Чтобы попасть в мою новую научную обитель в Национальном институте по изучению неврологических нарушений и инсультов (НИЗ), располагавшемся в городе Бетезда, штат Мэриленд, нужно было пройти мимо множества комнат по темному коридору второго этажа здания под ничего не говорящим названием «Строение № 36». Я получил сотни тысяч долларов для оснащения своей лаборатории, причем стартовый годовой бюджет составлял более миллиона долларов. Вместе со мной сюда приехали большинство моих сотрудников, и я был готов немедленно начать исследования.
Сотни лучших ученых страны работали бок о бок с нами.
К примеру, на первом этаже была лаборатория Маршалла Ниренберга, одного из лауреатов Нобелевской премии за расшифровку генетического кода. Ниренберг показал, что каждой из букв ДНК соответствуют аминокислоты – строительные блоки, из которых состоят белки. Он и его коллеги многому могли нас научить. Мне казалось, я попал в научный рай.
Однако я снова и снова убеждался, что за удовольствие нужно платить. За неделей безмятежного блаженства на паруснике следует наказание в виде штормов и ураганов. Прежде чем в полной мере воспользоваться широкими возможностями НИЗ, мне пришлось иметь дело с неповоротливой бюрократической машиной госаппарата. При поступлении в НИЗ мне была обещана должность высшего разряда – десятая ступень пятнадцатого разряда. К несчастью, кадровик, отвечавший за штатное расписание моей лаборатории, начисто забыл оформить мое назначение на соответствующую должность.
Как это часто случается, чиновник, столкнувшись с неожиданной проблемой, пошел по пути наименьшего сопротивления – просто засунул мои документы в нижний ящик стола и забыл о них. Когда я спрашивал, что происходит с моей зарплатой, мне говорили: мои документы не могут найти, и на то есть какая-то важная причина. К счастью, Розуэллский институт продолжал платить мне зарплату как главному исследователю по нескольким грантам, а то бы у меня несколько месяцев вообще никаких денег не было. Когда кадровика, наконец, приперли к стенке, он признался, что был в таком ужасе от случившегося, что решил вообще ничего не делать.
Это был не единственный повод для беспокойства. Клэр, Дорин Робинсон и Мартину Шриву, моим ведущим сотрудникам, в НИЗе были обещаны штатные должности. Но вскоре после приезда меня вызвали в кабинет заведующего по научной части Ирва Копина и объявили, что Клэр действительно получит постоянную должность, но только через пару лет: они посчитали, что ее научная квалификация не удовлетворяет предъявляемым требованиям.
Найти новый дом тоже оказалось сложнее, чем мы ожидали, из-за довольно высокой стоимости жилья вблизи Вашингтона. Меньший по размеру и не такой новый, как дом в Буффало, стоивший 80 тысяч долларов, здесь обошелся бы в сотни тысяч. Наш агент по недвижимости Барбара Родбелл была новичком в этом бизнесе, и мы были ее первыми (и единственными) клиентами. Наконец мы купили дом в Силвер-Спринге – таунхаус с двумя спальнями за 105 тысяч долларов – и переехали в него вместе с нашим шестимесячным щенком Цезарем, названным так за свои императорские замашки. Я нашел место для стоянки моего 25-футового парусника «Сириус» на верфи в Гейлсвилле – там, где Ист-ривер впадала в Чесапикский залив с многокилометровым пляжем и прекрасными якорными стоянками. Местная экономика поддерживалась доходами от продажи табака и крабового промысла, а старый универсальный магазин с дровяным камином и шахматным столиком в придачу придавал этому местечку неповторимый колорит.
Однажды в выходные я отправился исследовать здешнюю бухту на свой лодке. У меня всегда было пристрастие к высоким скоростям, и, мчась по дороге в Гейлсвилл, я внимательно следил, нет ли поблизости полицейских машин без опознавательных знаков. Я обращал внимание на все необычные машины – например, на коричневый «форд» с двумя мужчинами внушительного вида, сидевшими в автомобиле. Всякий раз, когда я менял полосу или поворачивал, коричневый «форд» следовал за мной. В Хартджесе я вскоре забыл о нем. Но вечером, когда я вернулся в Силвер-Спринг, походив под парусом весь день, оказалось, что он снова рядом! Это стало меня беспокоить, я даже подумал, не отголосок ли это моего антивоенного прошлого, которое решило преследовать меня, когда я стал высокопоставленным госслужащим. Однако оказалось, я волновался зря.
На следующее утро, в понедельник, я обнаружил в своем маленьком кабинете двух ожидавших меня мужчин в темных костюмах, с узкими галстуками. Они встали и, показав мне удостоверения сотрудников Министерства обороны США, объяснили, что хотят обсудить возможность использования моих исследований для обнаружения отравляющих веществ нервно-паралитического действия и соответствующего химического оружия. В этом был определенный смысл, потому что я занимался изучением тех же самых рецепторных белков, которые являются мишенями для нейротоксинов. Несмотря на довольно мрачную тему разговора, меня успокоило, что их интересуют мои исследования, а не я лично.
В первую очередь они хотели знать, могу ли я обнаружить такие отравляющие вещества с помощью белков, с которыми эти вещества взаимодействуют в организме. Можно ли использовать эти белки для обнаружения мельчайших следов таких веществ в воздухе, а затем, используя некие хитроумные химические реакции, например проявляющиеся в виде люминесценции, сообщить окружающим, что они находятся в опасной зоне?
Адреналиновые рецепторы нельзя получить в большом количестве, однако никотинового холинорецептора с медиатором ацетилхолином было выделено столько, что он мог бы стать подходящим объектом. Это мои гости и хотели услышать. Ацетилхолин осуществляет передачу нервных сигналов к мышцам, включая диафрагму – мышцу, управляющую нашим дыханием. Такие нервно-паралитические вещества, как табун, зоман или зарин, приводят к смерти, блокируя действие важнейшего фермента ацетилхолинэстеразы, которая расщепляет и выводит ацетилхолин. Эти яды парализуют диафрагму и в результате жертва задыхается.
Поскольку ацетилхолин также действует на ряд участков мозга, ацетилхолиновый рецептор представляет интерес и для фундаментальной науки. Никотин активирует один из участков этого рецептора на нервных окончаниях, увеличивая утилизацию другой сигнальной молекулы – дофамина, который, в свою очередь, играет определенную роль в том, что неврологи называют «путь к справедливому вознаграждению» (путь – цель), вызывая тягу к курению у курильщиков.
Ацетилхолиновый рецептор был успешно выделен и очищен Джоном Линдстромом, работавшим в то время в Институте биологических исследований Солка в Сан-Диего. Джон с удовольствием бы предоставил мне этот белок за внушительную сумму, которую я посчитал вполне разумной, учитывая титанические усилия по его выделению, и получил бы от Министерства обороны деньги для своих исследований, а я бы придумал, как помочь правительству обнаруживать нервно-паралитические вещества.
Но бюрократический мозг правительства – это не единая, хорошо отлаженная машина. Чиновники НИЗ существенно затруднили получение денег от Министерства обороны. Обычно ученые не приносят государственные деньги в государственный НИЗ. Напротив, предполагается, что они их расходуют. В конце концов 250 тысяч государственных долларов поступили на специальный счет, открытый в институте на мое имя, но мне сделали предупреждение, что я слишком уж предприимчив, и у меня нет никакой необходимости добывать дополнительные средства.
Подготовив лабораторное оборудование, мы сразу же приступили к выделению и клонированию адреналиновых рецепторов из человеческого мозга для установления их молекулярной структуры и изучения загадочных процессов с их участием. В данном случае клонирование означает копирование гена, который вводится в лабораторный штамм кишечной палочки E. coli. При размножении этих бактерий происходит и размножение копий гена – объектов наших исследований. В сущности клонирование гена также означает обнаружение его в клетках и/или в геноме и последующее определение строения гена, который и создает белок – в данном случае рецептор, отвечающий на выброс адреналина. Для этого нужно выделить рецепторный белок, определить последовательность его аминокислот, а затем выявить возможные коды в молекуле ДНК, определяющие эту последовательность.
На словах все выглядит несложно, но на это ушло десять лет изнурительного труда! Благодаря усилиям моим и моих сотрудников, та же самая работа сейчас занимает всего несколько дней. Но вернемся в 1980-е годы, к тяжелой и кропотливой работе по выделению и изучению редких белков, образующихся в организме человека. Для выделения количеств рецепторного белка, необходимых для определения гена, я хотел использовать недавно разработанный тогда метод высокоэффективной жидкостной хроматографии (ВЭЖХ). Этот метод заключается в том, что компоненты мембраны клеток человека (в данном случае) помещают в раствор детергента для разложения липидов, а затем раствор с выделенными из мембраны белками пропускают через колонки с насадкой. Скорость прохождения белка по колонке зависит от его размера или заряда, при этом молекулы небольшого размера проходят быстрее, чем более крупные.
Для использования этой новой методики нужны были опытные специалисты. Я пригласил на работу Энтони Керлаваджа, который вместе со Сьюзен Тейлор из Калифорнийского университета в Сан-Диего занимался очисткой белков методом ВЭЖХ. А для дальнейшего совершенствования методов изучения белков я сформировал команду молодых специалистов, в которую вошел постдок из Северной Каролины Фу-Зон Чунг и два лаборанта из Буффало – Жанин Гокейн и Майкл Фитцджеральд.
За время освоения процессов очищения рецепторов мы опубликовали тридцать научных работ по различным аспектам изучения структуры и функции рецепторов. В итоге мы сделали важный вывод: природа очень неизобретательна при конструировании рецепторов и все время использует одни и те же модели, разве что с незначительными изменениями. Анализ структуры мускариновых ацетилхолиновых рецепторов (подтип ацетилхолиновых рецепторов) и альфа-адренергических рецепторов (тип адреналинового рецептора) показал значительное сходство структур, несмотря на то, что рецепторы распознают совершенно разные нейромедиаторы в организме. Этот вывод оказался весьма неожиданным, поскольку ранее в молекулярной биологии различные рецепторы рассматривались как существенно отличающиеся объекты, поэтому многие исследователи пренебрежительно отнеслись к нашим данным, и лишь недавно, когда гены рецепторов были секвенированы, их значительное сходство стало очевидным.
За два года мы добились значительных успехов, но в тот момент, когда цель была близка и мы начали секвенировать аминокислоты, выделив и очистив крайне небольшое количество рецепторов, конкуренты нанесли по нам сокрушительный удар. Нас опередила группа ученых из Дьюкского университета под руководством Роберта Лефковича, они даже получили за это премию. Работая вместе со специалистами фармацевтической компании Merck, они приложили большие усилия для очищения и клонирования рецепторов адреналина из красных кровяных телец клеток индюшек. Триумф Лефковича взволновал всех ученых, работавших в этой области. Ну и меня, разумеется. Я собрал своих сотрудников и напомнил им, что это только начало, и главные открытия впереди.
Для дальнейших исследований мы решили воспользоваться способом, с помощью которого соединяются попарно комплементарные основания в генетическом коде – каждая половина двойной спирали. Еще в 1953 году Уотсон и Крик догадались, как отдельные цепочки ДНК копируются в комплементарную цепь при объединении оснований в пары. Это одновременно объясняет, как при делении клетки копируются ДНК в хромосомах. Изучив все четыре азотистых основания генетического алфавита, они обнаружили, что А всегда объединяется в пару с G, а C с Т. После разделения двойной спирали на две дочерние комплементарные к ним цепочки образуются по этим правилам. И если создать одну цепочку оснований, то по тем же правилам она соединится только с комплементарной цепочкой. По сути мы создаем ДНК-зонд, который крепится только к определенному гену на огромном геноме человека.
Мы могли бы использовать этот способ комплементарного соединения оснований, применив два подхода к определению генетического кода адреналинового рецептора. Во-первых, использовать небольшую часть последовательности белкового рецептора, полученную нами для расшифровки соответствующей последовательности ДНК, в качестве зонда для поиска определенных генов в геноме человека. Во-вторых, воспользоваться наследием эволюции: гены адреналинового рецептора индюшки и человека, скорее всего, должны быть довольно схожими. Другими словами, мы могли бы сделать ДНК-зонды из самого гена индюшки, – если они свяжутся с комплементарными ДНК человека, они выявят эквивалентный ген человека. Помещая радиоактивную метку на разные виды зондов, мы таким образом установили бы место присоединения каждого из меченых зондов.
Но, как обычно, возникли проблемы. Нужно было получить геном человека в форме, пригодной для этих экспериментов. Даже в виде хромосом, то есть в том виде, в котором он находится в клетках, размер этого кода слишком велик для исследований. Для успешной «охоты на гены» необходимо разделить генетический код человека на пригодные для работы участки. Если взять полный набор ДНК в клетке человека и разделить его на части, то в итоге получится то, что ученые называют «библиотекой». Существуют два основных типа библиотек ДНК – геномные и клоновые.
Геномная библиотека ДНК создается с помощью специальных ферментов, называемых рестриктазами, которые разрезают хромосомы человека на мелкие кусочки, каждый из них состоит примерно из 15–20 тысяч пар оснований ДНК. Чтобы изучать эти части ДНК человека, нужно уметь их копировать и хранить, точно так же, как книги – печатать и переплетать. В процессе копирования каждый фрагмент ДНК человека прикрепляется к ДНК бактериофага – вирусу, который инфицирует бактерии и размножается внутри них. Такой обработанный бактериофаг, несущий в себе ДНК человека, используют для инфицирования бактерии кишечной палочки E. coli. Если налить в чашку Петри бульон с инфицированной кишечной палочкой E. coli, то на бактериальном газоне появятся стерильные пятна – там, где вирусы убили E. coli. Эти пятна, бляшки, содержат миллионы вирусных частиц – и следовательно, миллионы копий фрагментов ДНК человека.
Клоновые библиотеки ДНК составляют на основе другого генетического материала в клетках – матричной (информационной) РНК, переносящей геномную информацию для сборки белка. Только 3 % нашего генетического кода отвечает за кодирование белков, поэтому мы получаем гораздо более компактный «рабочий чертеж» ДНК человека, если сосредоточим внимание на РНК, кодирующую эти белки. (Типичный ген может содержать миллион пар оснований, а длина «отредактированной» РНК может доходить всего лишь до тысячи пар оснований.) Другими словами, такая библиотека ДНК использует тот же способ, с помощью которого природный «издатель» превращает весь генетический код в гораздо меньшие матричные РНК – лишь субпопуляции генов, необходимых для создания специфичных клеток или тканей.
По своей природе матричная РНК недолговечная и нестабильная молекула, в противном случае мы бы просто выделили ее из клетки и прочитали. Однако с помощью фермента «обратная транскриптаза» РНК нетрудно скопировать в стабильную молекулу ДНК. Это называется комплементарной ДНК или кДНК. Выделяя РНК человека для изготовления кДНК, мы получаем сжатый, легко читаемый вариант генома с кодирующими белок генами.
Как и в геномной библиотеке, каждый том комплементарной библиотеки должен быть представлен в удобном для обработки и копирования виде. Природа решила и эту проблему. Комплементарные библиотеки ДНК получают путем выделения матричных РНК в тканях, преобразуют эти РНК в комплементарные фрагменты ДНК и встраивают их в плазмиды, небольшие кольцевые молекулы ДНК с инструкциями для бактерии. Бактерии кишечной палочки E. coli, инфицированные этой кДНК, играют роль «печатного станка» книг для этой библиотеки. Каждая бактерия содержит соответствующий сегмент кДНК человека, и когда бактерия реплицируется (делится на дочерние клетки), то и материнские, и дочерние клетки получают одинаковые фрагменты гена человека.
Эти фрагменты ДНК невидимы для невооруженного глаза, но их легко разглядеть с помощью специальных приборов. На дно чашки Петри наносят очень тонким слоем, чтобы по возможности избежать соприкосновения колоний бактерий, бульон с E. coli, содержащими кДНК человека. Отдельные колонии бактерий начинают расти, и когда они в итоге становятся различимы глазом в виде пятен, в каждой из них оказываются миллионы идентичных бактериальных клеток (клонов), и в каждой из этих клеток находится одинаковая часть кДНК человека. В небольшой чашке Петри можно получить десятки и сотни тысяч таких изолированных колоний и создать обширную библиотеку ДНК человека.
С помощью любой из таких библиотек мы начинаем охоту на рецептор, используя способ крепления комплементарных ДНК. Фильтровальной бумагой удаляем ДНК из чашек Петри с E. coli, вырастившей геномную или комплементарную библиотеку ДНК. Фильтровальную бумагу затем замачиваем на ночь в растворе рецепторного ДНК-зонда. Чтобы определить, связан ли он с комплементарной ДНК в библиотеке, зонд метят радиоактивным изотопом фосфора Р-32, заменяя им некоторые атомы фосфора в молекуле ДНК. Затем фильтры промывают, чтобы удалить все следы радиоактивного зонда, которые не присоединились ни к одному из фрагментов ДНК, сушат и помещают на несколько дней в кассету с рентгеновскими пленками. Положительные колонии и бляшки – области, где радиоактивный зонд прикрепился к целевой ДНК-мишени, видны на проявленной рентгеновской пленке как черные пятна. Сравнивая пятна на пленке с пятнами в чашке Петри, положительные колонии или бляшки можно идентифицировать, а затем выделить и амплифицировать их ДНК.
Заметим, что найти нестабильную матричную РНК, кодирующую определенные белки, не так-то просто. В каждой клетке есть всего несколько тысяч молекул трудно выделяемых мембранных белков, например адреналиновых рецепторов. Как следствие, невелико также и количество матричной РНК, кодирующей рецепторный белок. Используя генетический материал мозга человека, полученный для медицинских исследований, нам приходилось изучать более миллиона колоний кДНК, чтобы найти именно ту, которая содержала матрицу для создания адреналинового рецептора. Мы вырастили колонию для производства достаточного количества такой ДНК и с ее помощью сумели ее секвенировать – определить порядок расположения четырех нуклеотидов (C, G, A и T), формирующих звенья в молекуле ДНК с внешним остовом из сахара и фосфата. Порядок расположения пар оснований в ДНК определяют с помощью двух основных методов секвенирования. Один из них был разработан в Лаборатории молекулярной биологии Совета по медицинским исследованиям в Кембридже Фредериком Сенгером, блестящим ученым, (кстати, разделяющим мою любовь к парусному спорту), который однажды сказал, что «у него все в порядке с головой, но не очень хорошо с болтовней». Второй был описан гарвардским ученым Уолли Гилбертом, известным как «серый кардинал с грандиозными замыслами». В 1980 году Гилберт и Сенгер получили Нобелевскую премию. Большинство экспериментов по секвенированию, проведенных в последние десятилетия, являются прямым продолжением именно метода Сенгера, которому удалось разрешить некоторые сложнейшие проблемы биологии. В мае 1975 года Сенгер потряс научный мир, частично секвенировав ДНК, а затем впервые полностью секвенировав геном вируса: 5375 пар оснований генетического кода бактериофага phi-X174. Позднее Сенгер секвенировал приблизительно 17 тысяч (или около того) пар оснований ДНК митохондрий человека (энергетических фабрик наших клеток), положив начало первому проекту по расшифровке генома человека.
Метод расшифровки ДНК, впервые предложенный в Кембридже Сенгером совместно с Аланом Коулсоном, состоит в создании многочисленных копий молекул ДНК с использованием фермента ДНК-полимеразы. Для репликации ДНК этой полимеразой ее помещают в раствор из нуклеотидов – строительных блоков ДНК. Фермент считывает информацию с каждого конца первичной нити ДНК, используя нуклеотиды для создания новых копий. Вклад Сенгера состоял в добавлении в этот раствор дополнительного ингредиента – «нуклеотидов-терминаторов», помеченных радиоактивным P-32. Эти нуклеотиды присоединяются к растущей копии и случайным образом прекращают действие полимеразы, помечая конец растущей цепи радиоактивной меткой. Поскольку это может происходить на любой стадии образования в пробирке множества копий молекул ДНК, в результате образуется смесь фрагментов ДНК различной длины, каждый из которых оканчивается радиоактивно помеченными C, G, А или T, – смотря по тому, какое основание помечено P-32.
Затем фрагменты пропускают через слой геля, на котором молекулы ДНК под действием электрического поля разделяются в зависимости от размера. Теперь можно прочитать последовательность, поскольку более крупным фрагментам ДНК требуется больше времени для прохождения через гель. Поскольку метки на всех четырех нуклеотидах – C, G, A, T – одинаковы и оставляют одинаковый след в виде черных полосок на рентгеновской пленке, необходимо проводить четыре отдельных эксперимента, по одному на каждую букву кода. После использования ДНК-полимеразы для каждого из четырех нуклеотидов-терминаторов (в одной серии опытов помечены все C, в другой – все G, и так далее), их помещают на четыре соседние дорожки на том же самом геле. Когда фрагменты разделяются, одна дорожка демонстрирует фрагменты ДНК, оканчивающиеся на С, другая – оканчивающиеся на G, и так далее.
Гель высушивают, выдерживают несколько дней на рентгеновской пленке, оставляя четыре параллельные дорожки с черными полосками, потом внимательно изучают пленку, начиная с первой из четырех дорожек. Так и получают искомую последовательность, записывая по порядку каждую следующую букву сотни раз для каждого образца. Это трудоемкий и длительный процесс, в течение которого могут происходить – и происходят – всяческие сбои. Если одна из четырех реакций на геле не получилась, весь эксперимент идет насмарку; нередко случается, что дорожки располагаются не параллельно друг другу. Это затрудняет сравнивание черных меток и пробелов на каждой из дорожек и считывание всей последовательности. При высыхании гель может растрескаться, и часто именно так и происходит. Реагенты могут разлагаться, и это тоже часто у нас случалось…
Меня очень раздражала возможность различной интерпретации результатов – я часто видел, как выводы делались не столько на основании полученных данных, сколько в силу авторитета или в интересах какого-нибудь ученого. Я же хотел получить истинные данные, основанные на эксперименте. Последовательность либо есть, либо ее нет. Она либо точна, в пределах погрешностей метода, либо нет – как правило, в результате неряшливости опыта.
После многих недель напряженной работы мы смогли получить клон кДНК для адреналинового рецептора мозга человека. Наше возбуждение достигло предела, когда мы поняли, что эта последовательность значительно отличается от последовательности рецептора индюшки. Мы почувствовали себя на пороге первого большого успеха.
Но как только мы определили последние участки последовательности, стало ясно, что работу мы не закончили: нам недоставало начального участка, то есть точки, на которой у ДНК обычно расположен генетический эквивалент знака препинания. Как уже упоминалось, только небольшой процент нашей ДНК представляет собой гены, кодирующие белки. Чтобы помочь молекулярному механизму клетки их различать, существуют генетические эквиваленты прописных букв и точек.
В любом тексте предложение начинается с заглавной буквы. Так и у большинства генов начало кодирующей белок области ДНК начинается так называемым стартовым кодоном ATG (кодирующим аминокислоту метионин). И точно так же, как заглавные буквы часто встречаются и в середине предложения, в середине гена может появиться кодон метионина. Поэтому необходима дополнительная информация – действительно ли ATG отмечает истинное начало гена. Можно, например, поискать ближайший стопкодон, одну из молекулярных «точек» на концах «предложений» ДНК, которые указывают молекулярному механизму на прекращение синтеза белка.
Поскольку у нас имелся только один сегмент ДНК из библиотеки ДНК мозга, соответствующей адреналиновому рецептору, для определения остальной части гена нам нужна была другая библиотека. Единственным выходом было изготовить из последовательности вблизи недостающего участка радиоактивный зонд и с его помощью найти во второй библиотеке участок с недостающим концом гена.
Наши попытки опять были похожи на поиски иголки в стоге сена, хотя на этот раз количество изучаемых ДНК было меньше. Во второй геномной библиотеке ДНК длина фрагментов в среднем составляла 18 тысяч пар оснований, и каждый из этих фрагментов (клонов) представлял лишь 0,0006 % из 3 миллиардов букв генома. Вместо поиска одного клона среди миллионов мы искали один из приблизительно 167 тысяч клонов. Через пару недель у нас появилось несколько перспективных версий. У одного клона длиной в 18 тысяч букв явно обнаруживался конец гена, поэтому мы приступили к его секвенированию.
План сработал. Наконец-то мы собрали всю последовательность генов с помощью компьютера и написали первую в моей жизни статью по молекулярной биологии. Мы послали ее в FEBS Letters (журнал Федерации европейских биохимических обществ) – я был знаком с его редактором Джорджио Семенца, и он обещал ее быстро опубликовать. Вскоре нам удалось получить последовательность первого гена адреналинового нейротрансмиттерного рецептора мозга человека. Мы прекрасно понимали, что впереди у нас еще много работы – начиная с очистки рецепторных белков до разработки методики считывания кода, но чувствовали, что сделали нечто очень важное.
Увидеть своими глазами последовательность ДНК, которая до сих пор существовала лишь в воображении, было поразительно, – вроде как выйти на яркий солнечный свет из пещерной темноты. Даже сегодня мне кажется невероятным увидеть молекулярные коды с помощью столь несложной технологии. Та статья стала поворотным пунктом в моей карьере: вместе с командой единомышленников я вступил в новую область науки – молекулярную биологию. И мы были готовы совершить новый рывок.
Я понимал, что определение последовательности гена или белка – только первый шаг к пониманию того, как работает адреналин. Завершение этого этапа означало всего лишь начало следующих. Например, можно было внедрить ген рецептора человека в клетки мышей, культивировать их, начать массовое производство рецепторов и использовать их в самых различных экспериментах. Следовало получить намного больше последовательностей для продолжения работы над нашим открытием – ведь мы поняли, что различные рецепторы нейротрансмиттеров взаимодействуют с одним и тем же антителом. Чтобы подтвердить наше предположение об их общем эволюционном происхождении, нужно было сравнить последовательности большого числа рецепторов. Попытки прочитать ДНК нескольких рецепторных генов оказались первым, пусть и неосознанным, шагом в новую, тогда еще не существовавшую область науки – геномику.
Кардинальному повороту в моих исследованиях способствовала вышедшая в Nature статья группы ученых Калифорнийского технологического института (Калтех) под руководством Ли Гуда о замечательных возможностях новой технологии секвенирования ДНК. Четыре различные реакции секвенирования по Сенгеру проводились в одной дорожке на секвенирующем геле с помощью четырех различных флуоресцентных красителей. Двигаясь к нижней части геля, фрагмент ДНК попадал под лазерный луч, активирующий краситель. Светящиеся красители легко обнаружить с помощью фотоусилительной трубки и передать данные на компьютер. Появление четырех цветов, соответствующих четырем нуклеотидам, означало непосредственное прочтение генетического кода.
Раньше я уже работал с Ли Гудом и его постдоком Майклом Ханкапиллером над рецепторными белками, и теперь решил снова к ним обратиться. Потратив почти год на секвенирование методом радиоактивных меток, причем с весьма скудными результатами, я сразу оценил все преимущества технологии Калтеха, связался с авторами статьи и узнал, что Ханкапиллер вскоре возглавит работу по разработке промышленного секвенирования ДНК. Он перешел на работу в биотехнологическую компанию Applied Bio systems (ABI). Я поговорил с Ханкапиллером и местным представителем ABI с предложением купить одно из их первых устройств. Мое предложение заинтересовало ABI, поскольку сам факт приобретения НИЗ этих приборов именно у ABI мог бы поднять престиж компании и сделать рекламу их технологии. После долгих переговоров все было согласовано, и моя лаборатория готовилась стать полигоном для испытания нового метода секвенирования. Дело было только за суммой в 110 тысяч долларов, чтобы заплатить за секвенатор. Однако завотделом фундаментальных исследований НИЗ Эрнст Фриз был против покупки неапробированной технологии, и вместо этого предложил мне 250 тысяч долларов на покупку секвенатора белка.
Мы с Фризом поспорили о сравнительных достоинствах секвенирования белка и секвенирования ДНК, и я проиграл. Я был в полном отчаянии, но через несколько дней вспомнил про специальный счет на 250 тысяч долларов от Министерства обороны для идентификации химического оружия и заявил Фризу о своей решимости опробовать новое устройство, воспользовавшись этими деньгами. Моя решительность произвела на него впечатление, и заказ на секвенатор был отправлен в ABI.
И в феврале 1987 года новое устройство для секвенирования ДНК доставили по адресу «НИЗ, корпус 36». В этом контейнере находилось мое будущее. Я носился с этим прибором, как с ребенком. В лаборатории было мало места, и я велел поставить секвенатор в свой кабинет. Моей сотруднице Жанин Гокейн не хватало уверенности в собственных силах, но я верил в ее способности и попросил помочь запустить новый прибор.
Самой важной его частью была электрофорезная камера с вертикальным гелем для секвенирования, размером с блокнот. В геле было 16 дорожек для одновременного запуска 16 образцов. (Требовалось еще прогнать 4 стандарта, чтобы убедиться в правильном функционировании устройства, оно могло справиться лишь с дюжиной образцов.) В нижней части геля находился сканер, который двигался взад-вперед, передавая сигналы от флуоресцентных красителей в компьютер. Один проход занимал 16 часов и выдавал данные, на получение которых старым методом ушла бы неделя.
Потратив еще несколько недель на исправление технических неполадок, мы начали получать прекрасные результаты, до двух сотен пар оснований генетического кода с каждого образца ДНК. Проблема состояла лишь в том, что программное обеспечение прибора было примитивным и ненадежным. Позднее наши программисты потратили немало времени на усовершенствование компьютера.
На ключевом этапе процесса секвенирования мы использовали ДНК-полимеразу. Это фермент, который копирует ДНК с помощью небольшого фрагмента ДНК – праймера для секвенирования. Чтобы понять, как работают полимераза и праймер, представим процесс ремонта поврежденных железнодорожных путей, где на определенном участке удален один рельс. Железнодорожные пути – это двойная спираль ДНК, а ремонтная бригада – ДНК-полимераза, и вот она начинает укладывать новые пути с того места, где было два нетронутых рельса. ДНК-полимеразу можно обмануть и заставить начать с определенной точки на ДНК с помощью короткого кусочка синтетической ДНК (праймера), который связывается с определенными основаниями для создания короткого отрезка двойной спирали ДНК.
Еще будучи стажером, я научился у Ната Каплана проверять чистоту и количество реагентов, не доверяя гарантиям поставщиков. Запуская прибор, я каждый раз измерял количество ДНК и секвенирующего праймера, чтобы получить правильное соотношение между реагентами и продуктами химической реакции. Такое внимание к деталям оказалось чрезвычайно важным: представители ABI заявили, что до нас никто так не интерпретировал результаты секвенирования, да и вообще не получал приличные данные. Большинство их клиентов были настолько разочарованы, что вернули секвенаторы ABI. А мы достигли существенного успеха с помощью этого устройства и сумели использовать его для секвенирования двух рецепторных генов из сердца крысы – генов бета-адренергетического рецептора, изменяющего активность сердцебиения в ответ на введение адреналина, и мускаринового рецептора, который замедляет частоту сердечных сокращений под влиянием блуждающего нерва. Мы быстро секвенировали оба гена, а для сравнения выполнили секвенирование некоторого количества генов вручную методом Сенгера. Осенью 1987 года мы опубликовали результаты нашей работы в PNAS, и они стали первыми данными, полученными методом автоматизированного секвенирования ДНК – тем самым методом, о котором я прочитал в журнале Nature всего год назад. Направление моих исследований изменилось бесповоротно и навсегда.
После клонирования, секвенирования и выделения адреналинового рецептора мы приступили к определению его структуры и функций методами молекулярной биологии. Каким образом он распознает адреналин? Что происходит после связывания рецептора с адреналином? Что на самом деле делает молекула рецептора? Что контролирует синтез и распад рецептора? Какова молекулярная структура рецептора в мембранах наших клеток?
Основой решения этих задач стало установление трехмерной структуры рецепторного белка в клеточной мембране. Пространственная структура белка не однозначно определяется последовательностью ДНК, и установление этой структуры остается одной из великих задач биологии. Очень важно выяснить, как одна из огромного числа молекул, беспорядочно перемещающихся в наших клетках, приобретает правильную форму и правильный заряд для присоединения к рецептору и вызывает жизненно важные реакции – например, учащение сокращений сердца или замедление роста клеток.
Все занимавшиеся исследованием структуры молекулы адреналинового рецептора непременно отмечали ее ключевую особенность: наличие 7 участков аминокислот, согласно компьютерному моделированию, располагающихся в форме штопора или альфа-спирали. Эти спирали чаще всего встроены в липидные мембраны клеток. Напомним, что рецепторные молекулы являются основным средством связи между внешней поверхностью клетки и ее содержимым, – это много лет назад показали мои эксперименты со стеклянными бусинами. Адреналиновый рецептор встроен в мембрану так, что эти семь «пальцев» образуют нечто вроде кармана для захвата адреналина и таким образом изменяют остальную часть молекулы рецептора, «объявляя» о появлении химического мессенджера. Среда вне липидной мембраны представляет собой водный раствор, поэтому мы полагали, что соединенные с адреналином аминокислоты рецептора должны быть гидрофильными, а также отрицательно заряженными, так как часть молекулы адреналина несет положительный заряд. И мы действительно нашли несколько аминокислот с такими свойствами. Другие аминокислоты последовательности рецепторного белка, например пролин, обычно играют важную роль в построении его структуры, образуя своеобразные изгибы.
К тому времени нам удалось выяснить, что происходит при изменении конфигурации рецепторного белка. Один из методов молекулярной биологии, так называемый «сайт-направленный мутагенез», или «белковая инженерия», позволил нам провести некоторые хитроумные эксперименты. Изменяя код гена рецептора, можно изменить последовательность аминокислот, то есть саму структуру белка. Поэтому мы могли бы проанализировать работу этой некогда неуловимой молекулы, если бы выяснили, как работает измененный рецепторный белок – например, по-прежнему ли он связан с адреналином и «нравится» ли другим препаратам с ним связываться? И если да, то действует ли рецептор так же, как при взаимодействии с адреналином?
Должен признаться, что в душе я – старомодный биохимик. Мне нравится думать не только о мутациях, которые изменяют структуру белков, но и о том, как эти изменения отражаются на биологическом поведении организма. Очень многие генетики довольствуются лишь тем, что обнаруживают связь между кусочком ДНК и каким-то признаком. Для меня это похоже на впечатление от встречи с кем-то, лично знакомым с иной знаменитостью: «У меня есть друг, который знаком с Мадонной!». Мне этого мало. Я хочу знать гораздо больше, и не только о Мадонне. Я хочу понять, что это за биологический рецептор, который вдохновляет ту же Мадонну? И всех остальных людей, если уж на то пошло!
В результате мы изменили десятки аминокислот в рецепторных белках, и в 1988 году опубликовали две важные статьи об аминокислотах, влияющих на способ связи и активирования рецептора молекулами адреналина. Но, на удивление, эти молекулы не оказывали никакого влияния на бета-блокаторы типа пропранолола, которые также связывались с рецепторами. Из этих экспериментальных данных был сделан единственный вывод – точки на рецепторном белке, связывающиеся с активаторами вроде адреналина (так называемых «агонистов»), отличаются от точек на рецепторных белках, связывающихся с их блокаторами вроде пропранолола (так называемых «антагонистов»). Наше упрощенное представление о работе рецепторов теперь следовало пересмотреть. Всегда считалось, что гормоны работают по принципу «ключ к замку», где замок – рецептор, а антагонисты – просто неподходящие к нему ключи. Теперь оказывалось, что они могут действовать на какую-то другую деталь замка, но так, что замок все равно не срабатывает.
Выдвигать подобные гипотезы было бы гораздо легче, если бы мы имели модель адреналинового рецептора. Я вспомнил, как в начале моей работы в лаборатории Каплана его сотрудница Сьюзен Тейлор определила трехмерную структуру фермента лактатдегидрогеназы на основе данных рентгеновской кристаллографии. Затем была создана модель белка (1,2 метра в длину, в ширину и в высоту), которая наглядно показывала, как в клетках растений и животных этот фермент катализирует взаимные биохимические превращения пирувата и лактата в основном метаболизме. Я хотел сделать подобную модель адреналинового рецептора. Но чтобы «сфотографировать» рецепторный белок, он нужен в кристаллической форме, а для этого требуются его граммовые количества – примерно в миллион раз больше, чем мы в то время располагали. Изучив литературу, я обнаружил, что для массового производства белков успешно используются дрожжи, и нанял химика Дика Маккомби, чтобы он получил нужное для рентгеновской съемки количество белка.
Примерно в то же самое время бурно обсуждался проект, благодаря которому мои исследования в один прекрасный день оказались в центре внимания научной общественности. Я говорю о секвенировании генома человека. Одну из первых дискуссий в мае 1985 года на семинаре в Калифорнийском университете в Санта-Крус организовал Роберт Синсхаймер. Он надеялся, что такой важный проект привлечет внимание к его университету. Когда я уже начал работать в этой области, лауреат Нобелевской премии американец Ренато Дульбекко выступил в журнале Science с предложением секвенировать геном человека для борьбы с раком, а Сидни Бреннер из британского Совета медицинских исследований настоятельно призвал Европейский союз принять единую программу исследований. Дискуссии по геному человека также проводились по инициативе Чарлза Делизи, профессора биоинформатики из Министерства энергетики США. Участие в этом проекте Министерства энергетики может показаться несколько странным, но дело в том, что именно этому ведомству поручили оценить влияние радиации на генетический код хибакуся – японцев, переживших атомную бомбардировку Хиросимы и Нагасаки.
Большинство из обсуждавших тогда идею расшифровки генома человека были настроены крайне скептически, считая это абсолютно безнадежным делом. Высказывались против проекта и в НИЗ. Его директор Джеймс Вингаарден язвительно заметил, что «план Министерства энергетики очень похож на предложение Национального бюро стандартов построить бомбардировщик Б-2». Даже Бреннер шутил, что задача столь грандиозна, а технические возможности столь ограничены, что секвенирование следует приравнять к уголовному наказанию – скажем, определение 12 миллионов оснований считать бытовым преступлением. А у меня появилась идея создать базу данных последовательности всех генов человека. При этом я почти десяток лет пытался декодировать всего лишь один из приблизительно 100 тысяч предполагаемых на тот момент генов человека! Но я был готов посвятить такой грандиозной задаче пару десятилетий, если за это время удастся расшифровать весь геном. Конечно, глупо использовать традиционный метод Сенгера с его радиоактивными маркерами, трескающимися гелями и бесконечными разочарованиями, а вот применить новые, автоматизированные технологии – совсем другое дело.
Но как включиться в этот проект? Хорошо бы расширить лабораторию, но помещений в НИЗ недоставало. После разговора с Эрнстом Фризом (который благодаря моим успехам к этому времени стал активным сторонником секвенирования) и Ирвином Копином, директором программ Национального института неврологических расстройств и инсульта (NINDS), мне предложили место в Парклейнбилдинг в Роквилле, напротив Агентства по контролю за качеством пищевых продуктов и лекарств (FDA). Переезд в Роквилл обеспечил бы мне четырех-пятикратное расширение программы работ и увеличение моей команды вдвое, до двадцати и более исследователей.
Однако принять решение было не так просто. Не хотелось покидать кампус – находиться здесь считалось весьма престижным, и многие мои коллеги сражались не на жизнь, а на смерть за место в корпусе № 36. И тут мне сделали еще два весьма соблазнительных предложения: во-первых, мои административные обязанности в Парклейне будут значительно сокращены, а во-вторых, я войду в комитет по планированию строительства нового здания корпуса № 49 на основной территории кампуса, куда и переедет моя группа по завершении строительных работ. Я согласился, и в августе 1987 года мы переехали в Парклейн.
В то время многие с недоверием относились к идее использования секвенаторов ABI для осуществления столь широкомасштабного проекта, как расшифровка генома человека. Японцы, предложив альтернативный метод, в 1987 году попали на первые страницы газет, когда заявили, что собираются сконструировать устройство для секвенирования миллиона пар оснований в сутки (потом обещанное количество сократилось до 10 тысяч оснований). А для меня решение этой проблемы не представляло никакого труда. Если у вас есть одна швейная машинка, а вы хотите удвоить выход продукции, вы берете еще одну машинку. Для удвоения количества определяемых последовательностей ДНК нам просто нужен был еще один секвенатор. Все дело решала одновременная обработка данных. Я мог бы конкурировать с японцами, купив еще несколько приборов фирмы ABI.
И я заговорил с Фризом о дополнительных 750 тысячах долларов к моему годовому бюджету. Опасаясь, что руководители других лабораторий не одобрят, мягко говоря, его непропорционально большой размер, Фриз переименовал часть моей лаборатории в Центр секвенирования ДНК при NINDS. И мне позволили получить приборы – при условии, что я буду помогать коллегам секвенировать участки ДНК для их исследований. Я согласился, поскольку знал, что в NINDS почти нет молекулярных биологов и в нашей помощи особой необходимости не будет. Итак, я купил еще три секвенатора, и моя лаборатория стала крупнейшим центром секвенирования ДНК в мире.
Хотя мне не терпелось немедленно начать работу, очень скоро стало ясно, что у нас нет методики эффективного и экономичного секвенирования. Нужно было выработать стратегию наиболее разумного использования приборов.
Первый путь предполагает изучение максимально длинной последовательности за одну операцию, считывая несколько сотен пар оснований одновременно. Затем, расс матривая код ДНК с конца этой последовательности, создать новый праймер, отмечающий начальную точку, а прибор стал бы считывать следующие несколько сотен пар оснований соседней последовательности ДНК. Этот процесс необходимо повторять снова и снова, до достижения самого конца гена или исследуемого участка ДНК. На работу по этой методике, называемой «блуждающей затравкой», уходило несколько дней, потому что на каждом этапе процесса нужно специально подбирать новый праймер. Выполнение «блуждающей затравки» на секвенаторах ABI занимало еще больше времени и стоило дороже, так как праймеры были не просто участками ДНК, а участками с химически присоединенными флуоресцентными красителями. Я сразу понял – таким методом секвенировать десятки тысяч оснований, не говоря уж о миллиардах оснований в геноме человека, невозможно.
Основной альтернативой методу «блуждающей затравки» было секвенирование «методом дробовика» (шотган-секвенирование), состоявшее в фрагментировании клонов на мелкие участки для последующего секвенирования, а затем выяснении, как эти короткие последовательности снова соединяются вместе. Существовали различные варианты этого метода, отличающиеся тем, как ДНК фрагментировалась на участки. В своей новаторской работе 1982 года по декодированию 48 тысяч пар оснований бактериофага лямбда Фред Сенгер использовал метод дробовика для фрагментирования генома лямбды, хотя и не полностью. Он воспользовался результатами исследования другого нобелевского лауреата, Хэмилтона Смита, который обнаружил фермент рестриктазу – молекулярные ножницы, способные разрезать ДНК на строго определенные участки. Например, рестриктаза ECORI разрезает последовательность GAATTC, но оставляет ее без изменений при замене хотя бы одной буквы в последовательности (например, GATTTC). Разрезая ДНК различными рестриктазами на достаточно малые фрагменты для секвенирования, Сенгер использовал специальную карту ДНК для реконструкции генома лямбды. На карте были видны места на участках ДНК, где действовали ферменты рестрикции. Он использовал их как ориентиры для сопоставления одного участка с другим.
Представьте себе, что произойдет, если разрезать номер газеты The New York Times в соответствии с неким правилом, похожим на способ действия рестриктазы. Вырежем часть текста перед словом «сегодня» везде, где на странице встречается предлог «с». Теперь повторим процесс, но с использованием слов «и» и «что». Даже если человек не умеет читать, он знает, что эти слова (сайты рестрикции) по явились на каждой странице газеты в результате вырезания, и сможет восстановить все страниц. Для вирусов метод рестриктазы Сенгера был единственным приемлемым способом секвенирования, но то была ручная, крайне медленная и утомительная работа, и метод этот вряд ли мог быть использован для секвенирования генома бактерий, не говоря уже о трех миллиардах пар оснований генома человека.
Работа по секвенированию ДНК успешно продвигалась, как и наши исследования рецепторов. Мы искали эквивалент адреналинового рецептора в одном из самых интенсивно изучаемых организмов в биологии – плодовой мушке Drosophila melanogaster. Мы выделили и секвенировали ген мушки, так называемый «октопаминовый рецептор», явно эволюционный предшественник нашего адреналинового рецептора. У насекомых октопамин выполняет ту же самую функцию «бей или беги», что и адреналин у людей. В те времена я добился уже значительных успехов и меня все чаще приглашали на международные конференции, а также для консультирования биотехнологических и фармацевтических компаний. Но моя исследовательская работа – то, чем я занимался почти два десятка лет со времени появления у Каплана, – подходила к концу.
Мне посчастливилось работать в институте, где поощрялись неординарные исследования. Поскольку моя лаборатория принимала участие в собственных программах НИЗ, мой бюджет давал возможность без всяких опасений идти на огромные риски. Большинство моих коллег предпочитали быть осторожнее, хотя и считалось, что мы должны быть предприимчивыми и отважными – ведь нам не требовалось писать заявки на гранты. Это освобождало нас от мнения консервативных экспертов, ибо из-за ограниченности фондов соответствующие комитеты предпочитали давать гранты, по их мнению, «беспроигрышным» проектам. Геномика человека показалась мне привлекательной областью для прыжка в неведомое, хотя надежда на дивиденды от нашего предприятия была весьма призрачной.
Я мог бы заняться геномикой, одновременно продолжая исследование рецепторов – в качестве страховки от возможных неудач. Проработав пять лет в НИЗ, Клэр так и не получила постоянную должность. Она была лишь одной из сотрудников моей лаборатории, у комитета не было никаких оснований предпочесть ее другим. К счастью, в Национальном институте алкоголя и наркотиков планировалось открыть лабораторию по исследованию рецепторов, и ей предложили организовать там собственную группу. А я решил заняться новой, только зарождающейся наукой – геномикой, с собой взять лишь тех своих сотрудников, которые, как и я, увлеклись этим делом.
Решение мое выглядело логичным, но сделать его было нелегко. Предстояло расстаться с людьми, к которым я привык, оставить исследования рецепторов, область, в которой я познал и неудачи, и успехи. А что, если в геномике у меня ничего не получится? И как эта новая жизнь отразится на моей семье? Я воспринимал эти перемены как «лабораторный развод»: Клэр будет заботиться о моем «ребенке» – рецепторе, а у меня будет геномика. Но я надеялся, что этот шаг укрепит наши отношения – Клэр станет самостоятельной, независимой от меня в своей работе, и ей это понравится.
Перейти в геномику означало не просто очутиться в новом сообществе ученых, но и разобраться в его политических аспектах. Мне повезло – на этом пути я встретил Рэйчел Левинсон. Ее муж Рэнди работал в том же институте, что и Клэр. Сама Рэйчел была ответственным секретарем в новой рабочей группе, и директор НИЗ Джим Вингаарден поручил ей выяснить, как НИЗ может принять участие в проекте по расшифровке генома человека. Мне нравилось общаться с Рэйчел, она была привлекательна и весьма компетентна. Рэйчел предложила мне поговорить с Рут Кирштейн из Национального института общей медицины, стремившейся к проведению всех действий НИЗ по геному в ее институте. Она хотела контролировать и руководить всеми соответствующими мероприятиями. Мы встретились на совещании, которое Рейчел организовала по поручению Вингаардена с целью помочь НИЗ занять ведущую позицию в проекте расшифровки генома. Оно состоялось 1 марта 1988 года в Рестоне (штат Вирджиния).
Впервые я общался с крупнейшими учеными в этой области, например с лауреатами Нобелевской премии Дэвидом Балтимором, Уолли Гильбертом и Джимом Уотсоном. На том совещании произошло подлинное рождение геномики как науки. А потом Вингаарден сделал сенсационное заявление: только что организованный Центр исследований человеческого генома возглавит Джим Уотсон, который и придаст новому проекту столь необходимый ему авторитет.
Назначение Уотсона означало возникновение множества подводных течений, и именно тогда я впервые столкнулся с политическими интригами, лоббированием, разными манипуляциями и понял, как много они будут вскоре значить для проекта расшифровки генома человека. Хотя Уотсон и сам признавался, что опасается грядущих трудностей, один знающий человек сказал: «Эта должность привлекала его не столько возможностью властвовать над людьми, сколько влиять на развитие науки».
А тогда в Рестоне меня многое поразило. Так, Уотсон утверждал, что наша задача – разработать методы секвенирования, и пусть потом будущие поколения ученых беспокоятся о смысле полученной последовательности. Я же всегда считал, что решающее значение имеет как раз интерпретация результатов. Большинство участников совещания были согласны с Уотсоном, а Ли Гуд даже сравнил секвенатор ABI, разработанный его командой, с первым «фордом», автомобилем «Ford A». Гуд желал иметь современный «феррари» еще до серьезного начала секвенирования, – а на это могли уйти годы.
Я же просто хотел продолжать работу. После конференции я зашел к Эрнсту Фризу и сообщил, что намерен заниматься развитием геномики и был бы счастлив заручиться его поддержкой, ведь от него зависел мой бюджет. Он положительно воспринял мою идею, но с одной оговоркой: поскольку институт обязан проводить исследования по неврологии, то моя работа, в первую очередь, должна касаться тех участков генома, которые связаны с неврологическими расстройствами и с мозговой деятельностью. Это выглядело разумным компромиссом. В заключение Эрнст упомянул, что в свое время был у Уотсона постдоком и пообещал, что когда тот возглавит Центр генома НИЗ, он устроит нам встречу для демонстрации моих результатов по секвенированию ДНК.
Я считал удобным начать секвенирование с определенных участков генома – например с конца короткого плеча Х-хромосомы. Здесь картировано множество генов, ответственных за различные заболевания, в том числе нестойкий ген X, ответственный за одну из разновидностей умственной отсталости. Другим перспективным участком был конец короткого плеча хромосомы 4, где мы надеялись найти причину болезни Хантингтона – страшного генетического заболевания мозга. Впрочем, я не забывал о рецепторах и продолжал следить за картированием рецепторных генов. Подробно изучив все полученные данные, для запуска проекта генома человека я разработал предварительный план секвенирования Х-хромосомы. Теперь-то я знаю, что никакое большое дело нельзя начать, если исследователи полностью погрязли в интригах, если на первом месте стоят амбиции ученых и их стремление удовлетворить свое эго, а интересы науки имеют лишь второстепенное значение.
Когда Уотсон приступил к своим обязанностям в НИЗ, Эрнст Фриз договорился с ним о нашей встрече в дирекции. После краткого вступления я продемонстрировал Уотсону данные моих секвенаторов и сообщил, что доволен их работой и вполне могу переходить к секвенированию хромосом человека, а затем представил свой план исследования Х-хромосомы. Джима Уотсона очень заинтересовали мои результаты и их воспроизводимость. Он сказал, что буквально накануне посетил лабораторию Ли Гуда в Калтехе и, оказывается, Гуд даже не пытается использовать свой автоматический секвенатор ДНК, а предпочитает старый радиоактивный метод. Почему у меня все получается, а другие ученые отказались от секвенаторов ABI? И тогда я поведал о том, как отлаживал весь процесс секвенирования, в том числе о химическом анализе праймеров. Уотсон поинтересовался моей научной «родословной», и я рассказал о стажировке у биохимика Ната Каплана. «Это все объясняет, – сказал Джим. – Вы – настоящий биохимик».
Даже сегодня мне смешно, насколько неверно я истолковал это замечание. Я принял его за комплимент, так как сам гордился своим образованием и тем, что в моей научной «семье» четыре поколения биохимиков. Гораздо позже я узнал, что Уотсон всегда был невысокого мнения именно о биохимиках. Через много лет на симпозиуме НИЗ в честь нашего окончания секвенирования генома человека я пошутил – как приятно вспомнить старые добрые времена, сказал я, когда самое плохое, что мог сказать про меня Уотсон, это назвать биохимиком.
«Сколько вам нужно денег для начала работы?» – спросил Джим. «Пара миллионов долларов», – ответил я, но Уотсон счел этого недостаточным и сказал, что для старта секвенирования Х-хромосомы, скорее всего, понадобится около пяти миллионов. Он предложил составить план работ и обосновать программу стоимостью именно пять миллионов. На следующий день ему предстояло выступать в конгрессе, и он обещал попросить для нас эту сумму.
И Уотсон сдержал свое слово. Он назвал мою лабораторию лучшей в мире по секвенированию и попросил пять миллионов долларов для начала секвенирования Х-хромосомы. Примерно тогда же на пикнике, устроенном сотрудниками лаборатории Уотсона в Колд-Спринг-Харборе на Лонг-Айленде (в 50 километрах от Нью-Йорка), он похвастался: «Программа по расшифровке генома человека обязательно будет успешной. У меня есть один парень, который заставит автоматические секвенаторы работать как следует». Я парил в облаках и был совершенно уверен, что моя идея секвенировать Х-хромосому получила зеленый свет, а я возглавлю первый серьезно финансируемый проект расшифровки генома человека.
Я быстро набросал план работ, который хотел Джим. Однако была одна проблема: каковы бы ни были его благие намерения, Уотсон оставался государственным чиновником, и, как любой чиновник, боялся принимать самостоятельные решения. И ему было нелегко. На заседании НИЗ неделю спустя нам начали выкручивать руки – а не преждевременно ли приступать к секвенированию, а не лучше ли потратить деньги на охоту за генами или на картирование генома? И все это говорили университетские профессора. Понятное дело – им совсем не нравилось, что столь значительные деньги идут не к ним, а к какому-то ученому из НИЗ. Однако Джим был настроен решительно и продемонстрировал, как нужно действовать, если хочешь запустить новый проект. Он сообщил, что собирается финансировать наши эксперименты и представить демонстрационное секвенирование Х-хромосомы.
Роберт Кук-Диган вспоминал, что схватка за секвенирование была «очень напряженной», поскольку среди молекулярных биологов было много ярых противников масштабного секвенирования даже таких модельных организмов, как дрожжи, нематоды и плодовые мушки. Противоборство становилось еще жестче, когда речь заходила о секвенировании ДНК человека. Спорили и по поводу оптимальной методики секвенирования и выборе наилучшей стратегии. Ожесточенное сопротивление в конце концов вынудило Уотсона урезать объем обещанного финансирования.
Впоследствие Уотсон сказал, что хотел получить от меня более подробный план страниц на двадцать – чтобы создать впечатление, что он проводит некую экспертную оценку, а не просто проталкивает мой проект. Вскоре я понял, что это якобы разумное предложение было сделано, дабы осложнить мне жизнь. И если я соглашусь, то создам прецедент. Ведь я – сотрудник НИЗ, которому не нужны гранты, но при этом претендую на фонды межинститутской программы. На общем собрании несколько ведущих ученых, в том числе работавший с Уолли Гилбертом над его методом секвенирования Сенгер, объяснили мне мою ошибку. Работники НИЗ всегда опасались общественного обсуждения внутриинститутских проектов и были категорически против подачи заявок на гранты для своих исследований. Я чувствовал, как пять миллионов долларов ускользают из моих рук… Однако Джим заверил меня, что беспокоиться не о чем и настаивал на подготовке документов.
После нескольких недель усердной работы я передал расширенный план Уотсону лично в руки на ежегодном весеннем совещании в его лаборатории в Колд-Спринг-Харборе. Ответ он прислал не сразу. Итак, писал Уотсон, научное сообщество не готово к секвенированию генома и он оттолкнет своих сторонников, консультантов, союзников и спонсоров, если проявит излишнюю благосклонность к ученому, работающему в НИЗ по внутриинститутской программе.
Тогда мне посоветовали написать заявку на грант для полномасштабной межинститутской программы. Причем для ее рассмотрения, а также рассмотрения заявок от других конкурентов – Ли Гуда и Уолли Гилберта – созовут специальную комиссию. Неудивительно, что мое мнение об Уотсоне, стиле его руководства и способности сдерживать свои обещания резко ухудшилось.
Я понимал, что над моей работой сгущаются тучи, и чтобы отвлечься, решил уйти в море. К тому времени я сменил свою любимую лодку «Кейп Дори 25D» на более вместительную «Кейп Дори 33», которую назвал «Сириус» – в честь самой яркой звезды в созвездии Орион. За два года я побывал в самых разных передрягах, плыл и в шторм, и просто в плохую погоду, а теперь чувствовал, что мы с «Сириусом» готовы к более серьезным испытаниям. Шторм романтичен и опасен. И то, и другое – достаточно веские основания, чтобы пойти на риск.
Моряки Восточного побережья знали испытанный способ получить приз «Голубая вода» – пройти под парусами около тысячи километров до Бермудских островов. При этом я, конечно, попал бы в Бермудский, он же Дьявольский, треугольник, печально известный из-за множества непонятных событий. Тут бесследно исчезали и корабли, и самолеты. Бермудский треугольник – одно из немногих мест на Земле, где магнитный компас указывает на истинный север. Там в полной мере ощущается мощь Гольфстрима, гигантского теплого течения в Атлантическом океане, формирующегося в Мексиканском заливе.
Я был отважным мореплавателем, но не безрассудным, поэтому отправиться в плавание решил в начале мая, когда еще нет ураганов. Хотя у меня и был соблазн совершить путешествие в одиночку, но я подумал, что с экипажем будет намного безопаснее, – и это было ошибкой. Принять участие в моем переходе захотел Дэрил Дойл, в то время профессор и завкафедрой биологии в Университете штата Нью-Йорк в Буффало. (Дэрил умер в 2006 году.) Он привел с собой своего друга Герба. Мы погрузили в лодку горючее, банки с консервированным тунцом и тушенкой, и 14 мая 1989 года я попрощался с Клэр в Гейлсвилле, заверив ее, что через пять дней мы увидимся на солнечных Бермудских островах. Я нарочно не посмотрел прогноз погоды, чтобы встретить все уготованные нам трудности без предупреждения.
Дул легкий ветерок, и мы довольно медленно двигались вперед. Лодка скользила по зеркальной поверхности моря, и наше разочарование лишь возрастало. Вдруг Дэрил совершил нечто совершенно немыслимое. Он бросил вызов морским богам и крикнул: «Уж лучше настоящий шторм, чем такая тишь да гладь!» Его как будто кто-то услышал. К 9 часам утра 17 мая волны достигли 4 метров и становились все выше и выше. К 3 часам дня мы решили, что выскочили из Гольфстрима, и ожидали уменьшения волнения, но все произошло ровно наоборот. По радио объявили о шторме над Бермудами. В судовом журнале я записал: «Вертикальная голубая вода». В 6 часов вечера ветер стал столь сильным, что нам пришлось идти без парусов. Чтобы лодка не повернулась боком к волне и не опрокинулась, я развернул полусферическую сетку из тяжелых лямок и закрепил ее позади лодки толстой веревкой. Это должно было удержать нас в положении кормой к волнам.
Находиться в каюте маленькой лодки во время такого шторма было очень страшно. Гребни волн, глядя из впадин между волнами, казались высотой с четырнадцатиметровые мачты лодки. Когда они срывались и корма поворачивалась боком, сетка выравнивала нас, как чья-то гигантская рука, и спасала от неминуемой беды. К полуночи 18 мая скорость ветра упала до 25 или 35 узлов, но силы экипажа были на исходе. Герб был уверен, что не переживет встречу с Бермудским треугольником, и решил его обогнуть. Он изменил курс на 90° и тем самым подверг нас огромной опасности. Я в это время пытался задремать, и, обнаружив, что он сделал, страшно разозлился. Я отправил обоих членов экипажа ночевать в каюту и закрыл ее на ключ. Я бодрствовал более 30 часов, а Дэрил лишил меня законного права на отдых. Кроме того, он рассыпал весь наш запас кофе в трюме. Но именно для таких чрезвычайных обстоятельств у меня был припасен амфетамин. В полном штормовом обмундировании, в надувной спасательной куртке со страховочным поясом, с Роем Орбисоном и Элтоном Джоном в наушниках плейера, в полном восторге я шел со скоростью 9 узлов, раскачиваясь вверх-вниз на гигантских волнах в лунном свете, в сотнях миль от земли, – это была самая невероятная ночь, которую я провел на паруснике за всю свою жизнь.
На следующее утро шторм чуть-чуть утих, я открыл каюту и попросил Дэрила и Герба надеть страховочные пояса и встать за руль, пока я не определюсь с нашим местонахождением. Позже я узнал (по состоянию его матраса), что Герб был так напуган, что в разгар шторма обмочился прямо на койке. Теперь он запаниковал при виде больших волн и ухитрился так развернуть лодку, что одна из них обрушилась на нас и почти перевернула «Сириус» вверх дном. Вода залила люк, я бросился на палубу и увидел за бортом Герба, цепляющегося за лодку, – его спас только страховочный пояс. Никаких следов Дэрила не было видно. Следующая волна вкатила Герба обратно, и он с глухим стуком свалился на палубу. Когда я все-таки развернул лодку на прежний курс, я увидел Дэрила, которого буквально примотало к мачте, как мокрую тряпку (страховочного ремня на нем не было – он болтался где-то рядом).
В 2 часа ночи 22 мая, через 8 дней и полторы тысячи километров, мы наконец-то прибыли на Бермуды. Оба члена моего экипажа помчались в аэропорт, а я позвонил Клэр, которая уже была абсолютно уверена в моей гибели. Пока я испытывал неправдоподобный восторг и гордился, что сумел выжить (я назвал свою следующую лодку «Бермуды-под-кайфом» в память об испытанных чувствах), моя жена занималась изучением страхового полиса. Клэр присоединилась ко мне на следующий день, но от меня было мало толку – я спал как убитый два дня подряд. Я и понятия не имел, что Бермуды станут началом гораздо более длительной и жестокой борьбы на выживание, которая принесет мне огромное удовлетворение, и где на карту будет поставлено все – и моя научная карьера, и мой брак, и моя репутация. Когда я закончил расшифровку генома человека, меня охватил тот же невероятный восторг, то же первобытное возбуждение, что и тогда на Бермудах, одиннадцать лет назад.
После возвращения в НИЗ я продолжил работу над проектом секвенирования Х-хромосомы, занявшим уже 60 страниц. Как я и опасался, пришлось столкнуться с весьма ощутимым сопротивлением моих коллег по НИЗ, а потому я решил поискать союзников среди генетиков. Я связался с Томасом Каски, в то время заведующим кафедрой генетики человека Бэйлорского медицинского колледжа и специалистом по изучению Х-хромосомы, который согласился на сотрудничество. Он посоветовал мне сделать то же самое, что я уже предложил Фризу, а именно начать с участка Xq28 на коротком плече хромосомы, где картированы гены множества заболеваний, в том числе синдрома ломкой X-хромосомы. Сотрудники лаборатории Тома уже работали с молодым исследователем из Университета Эмори Стивеном Уорреном, собравшим библиотеку космидных клонов – участков ДНК человека длиной около 30 тысяч пар оснований, многократно перекрывающих Xq28. Уоррен присоединился к этой работе вместе с Энтони Каррано, директором проекта расшифровки генома человека в Ливерморской национальной лаборатории Министерства энергетики. Наша цель состояла в секвенировании Х-хромосомы в течение 10–12 лет, а истинной сутью предложения был план секвенирования 4,2 миллиона пар оснований Xq28 за три года, с одновременным снижением стоимости секвенирования одной пары оснований с 3,50 до 0,60 долларов. (Сегодня наши затраты составляют 0,0009 долларов за одно основание.)
Затем я получил письмо с сообщением, что собеседование с претендентами запланировано на 29 марта 1990 года в отеле «Марриот» в Арлингтоне, штат Вирджиния. В Национальном центре исследования генома человека, как он тогда назывался, был особый Комитет по рассмотрению заявок на гранты, состоявший из большого ряда ученых, которые хотели играть главную роль в будущем секвенировании генома. Среди них были Барт Г. Баррелл из Кембриджа, Рональд Дэвис из Стэнфорда, Глен Эванс из Института Солка, Томас Марр из Лаборатории в Колд-Спринг-Харборе, Ричард М. Майерс из Калифорнийского университета в Сан-Франциско, Брюс Роу из Университета Оклахомы и Ф. Уильям Стадьер из Брукхейвенской национальной лаборатории. Центр генома Уотсона представляла Джейн Петерсон.
В течение ряда лет после этой тягостной встречи практически все члены Комитета подавали заявки от своих центров на секвенирование генома. Оценивая эти события с позиций сегодняшнего дня, я ясно понимаю, что тогда они явно объединилась ради одной-единственной цели – не позволить никому опередить их в получении денег. В ходе обсуждения члены Комитета заявили, что наша технология недостаточно разработана, картирование недостаточно подробно, и главное – у нас нет новых идей. Перед возвращением в Техас Том Каски сказал мне, что это был самый унизительный эпизод в его научной карьере.
Позже я узнал, что Комитет отдал первенство двум моим соперникам. Одним из них был Ли Гуд, планировавший секвенировать Т-клеточный рецептор, важнейшую часть иммунной системы человека, а другим – Уолли Гилберт, предложивший впервые секвенировать геном живого организма, микроорганизма Mycoplasma capricolium, вызывающего пневмонию у овец и коз. Примечательно, что он хотел использовать некий новый метод, не имея никаких данных о его эффективности.
Уотсон, огорченный принятыми Комитетом решениями не меньше меня, был готов организовать пересмотр заявок, если я выступлю еще раз. Следующие нескольких месяцев мы вели переговоры, уточняя содержание нового проекта, и предложили дополнительно исследовать другие хромосомы. Один из постдоков в моей лаборатории, Ивен Киркнесс, охотился за различными рецепторами нейромедиатора гамма-аминомасляная кислота (ГАМК). Он выделил новый рецептор на хромосоме 15 в середине участка, отвечающего за два генетических заболевания – синдромы Эйнджелмена и Прадера-Вилли. Эти необычные заболевания были описаны лишь в конце 1980-х годов, когда ученые впервые поняли, что в зависимости от своего происхождения гены проявляются по-разному: импринтинговый ген материнской хромосомы может влиять на одни процессы, а тот же ген на хромосоме отца – на другие. Синдром Прадера-Вилли проявляется в умственной отсталости, ожирении и аномалиях роста, он возникает у людей, которые наследуют обе копии хромосомы 15 от своей матери, а не по одной от каждого родителя. Синдром Эйнджелмена характеризуется умственной отсталостью, характерным судорожным движениями и эпилепсией. Марк Лаланд из детской больницы в Бостоне, изучавший явление импринтинга, был очень заинтересован в секвенировании этого участка и пообещал работать вместе с нами. Кроме того, я добавил к проекту изучение участков хромосом, ответственных за болезнь Хантингтона. Дефектный ген, ответственный за эти неврологические расстройства, был картирован на конце короткого плеча хромосомы 4 около 8 лет назад, но сам ген еще не был определен, хотя усилиями Нэнси Векслер большой коллектив ученых – около 60 человек из 6 разных групп – объединились именно с этой целью. У Нэнси была личная заинтересованность в этом проекте: она и ее сестра находились в группе риска, так как их мать, дяди и дед по материнской линии умерли от этого наследственного, неизлечимого и смертельного заболевания головного мозга. Чтобы ей помочь, ученые испробовали все методы – за исключением секвенирования.
Часть этих исследователей утверждали, что секвенирование – непроверенный метод, который вряд ли будет работать, другие беспокоились, что на эту работу уйдут все ресурсы их собственных проектов. Я же говорил, что у меня есть независимые фонды в НИЗ и терять им нечего. Однако никого из них геномные задачи не интересовали. Я лишний раз убедился, что многие исследователи генома человека были гораздо больше озабочены выигрышем гонки за обнаружение генов каких-либо заболеваний. У меня сложилось впечатление, что и охотники за геном болезни Хантингтона – не исключение. Они гнались лишь за славой, и их совершенно не интересовали новые идеи, которые могут ускорить обнаружение гена. По понятным причинам исключением была сама Нэнси, которая, как и любой другой человек, оказавшийся под угрозой страшного заболевания, была готова сделать все возможное, чтобы найти дефектный ген, причинивший столько страданий ее семье. Нэнси вмешалась в обсуждение и настояла, чтобы эта группа исследователей начала со мной работать. Ни у кого не нашлось убедительных аргументов против, и было решено, что Джеймс Гузелла из Центральной больницы штата Массачусетс предоставит моей команде под руководством Дика Маккомби 3 клона, содержащие 100 тысяч пар оснований на конце хромосомы 4. Как оказалось, клоны были на периферии целевого участка, где предположительно находился ген. Я принял это предложение, так как передо мной стояла более серьезная цель – наладить процесс быстрого секвенирования ДНК и доказать эффективность моего метода. Я понимал, что если мне удастся установить рабочие отношения с группой исследователей болезни Хантингтона, то в случае успешного секвенирования они смогут предоставить мне более перспективные клоны.
Другим объектом исследования было расстройство, вызванное мышечной атрофией, – миотоническая дистрофия. С учеными, исследующими это заболевание под руководством Тони Каррано, моим соперником в борьбе за злополучный грант на исследование Х-хромосомы, мне повезло больше. После подписания соглашения, согласно которому я обязался делиться с ним полученными данными и взять его в соавторы, мы получили 3 клона из хромосомы 19, содержащие 100 тысяч пар оснований на участке, наиболее вероятно включавшем искомый ген. Постдок из Испании Антония Мартин-Гальярдо возглавила команду исследователей хромосомы 19, которую я финансировал из своего внутриинститутского бюджета. Я полагал и тогда, и сегодня, что успех – лучший способ в борьбе с критиками. Хорошие результаты всегда побеждают.
С применением метода дробовика секвенирование пошло быстро. Клоны в виде космид ДНК длиной около 35 тысяч пар оснований были упакованы в фаги и внедрены в E. coli. Вначале мы использовали акустические волны, чтобы раздробить множество копий ДНК на мелкие фрагменты размером около полутора тысяч пар оснований. Случайным образом отобрав 1000 фрагментов и секвенируя от 300 до 400 пар оснований генетического кода в каждом, мы теоретически должны были охватить все пары оснований ДНК в космиде минимум десять раз (350 × 1000 = 350 000).
Но и тут нас ждали трудности. Программное обеспечение тогда не предназначалось для обработки более нескольких сотен последовательностей, поэтому было невозможно справиться с тысячами, и нам пришлось прибегнуть к утомительному ручному методу. Для сколько-нибудь существенного прогресса требовались гораздо более мощные компьютеры, чем наши, и программное обеспечение значительно более высокого качества (несмотря на противоположное мнение наших коллег). И я стал нанимать на работу специалистов по информационным технологиям.
Одним из них был Марк Адамс из Мичиганского университета, вылитый Маколей Калкин (из кинофильма «Один дома»), имевший вид «нет-ничего-невозможного», исполнительный и энергичный парень в больших очках, с которым я провел собеседование в конце 1989 года. Меня поразило тогда, что этот худой молодой человек создал компанию по разработке программного обеспечения, еще учась в аспирантуре. Марк увлекался геномикой и был готов приступить к работе. Мы приобрели мощные компьютеры компании Sun, а я разыскал программистов для разработки новых способов интерпретации генетического кода, данные о котором у нас уже начали накапливаться. Благодаря незрячему программисту Марку Дабнику, который пользовался клавиатурой особой системы, «разговаривавшей» с ним в таком быстром темпе, что никто другой не мог ничего разобрать, мы стали по-новому смотреть на ДНК. Мы даже попытались использовать ее для прочтения генетического кода, проигрывая его в виде музыкальной фразы и надеясь обнаружить изменения в генетической структуре.
Но что бы мы ни делали, правильная интерпретация генетического кода оказалась практически невозможной даже после составления длинных отрезков хромосом. Программное обеспечение, с помощью которого можно идентифицировать последовательности бактерий, не работает в случае более сложного человеческого генома. В нем гены разбиты на небольшие сегменты (экзоны) бессмысленными участками ДНК (интронами), подобно тому, как бессмысленная реклама прерывает телефильм. Поэтому ген часто состоит из частичек и кусочков огромного генетического кода, от сотен тысяч до миллионов пар оснований. Мы использовали самые совершенные программы, чтобы найти эти участки, но компьютер не мог отличить реальные гены от шума, генерируемого случайным сочетанием четырех букв замучившего нас генетического кода.
И тогда я придумал новый способ определить прогнозируемый ген, отыскав его аналог в матричной РНК. Всякий раз, когда в геноме человека обнаруживается реально действующий ген, мы находим и соответствующую молекулу матричной РНК, сокращенный вариант гена, который содержит только пары оснований генетического кода для создания белка. Превращая эту «летучую» РНК в кДНК для последующего секвенирования, мы обрели способ подтвердить наличие прогнозируемых генов.
Мы начали тестирование библиотек кДНК разных тканей человека, главным образом мозга и плаценты. Наши зонды состояли из последовательностей генов, прогнозируемых на основе компьютерного анализа ДНК из хромосом 4 и 19. Если бы удалось доказать, что клон кДНК является прогнозируемым геном в генетическом коде, его существование стало бы доказательством подлинности гена, а не артефактом. Несмотря на бесспорную логичность этого метода, потребовались месяцы напряженной работы, чтобы подтвердить наличие всего лишь нескольких истинных генов в изучаемой последовательности. Неудивительно, что в начале дискуссии о проекте генома методы анализа кДНК, которые были предложены (в частности, Сидни Бреннером и Полом Бергом) в качестве альтернативы секвенирования генома, сразу же были отвергнуты.
Однако я чувствовал, что нахожусь на правильном пути. Моя уверенность окрепла в 1990 году, когда меня пригласили на симпозиум в Японии, организованный производителем секвенаторов компанией ABI. Тогда я и узнал, что мои методы исследования генома считаются наиболее перспективными. Целый ряд японских ученых решили сосредоточить свои усилия на выделении и секвенировании клонов кДНК. Японцы пришли в восторг от моих результатов, поскольку они подтверждали их собственную методику. Два японских ученых произвели на меня особенно сильное впечатление и серьезно помогли усовершенствовать мою теорию. Одним из них был Хирото Окаяма из Осакского университета, который вместе с Полом Бергом разработал замечательный метод получения клонов кДНК и теперь хотел найти подтверждение, что они покрывают всю последовательность генов – так называемых полноразмерных кДНК.
Это имело определенное отношение к важнейшей проблеме при изучении кДНК – нестабильности мРНК при выделении ее из тканей. Эта молекула имеет тенденцию распадаться на более мелкие фрагменты, прежде чем ее удается полностью скопировать. Другие проблемы связаны с ферментом, называемым обратная транскриптаза, который используется для преобразования нестабильных мРНК в более стабильные кДНК. Фермент отсоединялся от мРНК, прежде чем заканчивал свою работу. Я был хорошо знаком с этим явлением: при использовании кДНК для изучения рецепторов адреналина я потерял так часть гена с одного из концевых участков клона.
Другим источником моего вдохновения был Кэнъити Мацубара, директор Института молекулярной и клеточной биологии Осакского университета, руководитель японской программы расшифровки генома человека и советник Монбусё (Министерства образования, науки и культуры Японии). Оба ученых были убеждены, что секвенирование полноразмерных клонов кДНК станет основной частью, а возможно, даже альтернативой всей работы по секвенированию генома, несмотря на то, что данный вариант был категорически отклонен американскими и британскими экспертами. И тут возникли еще и иного рода осложнения. Уотсон, считая, что богатая Япония паразитирует на исследованиях генома, финансируемых другими странами, в раздражении написал Мацубаре письмо с угрозой прекратить делиться с ним результатами исследований, причем в таких выражениях, что в прессе заговорили о «войне генов человека». «Если начнется война, я буду с ним воевать, – заявил Уотсон. – Слюнтяям никогда ничего не добиться в жизни».
Во время полета домой я только и думал, что о развиваемой в Японии методике секвенирования полноразмерной кДНК. А также о том, как легко было бы изучать геном человека, будь все клоны кДНК выделены и секвенированы. А ведь мне понадобилось долгих десять лет, чтобы обнаружить один-единственный ген, только один клон кДНК. Думал я и о том, каким неэффективным оказался метод дробовика для прочтения кода всего лишь тысячи или около того геномных последовательностей, и всё – чтобы найти всего один ген, или даже лишь его часть. А еще – о том, как трудно найти соответствующий клон кДНК, чтобы доказать существование этого гена.
И вдруг, на высоте 11,5 тысяч метров над Тихим океаном, меня осенило: я использовал правильную методику секвенирования, но не той ДНК! Что, если применить быстрый метод случайного секвенирования (метод дробовика) к клонам кДНК? Что произойдет, если просто случайно выбрать клон кДНК и секвенировать его за один проход? Мои секвенаторы одновременно прочитывали около 400 пар оснований генетического кода – более чем достаточно, чтобы найти соответствие в геномной базе данных. Это было подобно открытию алфавитного указателя к каталогу генов человека.
Если данная последовательность получена из клона кДНК, изготовленного из нестойких мРНК мозга человека, то в ней содержится ключевая информация: (а) эта последовательность является частью реального, экспрессивного гена, и (б) этот ген имеет важное значение для функции мозга. Для сравнения – последовательности из генома практически неинформативны. Если бы я перешел на секвенирование тысячи случайно выбранных клонов кДНК, то смог бы обнаружить сотни генов для каждого клона, определенного методом традиционного геномного секвенирования. Я так воодушевился этой идеей, что с трудом дождался возвращения домой и постановки решающего эксперимента.
Уже на следующее утро я собрал в лаборатории своих ведущих сотрудников. Я был уверен, что они разделят мой энтузиазм по поводу новой идеи, но меня встретила стена скепсиса и сомнений. В итоге Маккомби и все остальные заявили, что из моей «сенсационной» идеи, скорее всего, ничего не получится и все кончится тем, что ее придется финансировать из средств на секвенирование генома. Они приводили те же аргументы, что и другие критики метода кДНК.
Согласно современной теории, для подавления любого сигнала генов с низким уровнем экспрессии достаточно лишь небольшого количества генов с высоким уровнем экспрессии. Любая обнаруженная нами матричная РНК, скорее всего, будет соответствовать этим доминантным генам. Но хотя этот аргумент имеет смысл для некоторых тканей, его вряд ли можно отнести к человеческому мозгу, функционирование которого и сама мыслительная деятельность зависит от огромного количества генов, причем некоторых с очень низким уровнем экспрессии. Исследования ученых из Клиники имени Скрипса показали, что до половины всех генов человека действуют в головном мозге.
Я вспомнил совет Ната Каплана: никогда не отговаривай себя от проведения эксперимента; в конечном счете, все зависит от реального устройства мира, а не от наших представлений о нем сегодня. К счастью, в лаборатории нашелся один заинтересовавшийся моей идеей сотрудник. Марк Адамс пришел к нам из Мичиганского университета всего неделей раньше, и нам еще предстояло выяснить, чем он захочет заниматься. Мы обсудили с ним использование библиотеки кДНК мозга для реализации идеи случайного выбора кДНК в процессе секвенирования, и он согласился незамедлительно начать работу. Потом я узнал, каким нападкам за моей спиной подвергся Марк со стороны Маккомби и других сотрудников, страшно озабоченных возможным уменьшением финансирования, хотя у нас не было никаких оснований для беспокойства. Да даже если бы нам понадобилось еще больше денег, я бы их как-нибудь раздобыл.
К тому времени был практически закончен последний вариант заявки на грант Уотсона, предназначенный для финансирования секвенирования участков хромосомы с высоким содержанием генов, а не всей хромосомы. В октябре того же года мы встретились с Уотсоном в городе Хилтон-Хед-Айленд в Калифорнии, где я проводил конференцию по секвенированию. Я изложил ему свой план исследования участка хромосомы 4, ответственного за болезнь Хантингтона, участка хромосомы 19, ответственного за миотоническую дистрофию, и участка хромосомы 15, ответственного за синдром Прадера – Вилли. Он согласился, что мой план весьма убедителен и понравится специалистам, занимающимся «охотой» на определяющие эти болезни гены.
Уотсон заверил меня, что на этот раз я могу рассчитывать на благоприятный исход дела, так как членов Комитета по рассмотрению заявок отбирали с учетом их неподдельной заинтересованности в развитии исследований генома. Как бы я ни злился на него за трижды невыполненные обещания, мы все же сохраняли хорошие отношения. Я чувствовал, что он искренне желает получить финансирование для моей программы, и мы оба искренне верили в успех геномики и определения генома человека.
На этой конференции произошло еще одно запомнившееся мне событие, которому предстояло сыграть важную роль в будущем. Во время нашего однодневного семинара Уотсон затеял громкий скандал с представителями фармацевтической компании по поводу того, кто будет обладать патентами на идентифицированные гены. Он также потребовал согласовать стратегию выдачи результатов секвенирования и выразил желание, чтобы это делалось сразу после подтверждения полученных результатов. Этот инцидент будет преследовать меня еще долгие годы.
Внезапно я обнаружил, что направление исследований резко изменилось. Результаты моей лаборатории показали, что методику секвенирования случайно выбранных клонов кДНК ожидает большой успех. Я ликовал, хотя предстояло еще проделать колоссальную работу и убедиться, что мы не оказались в плену полученных данных и не совершили никаких ошибок. Трудность состояла в необходимости подтвердить, что, имея всего лишь 300–400 пар оснований кода кДНК, мы располагаем достаточной информацией для идентификации соответствующего гена. Мы собирались продемонстрировать эффективность метода путем картирования последовательностей кДНК обратно в геном. А еще мы пытались манипулировать библиотеками кДНК и выяснить, существуют ли эффективные способы уменьшить активность обычных генов, чтобы обнаружить более редкие гены.
По мере исследования все большего числа клонов кДНК волнение в лаборатории нарастало. В 1990 году мы определили и секвенировали около 2000 генов человека, из которых только 10 % – например, адреналинового рецептора – были получены из мозга человека. За каждый день работы наших устройств мы обнаруживали от 20 до 60 новых человеческих генов. Каждый день! Мне трудно было осознать эту цифры, так как это на порядок превышало количество генов человека, которое мы декодировали за многие месяцы геномного секвенирования, и в 60 раз было больше, чем мне удалось получить с помощью традиционных методов за десяток лет невероятно упорного и утомительного поиска адреналинового рецептора. Мы стояли на пороге настоящего переворота в биологии.