик он выделил и назвал его мицетином.
В 1944 году другой лучистый грибок дал человечеству, пожалуй, самый замечательный из антибиотиков стрептомицин. Отличительная особенность стрептомицина в том, что он действует как раз на те микробы, против которых пенициллин оказывается бессильным. Стрептомицин поражает возбудителей чумы, туляремии, бруцеллеза. Он губит даже стойкую туберкулезную палочку и поэтому излечивает туберкулезный менингит — болезнь, которая раньше была смертельной.
Есть еще антибиотики синтомицин и левомицин, которые успешно применяются при лечении желудочно-кишечных заболеваний, вызванных бактериями и амебами.
Хорошей славой пользуется биомицин, излечивающий больных брюшным и сыпным тифами, угнетающий микробов — виновников гнойных процессов и заражения крови.
Ученые выделили и проверили уже более двухсот различных антибиотиков. Правда, лишь немногие из них получили применение в лечебной практике. Большинство либо теряют свои свойства в организме человека и животных, либо слишком ядовиты, чтобы ими пользоваться как лекарством.
Но даже такие негодные для медицины антибиотики часто находят применение.
Из бактерий, живущих на сене, был извлечен антибиотик субтилин, задерживающий развитие гнилостных микробов. И вот уже ведутся опыты по использованию этого антибиотика для консервирования скоропортящихся продуктов.
Антибиотик актидион, добытый из одного лучистого гриба, оказался очень ядовитым для крыс, и его стали применять в борьбе с грызунами.
А насекомых — вредителей сельского хозяйства, уничтожает другой антибиотик — антимицин. Он также применяется на практике.
Некоторые антибиотики стали незаменимым средством для предупреждения и лечения болезней растений: картофеля, капусты, лука, огурцов, плодовых деревьев, табака, злаков, хлопчатника и других.
В последние годы обнаружено еще одно удивительное свойство антибиотиков. Если их добавлять в корм молодняку сельскохозяйственных животных, то поросята, цыплята, индюшата не болеют и быстрее растут.
Почему, каким путем антибиотики ускоряют рост животных и птиц? Окончательного ответа на этот вопрос еще нет. Но ученые уверены, что в животноводстве антибиотики со временем будут играть не меньшую роль, чем в медицине.
Микроб против микроба! Так вновь сошлись пути двух отрядов микробиологов, которые когда-то пошли разными дорогами. Исследования тех, кто изучает болезнетворных микробов, и тех, кто отыскивает микробов полезных, теперь взаимно дополняют друг друга.
Антибиотики — это сокровища страны невидимок. Их открытие — одно из величайших завоеваний микробиологии. А ведь не прошло еще и двадцати лет с тех пор, как антибиотики вошли в обиход. Все, что мы рассказали здесь, представляет лишь первую страницу их будущей истории.
Заманчивые дали
Стояло жаркое лето 1887 года. Студент Петербургского университета Дмитрий Ивановский вместе со своим товарищем и однокурсником Половцевым отправился в Крым, чтобы выполнить свое первое научное задание.
Молодых людей видели то на одной, то на другой табачной плантации. Они копались в почве, внимательно рассматривали странные листья табака, пораженные неведомой болезнью.
И всюду они слышали от местных табаководов одно и то же:
«На листьях табака появляются желтоватые пятна, они разрастаются, множатся и покрывают листья причудливым мозаичным узором. А листья изменяют форму, съеживаются, делаются непригодными для обработки. Табаководы терпят большие убытки. Нельзя ли как-нибудь помочь в этой беде?»
Лист табака, пораженный мозаичной болезнью.
Этого не знают и сами студенты. Но они любознательны, у них опытные учителя, привившие им навыки и любовь к исследовательской работе.
«Быть может, растения, — думают они, — болеют от недостатка каких-то веществ в почве или от неправильного ухода?»
Чтобы проверить это, проводят опыты: высаживают табак менее густо, меняют состав удобрений, проверяют новые нормы полива. На некоторых плантациях эти меры помогают, и Ивановский с Половцевым уже готовы торжествовать победу. На других плантациях те же меры не оказывают никакого действия, растения продолжают гибнуть. И молодые исследователи впадают в уныние.
Два года Ивановский и Половцев работают неустанно. Летом — в Крыму, зимой — в университетской лаборатории.
И вот первый вывод: то, что считали мозаичной болезнью табака, есть на самом деле две разные болезни. Одна из них вызывается микроскопическим грибком, и, если изменить условия жизни растений, они легко справляются с этой болезнью. Другая болезнь — истинно мозаичная. Причины этой болезни неизвестны.
Ивановский не знает, конечно, что табачная мозаика приведет его к открытию, самому громкому со времен Левенгука. Но уже теперь она помогает ему найти свое призвание в науке. Ботаник становится охотником за микробами.
Окончив Петербургский университет, молодой ученый в 1890 году вновь едет в Крым. Целыми днями рассматривает он в микроскоп ткани растений, пораженных мозаикой, ставит различные опыты.
Сок больных растений он прививает здоровым. Через одиннадцать — двадцать дней все здоровые растения заболели.
«Значит, — решил Ивановский, — мозаичная болезнь заразна и возбудитель этой болезни находится в соке больных растений».
Теперь нужно было найти микроба — виновника болезни. Но именно здесь, на пороге открытия, исследователь столкнулся с, казалось, непреодолимыми трудностями. Даже под объективом самых сильных микроскопов он не смог обнаружить следов возбудителя болезни.
«Наверное, в соке больных растений, — предполагает ученый, — так мало микробов, что ни один из них не попадает в поле зрения микроскопа. Надо предварительно размножить их на питательной среде?»
Начинается серия новых опытов.
«Я заражал, — рассказывал потом Ивановский, — соком больных растений различные питательные смеси: вареный картофель, желатину, мясной бульон».
Но микробов по-прежнему не было.
«Быть может, микробы мозаичной болезни очень капризные создания? — не сдается Ивановский. — Наверное, они могут питаться только соком табачных растений? Не лучше ли выращивать их на отварах табака?»
И снова десятки, сотни опытов. Однако неуловимый микроб не хочет размножаться и на табачных отварах.
Сомнение все чаще посещает Ивановского. Он уже не уверен в своих собственных выводах, он спорит сам с собой.
«А что, если никакого микроба нет? — думает он. — Быть может, болезнь возбуждается не микробом, а больными соками растения, которые изменились настолько, что стали ядовитыми?»
Но хорошо продуманные, точные опыты рассеивают и эти сомнения. Оказалось, что заразителен не только сок больных растений — зараза способна передаваться и через почву. Даже папироса может стать источником заражения, если из нее упадут на почву несколько крупинок табака, пораженного мозаикой.
Значит, возбудитель табачной мозаики существует. Но как его отыскать?
Ивановский понимает, что ему достался тот самый орешек, который оказался не по зубам даже самым прославленным охотникам за микробами.
Ведь Пастер, победивший микроба бешенства, так и не смог обнаружить возбудителя этой болезни, хотя искал долго и упорно. Сотни других исследователей так же безуспешно гонялись за возбудителями оспы, кори, желтой лихорадки, гриппа, ящура и некоторых других болезней.
Во времена Ивановского уже поговаривали о том, что Пастер ошибался, приписывая каждой заразной болезни своего возбудителя — микроба.
Таким образом, загадка табачной мозаики приобретала общее значение для всей биологической науки.
Дмитрий Иосифович Ивановский пытается перехитрить невидимок, которые так упорно не даются в руки. Сок растений, пораженных табачной мозаикой, он пропускает под давлением через специальный фарфоровый фильтр. В мельчайших порах этого фильтра должна была застрять любая, даже самая мелкая бактерия, если она только есть в жидкости.
Дмитрий Иосифович Ивановский попытался перехитрить невидимых возбудителей болезни.
Опыт был закончен, но в фарфоровых порах не оказалось возбудителя болезни. И в то же время сок больных растений, пропущенный через фильтр, остался по-прежнему заразным.
«Значит, возбудитель табачной мозаики настолько мал, что свободно проходит в поры фарфоровой массы, — решил Ивановский. — Видимо, есть целый мир существ, еще более мелких, чем бактерии, только границы видимого в микроскоп не позволяют их обнаружить».
Это был переворот в науке. По дороге, открытой русским ученым, в погоню за неуловимым болезнетворным началом бросилась целая армия охотников за микробами.
В сравнительно короткий срок русские и иностранные ученые выявили десятки невидимых в микроскоп возбудителей болезней человека, животных и растений.
Не видя их, им дали имя. Болезнетворных бактерий называли, в отличие от полезных, вирусами. А невидимых в микроскоп возбудителей болезней, которые проходили через мельчайшие поры фильтров, стали называть фильтрующимися вирусами.
Не видя вирусов, их изучали, научились выделять в чистом виде и даже измерили.
Трудно представить себе истинный размер мелкой бактерии. Еще труднее представить размер вирусных частиц.
Бактерий измеряют обычно микронами, то есть тысячными долями миллиметра. Размер бактерии сибирской язвы равен пяти — восьми микронам, а размер палочки «чудесной крови» — всего лишь семидесяти пяти сотым микрона.
А вирусные частицы много мельче. Поэтому их измеряют не микронами, а миллимикронами, то есть тысячными долями микрона. Величина вируса тяжелой болезни энцефалита едва достигает тридцати миллимикронов. Так же мал вирус табачной мозаики.
Однако и среди вирусов, как и среди бактерий, есть карлики и великаны. Самый мелкий из известных вирусов — это вирус ящура. Его размер равен лишь восьми тысячным микрона. Таким образом, вирус ящура в тысячу раз меньше бактерии сибирской язвы.
К вирусам-великанам принадлежат возбудители оспы и гриппа. Частицы вируса гриппа достигают размера в сто миллимикронов. Но если взять миллион таких «великанов» и соединить их вместе, то получится невидимый глазом шарик диаметром в десять микронов, то есть немногим больше красного кровяного тельца.
Чем дальше проникали ученые в мир вирусов, тем все большие неожиданности подстерегали их. Еще в 1915 году русский ученый Николай Федорович Гамалея заметил, что микробы могут иногда исчезать, растворяться по неизвестным причинам. А в 1917 году французский ученый д’Эррель выделил вирус, который растворял дизентерийных микробов. Ученый назвал этот вирус бактериофагом — пожирателем бактерий. В дальнейшем были найдены бактериофаги, разрушающие самых различных микробов. Оказалось, что и микробы болеют. А раз так, то можно использовать бактериофаги для борьбы с заразными болезнями человека, животных и растений.
Но что такое вирусы? Здесь в науке не было единого мнения. Установили, что вирусы не дышат, что у них нет самостоятельного обмена веществ. Если поместить на питательную среду каплю вируса и каплю бактериальной культуры, то размножаться будут только бактерии. Вирусы же никогда не размножаются на искусственных средах. Зато, если смочить иглу даже в самом слабом вирусном растворе, то одного укола будет достаточно, чтобы растение или животное заболело. Попав в живые клетки, вирусы быстро размножаются, накапливаются в огромном количестве. Было даже доказано, что вирусы изменяются под влиянием изменяющихся условий жизни и передают свои свойства потомству.
Вирус мозаичной болезни табака, видимый в электронном микроскопе. Для сравнения на рисунке показана тысячная доля миллиметра, один микрон, при том же увеличении.
Поистине неожиданные данные, противоречащие всему, что было ранее известно о микробах.
Ведь если вирусы не дышат, не обладают самостоятельным обменом веществ — значит, их нельзя считать живыми. Но те же вирусы размножаются и даже передают свои свойства потомству, а это уже качества, присущие лишь живым организмам.
В 1935 году американский ученый Вэндель Стэнли выделил из сока табака, пораженного табачной мозаикой, осадок, похожий на нити белого шелка. Болезнетворная сила этого осадка была в пятьсот раз большей, чем у табачного сока. Шелковистый осадок и был вирус — возбудитель болезни. Он кристаллизовался, как простое вещество, и представлял под микроскопом удивительную картину.
Это, казалось, укрепило позицию тех, кто отказывался признать живую природу вирусов. Но вот настало время, когда наука получила в свои руки новое средство исследования — электронный микроскоп.
В отличие от обычного микроскопа, электронный микроскоп имеет дело не со световыми лучами, а с потоком мельчайших частиц электричества — электронами. Поток электронов отражается от исследуемого предмета и дает увеличенное изображение этого предмета на экране электронного микроскопа. Лучшие оптические микроскопы дают увеличение в две с половиной тысячи раз, а электронный микроскоп — в двадцать, сто и даже пятьсот тысяч раз.
Благодаря электронному микроскопу удалось заглянуть в мир вирусов. Оказалось, что этот мир обширен и богат формами. Есть вирусы, близкие по своей природе к микробам. Другие, подобно вирусу табачной мозаики, приближаются к неживым веществам. Так наука перешагнула еще одну границу в познании мира.
Было время, когда сырного клеща считали самым мелким существом на Земле. Потом человек заглянул в каплю воды и нашел там существа, которые были в тысячу раз меньше. Но и это не было пределом. Ученые обнаружили и исследовали многообразный мир бактерий. Казалось, что теперь-то достигнута наконец подлинная граница жизни. А электронный микроскоп еще раз отодвинул эту границу, открыл перед исследователями страны невидимок новый, почти необъятный мир.
На бархатно-черном экране электронного микроскопа можно видеть картины, потрясающие воображение. Бактерии здесь выглядят уже не палочками, шариками и запятыми, а настоящими чудовищами с многочисленными щупальцами-жгутиками. Можно увидеть, как на такое мохнатое чудовище нападают фаги — крошечные существа, похожие на головастиков. Они прикрепляются к телу бактерии своими хвостиками, проникают внутрь бактериальной клетки, размножаются там, и бактерия на глазах распадается.
Здесь, возле экрана электронного микроскопа, особенно интересен рассказ ученых о вирусах, их свойствах, распространении в природе, о достижениях науки в борьбе с вредными вирусами и использовании вирусов полезных. Здесь можно узнать…
Универсальный электронный микроскоп этого типа дает увеличение от 6000 до 40 000 раз.
Но нет, мы не будем продолжать рассказ о вирусах. Чтобы поведать о них все, что уже известно науке, пришлось бы написать большую книгу.
Поэтому вернемся к нашим героям — отважным следопытам, выслеживающим в стране невидимок относительно крупную дичь — грибки и бактерии.
Ведь и в этой области еще много неизведанных тайн, не сделанных открытий, неиспользованных возможностей.
Ученые отыскивают, вылавливают и изучают разных микробов, размножают и «воспитывают» их в различных условиях. И свойства микробов от этого изменяются. Современная микробиология — это в известной мере уже «микробоводство».
Лучшие породы-расы полезных для человека микроорганизмов, которые прошли все испытания и дают наилучшие результаты, передаются в промышленность. Они «путешествуют» из конца в конец нашей огромной страны, чтобы «работать» на заводах пищевой, текстильной, кожевенной и химической промышленности.
Армии невидимок специализированы, и управляют ими десятки специальных научных институтов. Одни занимаются болезнетворными микробами, другие — полезными. Одни руководят работой микробов в сельском хозяйстве, другие — в промышленности. А есть и такие институты, что прокладывают новые пути в науке о вирусах. Все это боевые отряды исследователей страны невидимок. Разными путями они идут к одной цели — как можно лучше и полнее использовать могучие силы, таящиеся в мире микробов. Невидимки, которые казались когда-то такими таинственными и неуловимыми, стали верными слугами человека. Это сегодняшний день нашей промышленности и сельского хозяйства. Но для науки это день вчерашний.
Ученые-микробиологи думают ныне не только над тем, чтобы отыскать, пленить и поставить на службу человеку обитателей страны невидимок. Они ставят перед собой и умеют решать более сложные задачи. Ведь, «воспитывая» микробов, можно изменять их природные свойства, заставить работать лучше, активнее. А помещая живые клетки микробов в особые, непривычные для них условия, используя новейшие средства науки и техники — рентгеновские лучи, радиоактивные вещества, — можно изменять свойства микробов еще сильнее.
В лабораториях научных институтов уже созданы и изучаются такие микробы, каких никогда не было в природе. Пройдет немного времени, и они переселятся на поля, на заводы и фабрики. Это будет завтрашний день нашего сельского хозяйства, химической, пищевой и медицинской промышленности.
Но ведь и наука имеет свой завтрашний день. Давайте же помечтаем об этом дне, о недалеком будущем науки о микробах.
Настанет день, когда будут отысканы антибиотики и вирусы-бактериофаги против всех без исключения болезней, вызываемых бактериями и грибками. Будут найдены пока неизвестные живые враги вирусов. В сочетании с вакцинами и сыворотками они позволят победить все вирусные болезни. Заразные болезни, которые еще уносят ежегодно миллионы человеческих жизней, навсегда уйдут в область предания.
Благодаря антибиотикам и бактериофагам исчезнут опустошительные болезни сельскохозяйственных животных, пушных зверей и рыб.
Вместе с комплексными бактериальными удобрениями, состоящими из различных сообществ микроорганизмов, в почву будут вносить разные антибиотики. Через корни антибиотики проникнут в ткани растений и предупредят их заболевания.
Вирусы, безвредные для человека и животных, но смертельные для насекомых-вредителей, будут сопровождать все полезные для человека растения.
Такие же вирусы станут охранять на складах зерно и другие сельскохозяйственные продукты от вредных микробов, плесени, насекомых и грызунов.
Сколько подземных нефтяных озер уже использовано человеком! Но где-то там, в глубинах земли, еще остается немало нефти, пропитавшей окружающие горные породы. Эту недоступную пока нефть, каждую ее капельку, отыщут бактерии. Они будут жить и работать в старых нефтеносных пластах и превратят остатки нефти в газ, который, подобно газу саратовскому и ставропольскому, пойдет по трубам в города и промышленные центры.
Миллионы лет потребовалось на то, чтобы древний торф превратился в бурый и каменный уголь. Но ведь это тоже работа микробов.
А что, если вывести новые виды микроорганизмов, которые смогут производить такую же работу не в миллионы, а в десятки лет? Они станут работать на необозримых торфяных болотах Сибири и Белоруссии и обогатят торф углеродом, быстро превратят его в разновидность бурого угля.
А в промышленности? Сколько здесь еще не использованных возможностей!
Взять хотя бы дрожжи. Ведь они не только готовят различные ценные продукты. Дрожжи сами по себе ценный продукт питания. В дрожжевых клетках пятьдесят процентов белка и три — четыре процента жира. Много в них и витаминов.
На специальных заводах дрожжи размножают в огромных чанах. Для этого не нужно ни сложного оборудования, ни дорогого сырья. Достаточно получить отходы сахароваренного производства. Если в растворе есть хотя бы немного, всего полтора — два процента, сахара, то это все, что нужно дрожжам. В чан, заполненный чуть сладковатым раствором, добавляют несколько килограммов живых дрожжей и через сутки получают до двадцати тонн молодых дрожжевых клеток.
Быстроту, с какой размножаются и растут дрожжевые клетки, трудно с чем-либо сравнить; они дешевы и очень питательны. А раз так, почему бы не использовать их в качестве высокопитательного и самого дешевого корма для сельскохозяйственных животных?
Даже полноценные пищевые жиры можно получать с помощью дрожжей. Правда, в дрожжевых клетках жира немного, только три — четыре процента, но есть и такие виды дрожжей, которые способны накапливать жир в большом количестве — до шестидесяти процентов собственного веса.
Придет время, когда специальные маслозаводы будут вырабатывать для парфюмерной и химической промышленности масло с помощью дрожжей. Таких заводов пока нет только потому, что жировые дрожжи очень медленно растут и развиваются лишь на поверхности питательной смеси.
Но этот недостаток жировых дрожжей можно устранить. Ведь и среди жировых дрожжей есть разные породы — расы. Нужно только отыскать такую расу дрожжей, которые способны развиваться быстро, во всей толще питательной смеси. А если окажется, что такой расы вовсе нет в природе, то ее можно вывести. Это по силам нашей науке.
Всякий, кто знает мир невидимок и обладает воображением, может бесконечно долго рассказывать о возможностях использования микробов в промышленности в будущем.
Ученым предстоит еще много поработать в этой области. А границы страны невидимок между тем необъятно раздвинулись. Еще более богатый, еще менее изученный мир вирусов манит исследователей таинственными своими далями.
Когда-то всех микробов считали вредными существами, несущими болезни и смерть. Потом оказалось, что среди них гораздо больше полезных, чем вредных. Так, наверное, будет и с вирусами. Ведь использование полезных вирусов только-только еще начинается.
Перед отважными следопытами, идущими в стране невидимок, открываются всё новые горизонты, таящие замечательные возможности, зовущие к научному подвигу всех, кто умеет мечтать и настойчиво добиваться осуществления своей мечты.