Какого цвета температура?

— Знаете, — сказал мне однажды Игорь Григорьевич Чистяков, доктор физико-математических наук, — я ведь увлекся изучением этих веществ главным образом из-за того, что они в поляризованном свете образуют великолепную красочную картину… Потом, когда углубился в проблему, появились, конечно, и другие интересы. Но первый толчок дала именно эта необычайная красота. Глаз не оторвешь!

Честно говоря, я не сразу поверил Игорю Григорьевичу. Серьезный ученый, один из крупнейших в нашей стране специалистов в области структуры жидких кристаллов, руководитель исследовательской группы Института кристаллографии Академии наук СССР — и вдруг оказывается, что он начал заниматься новой областью знания только потому, что увидел — пусть даже и в поляризованном свете — какие-то красочные картины. Правда, в свое время профессор М. С. Навашин, исследователь хромосом растений, уверял меня, будто он посвятил жизнь изучению микроскопического клеточного ядра лишь по той причине, что с детства был близорук и питал страсть разглядывать невообразимые мелочи. А академик А. Д. Александров, физик по образованию, но занимающийся в основном математическими проблемами, объяснял эту свою склонность тем, что в математике у него «получается лучше», чем в физике. Однако те признания были сделаны в лирическую, шутливую минуту. Здесь же, в лаборатории жидких кристаллов, разговор шел в деловой обстановке, и в словах Чистякова не улавливалось и тени юмора Как-то странно все это…

Между тем Игорь Григорьевич вынул из лабораторного шкафа лист густо-черной полимерной пленки.

— Дайте-ка вашу руку.

Я протянул ее, почему-то повернув раскрытой ладонью кверху, — словно цыганке, которая будет гадать по «линиям судьбы». Игорь Григорьевич положил пленку мне на ладонь. Мгновение я смотрел на черную глянцевую поверхность, не понимая, зачем мне дали эту пленку и что я должен делать. Вдруг в черной ее глубине началось какое-то движение. В нескольких местах возникли коричневые пятна, и тут же в центре каждого из них появился красный блик, он стал расширяться, оттесняя коричневую краску к краю. Но в середине красного пятна уже всплыло оранжевое, затем, без промедления, желтоватое, зеленое, голубое, синее. И каждый новый цвет, растекаясь по пленке, гнал перед собой, словно камень, брошенный в воду, концентрические волны предыдущих цветов. Но вот появились небольшие фиолетовые пятнышки и цветные блики перестали, наконец, «выныривать» из недр пленки. Волны радужных переходов замерли. Картина стабилизировалась. И тут я заметил, что комбинация пятен образовала на черном фоне многоцветное изображение моей ладони.

— Удивительно! — вырвалось у меня.

— Вот посмотрите, — говорил Игорь Григорьевич, разглядывая узоры на пленке, — у вас пальцы до самых кончиков прорисовываются синим цветом. Это норма. А если бы они были оранжевыми, красными, или, что еще хуже, коричневыми, это давало бы основания подозревать, что вы больны холодовым нейроваскулитом. Есть такая неприятная болезнь, одно из проявлений которой заключается в понижении температуры пальцев рук и ног.

— Так это, — кивнул я на радужный рисунок, — изображение температуры руки?

— Совершенно верно. Там, где пленка нагрета менее всего, у нее коричневый цвет. На две десятых градуса больше — уже красный. Еще несколько долей градуса — получается оранжевый, затем зеленый, голубой. Самая высокая температура там, где жидкий кристалл окрашен фиолетовым цветом.

— Эта пленка и есть жидкий кристалл? — я пощупал черный уголок свободной рукой. Он тут же прореагировал, вспыхнув под пальцами заревом.

— Здесь две пленки, — объяснил мне Чистяков. — Одна черная — экран. Она необходима, чтобы лучше были видны цветовые изменения. А вторая — прозрачная. Между ними нанесен тонкий слой жидкого кристалла. Вот такого жироподобного вещества.

Игорь Григорьевич достал из шкафа колбу, до половины наполненную чем-то напоминающим вазелин.

— Здесь, в основном, соединения холестерина. Но со всякого рода добавками. Нам теперь известны десятки рецептов приготовления холестерических жидких кристаллов. И каждый состав обладает особыми свойствами. Ну, скажем, имеет свою собственную область перепада температур, в пределах которой он способен работать. Можно сделать смесь (в колбе и между пленками — именно она), которая будет градуировать радужными переходами температуру от тридцати шести до сорока одного градуса. А это как раз то, что необходимо для медицинских целей.

Вещество в колбе под действием тепла его пальцев переливалось живым перламутром.

Абстрактная живопись природы

Я положил пленку на стол. Изображение ладони сразу же распалось на отдельные пятна, и цветовые блики один за другим стали скатываться к центру, исчезая в темной глубине. Через несколько мгновений вся пленка снова была черной.

— До чего же красиво!

— Ну, это еще не настоящая красота, — оживился ученый. — Вот загляните-ка в микроскоп!

Он вынул из прибора предметное стекло, провел им по пламени горелки («Чтоб жидкий кристалл расплавился») и вставил на место. Я заглянул в окуляры. Перед глазами раскинулась обширная равнина, покрытая плотным снежным настом. Впадины и выемки на ней были заполнены голубыми вечерними тенями. Неожиданно справа, у края поля зрения, наст просел, образовалась сумрачная сине-зеленая трещина. Она стала расти, разрезая своим острием снежное пространство, и раздвигаться вширь. Теперь это уже была не трещина, а темное ущелье. И от него двинулись в стороны, пожирая голубой наст, острые клинья ущелий-пасынков.

Игорь Григорьевич заменил предметное стекло новым, с другим препаратом, предварительно прогрев его на спиртовке.

Несколько мгновений в микроскопе была мгла. Но вот она поредела, наполнилась едва заметной глухой синевой. Словно рассвет тронул тяжелое северное небо. И тут же на этом черно-синем фоне обозначились блекло-желтые, с густой коричневой полосой посередине, ветви каких-то неземных растений. А может быть, так выглядят водоросли в сумеречных морских глубинах?..

Не успел я перевести дыхание, как в поле моего зрения оказалось грандиозное полотнище желтой ткани, покрытой причудливой зеленой сеткой. Сбоку на эту ткань стали надвигаться яркие песчаные языки — словно барханы ожили. И вдруг откуда-то сверху пали, перекрывая собой и ткань, и барханы, огромные лепестки неведомых цветов — голубые, оранжевые, нежно-сиреневые, черные…

Нет, описать эти картины невозможно. Их надо видеть. И тогда вы испытаете редкостное наслаждение от созерцания чистых, сочных тонов, их переходов и игры. Будто кто-то бережно взял с небосвода радугу и осторожно стал покрывать нежными красками тончайший шелк, проводя по нему то одной ее стороной, то другой, но вдруг, не сладив с нетерпением, принялся отламывать от хрустальной небесной арки целые куски и бросать на шелк, где они сразу же начали оплывать, смешиваясь с фоном и расцветая новыми тонами.

Но наверное, более всего удивительны не сами эти звонкие цвета, а то, как гармонично они сочетаются, с какой естественностью они контрастируют и дополняют друг друга. Смотришь в микроскоп, и закрадывается мысль: а не таятся ли в этих сочетаниях пока неведомые нам законы гармонии красок, гармонии, в основе которой не зыбкая фантазия, не произвол человеческого желания, а строго определенные, хотя и бесконечно разнообразные, свойства веществ и световых волн, особенности их взаимоотношений друг с другом? И может быть, найдя эти законы, мы превратим когда-нибудь искусство наносить краски на полотно в точную науку, а произведения живописи станут естественными, как сама природа — мать всего существующего: формы и содержания, света и цвета?

И еще вопрос. Почему, пока эти законы еще не открыты, не набежали в лаборатории, нс припали к окулярам микроскопов, жадно впитывая эту, как говорили в старину, натуральную красоту, декораторы, художники по тканям, по фарфору и стеклу, специалисты по украшению фасадов и интерьеров?

Радуга внутри нас?

До конца прошлого века в этой области науки все обстояло спокойно. Было хорошо известно, что вещество может быть в трех состояниях — твердом, жидком, газообразном (о плазме тогда еще не говорили). Четко и ясно. Для тех же ученых, кому такое положение дел казалось слишком простым, имелась возможность глубоко изучать внутреннее строение тел. И тогда обнаружилось, что вещества, во-первых, могут иметь кристаллическую структуру — их молекулы, атомы или ионы расположены в строгом порядке, в результате чего свойства тела неодинаковы в разных направлениях. Таковы графит и поваренная соль, алмаз и лед. Во-вторых, вещества могут иметь структуру аморфную, неупорядоченную. Свойства их одни и те же по всем направлениям. Это жидкости. Ну а, в-третьих, среди этих последних есть, оказывается, монстры: по натуре своей, по внутреннему строению и многим свойствам они являются, вне всякого сомнения, жидкостями, но существуют в обличии твердого тела. Пример тому — стекло: обычная, аморфная, но твердая жидкость!

Казалось бы, естественно было одновременно с выявлением «парадокса стекла» предположить существование и парадокса с обратным знаком: кристаллического вещества, но в виде жидкости. Ведь природе так свойственна симметрия! Симметрия строения, процессов, явлений. Жар — мороз. Испарение — конденсация. Свет — мрак. Твердая жидкость — жидкий кристалл?

Однако предположения о существовании у стекла «симметричного антипода» не было сделано.

— Но в 1888 году, — рассказывает И. Г. Чистяков, — австрийский ботаник Рейнитцер синтезировал на основе холестерина новое кристаллическое вещество. Когда он эти кристаллы нагревал, при температуре 145 градусов они плавились, становясь мутной жидкостью, которая, будучи доведенной до 179 градусов, превращалась в прозрачный расплав. Во время охлаждения, переходя через границу 179 градусов, вещество вдруг обретало синеватую окраску. При дальнейшем падении температуры оно становилось мутным, синева исчезла, но у грани 145 градусов окраска появлялась вновь, и вещество закристаллизовывалось.

Пораженный необычайностью этих явлений, Рейнитцер попросил немецкого физика Лемана исследовать новые кристаллы. Тот взялся за дело и вскоре обнаружил ряд веществ, которым одновременно присущи и свойства жидкостей — текучесть, и свойства кристаллов — анизотропия, то есть неодинаковая, в зависимости от направления, способность преломлять свет, проводить тепло, электрический ток и так далее. Это состояние вещества Леман назвал жидкокристаллическим.

Термин этот звучал так непривычно, что в представлении многих физиков и химиков конца прошлого — начала нынешнего века граничил с абсурдом. Абсурдом казалось и состояние вещества, которое обозначалось этим термином. Одним словом, факт существования жидких кристаллов вызывал ожесточенные споры и подвергался сомнениям в течение четверти века после открытия, сделанного Рейнитцером и Леманом.

— Но, как выяснилось теперь, — улыбается Игорь Григорьевич Чистяков, — живая природа придумала жидкие кристаллы давным-давно, когда еще только приступала к созданию живых организмов. И как знать, не изобрети она этого состояния вещества, существовала ли бы на Земле нынешняя жизнь?

Некоторые ученые предполагают, что древнейшие предки животных и растений — «живые коллоидные капельки», возникавшие в густых и теплых волнах первичного Мирового океана, имели именно жидкокристаллическую структуру. Будучи пластичными, подвижными и изменчивыми, они, вместе с тем, обладали упорядоченностью расположения молекул, устойчивостью к внешним воздействиям и, более того, способностью активно извлекать из морской воды необходимые для своего существования и развития вещества.

Конечно, утверждать, что на заре земной жизни все обстояло именно так, сейчас трудно. Но вот современные факты. Сотрудники Ивановского государственного университета поместили в специальную камеру, в которой имитировали древний климат нашей планеты, обыкновенную нефть. И вскоре в ней были обнаружены капельки жидкого кристалла. Они образовались здесь сами по себе.

Исследования, выполненные разными научными коллективами в последнее время, показали, что многим структурным образованиям клеток и тканей животных и растений свойственно жидкокристаллическое состояние. Именно благодаря такому устройству стенки и внутренние перегородки клеток — мембраны — идеально приспособлены для осуществления обмена веществ: они мгновенно реагируют на изменения обстановки, регулируют взаимоотношения микроскопического организма со средой, способствуют деятельности ферментов, защищают клетку от разрушительного действия собственных биокатализаторов. Волокна гладких и поперечно-полосатых мышц «сделаны» в виде жидких кристаллов. Поэтому они могут, не разрушаясь, растягиваться и сжиматься без конца.

— Если я правильно вас понял, — прервал я Чистякова, — во мне тоже есть кристаллические жидкости?

Я очень надеялся, что не все понял верно. Почему-то было несколько не по себе от неожиданной мысли, что и в тебе содержатся эти странные вещества, пребывающие в каком-то необычном состоянии, которое не так давно считалось чепухой и абсурдом…

Но, оказывается, я понял Игоря Григорьевича правильно. Жидкие кристаллы в человеческом организме есть.

— Нельзя сказать, что человек состоит из них полностью, — с улыбкой стал успокаивать меня Чистяков, — но все-таки их в нас довольно много. К примеру, вещества, входящие в состав костей и сухожилий, оболочка нервных волокон, многие белки, жиры, ферменты, передающая наследственные признаки ДНК — все это существует или может существовать в форме жидких кристаллов. Даже мозг человека — не что иное, как сложная жидкокристаллическая структура. Целый ряд болезней людей связан с разладкой механизма образования и разрушения в организме этого состояния вещества. Например, холестериновая болезнь (губительно действующая на сосуды, печень, селезенку) имеет в своей основе предрасположенность организма к образованию жидкокристаллических соединений холестерина, циркулирующих в крови. Они-то и отлагаются на стенках сосудов, образуя печально знаменитые холестериновые бляшки, закупоривающие сосуды и преграждающие доступ крови к жизненно важным органам.

— Всё нас убеждает, — продолжал ученый, — что антипод стекла имеет огромное значение в живой природе. Но пока эта область очень мало исследована. И лишь можно предполагать, какой богатый урожай еще предстоит собрать науке.

Сигнал бедствия

Как это нередко бывает, открытие жидких кристаллов оказалось преждевременным. Человечеству этот подарок в ту пору был не нужен, и оно, словно подросток, которому нежданно-негаданно на виду у всех преподнесли букет цветов, долго не знало, что с ним делать и куда его деть.

Первое время интерес к новому состоянию вещества поддерживался благодаря спорам и сомнениям: открытие ли это, не нонсенс ли? А когда стало ясно, что да, открытие, люди только пожали плечами. Дескать, ну и что ж. И изучением жидких кристаллов занялось лишь несколько кристаллографов, физиков и химиков в разных странах. Были энтузиасты и в Советском Союзе. Особенно успешно экспериментальные и теоретические работы велись в Ленинградском университете В. К. Фредериксом и В. Н. Цветковым.

А десять лет назад в Иванове была создана лаборатория жидких кристаллов. И будто кто открыл шлюзы. Ивановны во главе с И. Г. Чистяковым, работавшим там в то время, за короткое время опубликовали более ста научных трудов, посвященных жидким кристаллам, сделали двадцать изобретений. Лаборатории и группы стали возникать всё в новых и новых институтах и городах. На вторую всесоюзную научную конференцию по жидким кристаллам, состоявшуюся в 1972 году, съехались представители ста учреждений и двадцати пяти министерств!

Интерес к жидким кристаллам наблюдается и за рубежом, особенно в США, ФРГ, Англии, Японии.

Если за первые тридцать лет исследований было открыто или синтезировано примерно триста химических соединений, способных образовывать эти загадочные, как их иногда называют, анизотропные жидкости, а за последующий такой же период их количество утроилось, то за последние десять — пятнадцать лет появилось несколько тысяч новых жидкокристаллических веществ. И темп этот год от года нарастает.

Здесь надо заметить, что пока более всего интересуются анизотропными жидкостями физики, химики, электротехники, электронщики.

Чем же привлекают жидкие кристаллы специалистов самых разных отраслей? Если говорить коротко, то прежде всего возможностью решать сложнейшие технические проблемы простым и чрезвычайно дешевым способом.

Взять хотя бы измерение температуры. Пленка, которую положил мне на ладонь И. Г. Чистяков, — совершенный измерительный прибор. Точность его достигает одной сотой градуса. Время, необходимое для определения температуры, — одна секунда. Цветная картина — «память» — сохраняется две секунды после того, как измерение закончено. И прибор опять готов к работе. Его можно использовать много раз. А цена ему — копейки. Поэтому в случае необходимости (например, в условиях инфекционной клиники) он может применяться в качестве термометра одноразового пользования.

Есть способ сделать жидкокристаллический термометр еще дешевле. Как расфасовываются сейчас некоторые лекарства? Между двумя листами целлофана укладываются на небольшом расстоянии друг от друга таблетки, в промежутках целлофановые пленки свариваются. Каждая таблетка оказывается надежно замурованной в ячейке. Теперь представим: вместо таблеток в ячейки заключены капельки жидкого кристалла, а одна из двух прозрачных упаковочных пленок заменена черной. Получается множество дешевых термометров — бери ножницы и отстригай нужное количество. Приложил пленочные квадратики к разным участкам кожи — и капельки, последовательно перебрав цвета спектра, укажут своими огоньками распределение температуры на поверхности тела.

Эти цветовые сигналы могут очень многое сказать врачу. Еще Гиппократ утверждал, что если часть тела теплее или холоднее обычного, то она больна. Следовательно, можно по цвету жидкокристаллических капель судить о состоянии пациента. Дело в том, что, как установила современная медицина, всякий воспаленный орган как бы высвечивает тепловое пятно на коже человека. На поверхности тела оставляют свою печать туберкулезный процесс, гнойные маститы, переломы, вывихи и ушибы, воспалительные процессы в желчном пузыре и кишечнике, нарушения периферического кровообращения, даже плод, развивающийся в чреве матери. И все это способны заметить жидкокристаллические термометры.

Но особенно важны они для ранней диагностики рака. Некоторые виды опухолей, как оказалось, теплее окружающей ткани на 1–2, а иногда и на 4 градуса. И понятно, термочувствительная пленка отметит такое повышение температуры, включив сигнал бедствия — синий или фиолетовый.

Жидкие кристаллы, позволяя устанавливать границы воспалительных зон, помогают не только ставить диагноз, но и следить за ходом лечения. Например, хирурги используют термоскопию для того, чтобы убедиться, что после пересадки артерий восстановилось нормальное кровообращение. Можно контролировать ход консервативного лечения, наблюдать за реакцией здоровых и больных тканей на те или иные лекарственные препараты.

Температурный диапазон, в пределах которого могут работать уже известные науке жидкокристаллические вещества, простирается от -20 до +250 градусов. Так что достаточно к поверхности металлической детали приложить подходящую термочувствительную пленку, как возникнет многоцветная картина, на которой нетрудно обнаружить нарушения в тепловом потоке, вызванные наличием трещин, пустот и пор в материале или некачественными соединениями в конструкции, закупоркой каналов, предназначенных для циркуляции жидкостей. Если конфигурация детали сложна и требуются особо точные данные, поступают так: на поверхность наносят сажу (это — экран), а поверх нее — тонкий слой жидкого кристалла. Такая методика позволяет замечать разницу температур в тысячные доли градуса, причем между точками, находящимися друг от друга на расстоянии гораздо меньшем миллиметра. Подобный прием используется также для выявления распределения температур в радиосхемах, когда надо найти место пробоя или короткого замыкания.

Вижу звук

Превращение тепловых полей в красочную картину — лишь одно из многих замечательных свойств кристаллических жидкостей. Вот пленка, которая только что лежала на моей ладони, отмечая радужными переливами ее температуру. Ее, давно угасшую, черную, забыли на краешке стола. Я беру металлический стержень и, слегка нажимая, медленно провожу им по глянцевой поверхности. Стержень холодный, но за ним почему-то тянется, тут же исчезая, коричневый след. А если нажать посильнее? След становится красным. Еще сильнее — зеленоватым.

Что это?

Жидкий кристалл реагирует на давление. В зависимости от силы воздействия меняется и цвет. Это свойство анизотропных жидкостей используется для создания механических датчиков. Специально подбирая состав жидкого кристалла, можно добиться весьма высокой чувствительности к давлению — до 2–6 граммов на квадратный сантиметр. Более того, эти вещества, нанесенные на предметы, замечают колебания, сигнализируя переменой цвета. Они делают видимой вибрацию деталей, распространение по поверхности тел ультразвуковых волн и обычного звука. Исследования последнего времени показали, что уже существующие жидкие кристаллы реагируют на акустическое воздействие в интервале частот от нескольких герц до нескольких мегагерц. Нет сомнения, что синтез новых веществ позволит еще более расширить звуковой диапазон, который можно сделать видимым.

…В почте, пришедшей в Институт кристаллографии АН СССР, письмо работников Московской водопроводной станции. Они просят ученых разработать прибор, который будет следить за запахом водопроводной воды и «поднимать тревогу» при отклонениях от нормы.

— Разве и такой прибор возможен? — спрашиваю Игоря Григорьевича Чистякова.

— Конечно. Вот свежие научные данные: жидкие кристаллы «чувствуют» ничтожные — одна часть на миллион — примеси различных паров и газов к воздуху и воде. Следовательно, создание чутких газоанализаторов — вопрос технический: просто надо взять и сделать. Ну, конечно, потребуются люди, некоторые материалы, время. Но научной проблемы здесь уже нет.

Сейчас из сферы научных поисков в сферу конструирования и широкого изготовления начинают переходить дешевые и удобные устройства, необходимые в электротехнике, оптике, электронике. Основаны они на способности некоторых жидких кристаллов очень энергично откликаться на действие слабых магнитных и электрических полей. Это световые табло, загорающиеся при небольшом напряжении и потребляющие ничтожно малую электрическую энергию. Это оптические затворы, управляемые светофильтры, автомобильные и оконные стекла с изменяющейся, по желанию владельца, прозрачностью. Это плоские, как книга, телевизоры. Коротко говоря, круг задач, который может быть решен с помощью жидкокристаллических устройств, практически охватывает все основные задачи информационной техники — получение, хранение, передачу и воспроизведение информации.

Загадки остаются

Что же это за чудо — жидкие кристаллы, каким образом им удается реагировать на столь разнообразные воздействия?

Этот вопрос волнует ученых. Но на него пока нет однозначного и четкого ответа. Несмотря на солидный возраст, наука, изучающая анизотропные жидкости, пребывает в младенчестве. Хотя к сегодняшнему дню выявлено множество фантастических свойств этих веществ, хотя уже обозначились разнообразнейшие области их применения, разработанной теории жидких кристаллов еще не существует. Все, чего достигла наука — а достигла она немалого, — сделано в значительной мере эмпирически.

Сейчас разработано несколько гипотез, объясняющих процессы, происходящие в жидких кристаллах. Сущность этих гипотез можно изложить (в самом приближенном виде) следующим образом.

В жидкокристаллическом состоянии могут находиться вещества, молекулы которых имеют форму палочек или вытянутых пластинок. Это жироподобные вещества, водные растворы мыл и даже скопления некоторых вирусов.

Внутреннее строение, структура кристаллических жидкостей разных типов различна. У одних палочки-молекулы смотрят лишь в одну, строго определенную сторону, но вращаться вокруг своей оси и перемещаться относительно друг друга могут сравнительно свободно. У других молекулы прочно закреплены концами, как ворсинки в ковре. Несколько ковров, сложенных один на другой, и есть подобие слоя жидкого кристалла такого типа. Двигаться молекулы могут лишь коллективно — как в том случае, когда из стопы вытаскивают один из ковров.

И наконец, третий тип. Это именно те вещества, о которых говорилось выше, — холестерические. Их молекулы, напоминающие продолговатые пластинки, расположены параллельно друг другу, словно листы в стопке бумаги. Перемещаться молекулы могут либо поступательно, просто скользя друг по другу, либо вращаясь — закручиваясь и образуя спиральную структуру.

Стопка молекул-пластинок, винтообразно закрученная, — это, предполагают ученые, и есть тот главный механизм, который изменяет цвет пленки. Дело в том, что витки молекулярной спирали способны разлагать, подобно призме, белый свет и отражать лишь строго определенные его составляющие, — скажем, красный, зеленый или синий. Но спираль очень неустойчива, подвижна: и едва заметные изменения температуры, электрического и магнитного полей, и ничтожные примеси посторонних веществ, и механические воздействия — все может либо сильнее закрутить молекулярные слои относительно друг друга, либо ослабить закрутку. А от этого мгновенно меняются отражательные способности витков и, следовательно, изменяется видимый нами цвет пленки.

В анизотропных жидкостях другого типа действует иная механика. Скажем, физические нагрузки, деформация жидкокристаллической пленки приводит к нарушению четкого молекулярного строя, а значит, и к изменению оптических свойств вещества (например, его прозрачности). К такому же конечному результату приводит и воздействие электрического, магнитного полей. Но глубинный процесс здесь иной: электромагнитные силы заставляют двигаться ионы примесей, всегда содержащиеся в жидкокристаллическом веществе. Это движение нарушает ориентацию молекул, они начинают «роиться», образуя множество мельчайших шаров, конусов, блоков неопределенной формы, на границе которых и происходит рассеяние света: препарат становится мутным.

Так ли это на самом деле или нет, верны ли эти гипотезы о структуре жидких кристаллов и процессах, происходящих в них, покажет будущее. Но и сейчас, пребывая в полумраке нового, неизученного и необжитого мира, ученые успели заметить, какие далекие перспективы открываются здесь.