Глава 1
Краткое и очень доступное, хотя отчасти устаревшее, введение в физику от гроссмейстера Ричарда Фейнмана называется «Характер физических законов» (издательства АСТ, Астрель, Neoclassic, 2011). «Фейнмановские лекции по физике» (три тома) (Ричард Фейнман, Роберт Лейтон и Мэтью Сэндс, издательство «Мир», 1967) были подготовлены для студентов старших курсов Калифорнийского технологического института, однако начальные части каждой книги и многие отдельные главы концептуальны, доступны для понимания и часто блестяще написаны.
Глава 2
С. 24. Классический анализ основ классической механики представлен в книге Эрнста Маха «Механика. Историко-критический очерк ее развития» (издательство «Регулярная и хаотическая динамика», 2000). Эйнштейн внимательно читал эту книгу в студенческие годы, и изложенная в ней критика ньютоновских концепций абсолютного пространства и времени помогла ему сформулировать концепцию относительности. Он писал: «Даже [Джеймс Клерк] Максвелл и [Генрих] Герц, которые в ретроспективе предстают теми, кто уничтожил веру в механику как предельную основу всего физического мышления, в своих рассуждениях всегда обращались к механике как к надежной основе физики. Именно Эрнст Мах в своей истории механики (Geschichte der Mechanik) пошатнул эту догматическую веру. Когда я был студентом, эта книга оказала на меня глубокое влияние в этом отношении. Я вижу величие Маха в его неподкупном скептицизме и независимости». Взгляды Ньютона, выраженные его собственными словами, можно найти, в частности, в книге Newton’s Philosophy of Nature (Hafner). О других исторических и философских перспективах можно узнать в книге Макса Джеммера «Понятие массы» (издательство «Прогресс», 1967).
Глава 3
Книга «Принцип относительности» (издательство «Книга по Требованию», 2012) — это незаменимый сборник классических работ по теории относительности. Он содержит работы Лоренца, Эйнштейна, Минковского и Вейля. В него включены две оригинальные статьи Эйнштейна, посвященные специальной теории относительности, а также его основополагающая работа по общей теории относительности. Первая половина первой работы Эйнштейна по специальной теории относительности практически не содержит уравнений и очень легко читается. Начальные части его первой презентации общей теории относительности также являются вдохновляющими и доступными для понимания. (Для студентов, изучающих физику: на мой взгляд, эта статья в целом остается лучшим введением в общую теорию относительности). Книга «Эволюция физики», написанная Эйнштейном и Леопольдом Инфельдом (издательство «Амфора», 2013), представляет собой очень доступное популярное изложение не только самой идеи относительности, но и ее интеллектуальных основ в электромагнетизме и основ физики полей. Два доступных современных введения в теорию относительности — это «Физика пространства-времени» (Эдвин Тейлор и Джон Уилер, издательство «Книга по Требованию», 2012) и It’s About Time: Understanding Einstein’s Relativity (David Mermin, Princeton).
Глава 4
С. 38. «95 % массы»: как нам предстоит убедиться, большая часть массы обычной материи легко вычисляется в рамках такой теории, первоэлементами которой считаются безмассовые глюоны, безмассовые u- и d-кварки — и все (такую теорию я называю КХД-лайт). В КХД-лайт действительно возникает «безмассовая масса». Однако это неполная теория природы. Она не учитывает многих явлений: электромагнетизма, гравитации, электронов, минимальных масс u- и d-кварков, которыми те все-таки обладают. К счастью, можно оценить, каким образом эти феномены, исключенные из такой идеализированной картины, могут влиять на массу обычной материи. Проверить эти оценки можно с помощью расчетов, описанных в главе 9. Не буду томить: остаточные эффекты меняют общую картину менее чем на 5 %. (Для тех, кто в теме: основной эффект проистекает от s-кварка. Он очень тяжелый, чтобы считать его безмассовым, однако для точного интегрирования его масса слишком мала.)
Глава 5
Книга The Making of the Atomic Bomb (Richard Rhodes, Simon and Schuster) — это не только шедевр истории и литературы, но и еще и отличное введение в ядерную физику.
Глава 6
Яркий исторический отчет об идеях и экспериментах, приведших к КХД, можно найти в книге The Hunting of the Quark (Michael Riordan, Touchstone). Двумя хорошими, доступными для понимания отчетами о физике КХД и стандартной модели электрослабых взаимодействий являются The Theory of Almost Everything (Robert Oerter, Pi Press) и The New Cosmic Onion (Frank Close, Taylor and Francis). Уникальным и обязательным для прочтения является представление о КЭД, написанное Ричардом Фейнманом: «КЭД — странная теория света и вещества» (издательства «Полиграфиздат», Neoclassic, «Астрель», 2012).
С. 51. Книга 50 Years of Yang-Mills Theory (G.’t Hooft, World Scientific) представляет собой важное собрание статей ведущих специалистов по физике, основанной на уравнениях Янга — Миллса.
С. 52. «Без необходимости представлять образцы или делать какие-либо измерения» — это (на удивление, небольшое) преувеличение. Оно было бы верно, если бы все кварки имели либо нулевую, либо бесконечную массу. Конечные ненулевые значения их масс могут быть получены только в результате проведения измерений или из образцов. В природе u- и d-кварки имеют почти нулевую массу относительно массы протонов или нейтронов; в то же время кварки c, b и t являются настолько тяжелыми, что играют очень незначительную роль в структуре протонов и нейтронов, даже в качестве виртуальных частиц. Странный кварк s является промежуточным, он играет определенную роль в структуре протонов и нейтронов, хотя и небольшую. Мы можем получить хорошую приближенную теорию протонов и нейтронов, сделав вид, будто u- и d-кварки имеют нулевую массу, в то время как другие имеют бесконечную массу и поэтому могут быть проигнорированы. Я называю эту приближенную теорию «облегченной КХД». В ней вам на самом деле не нужно производить измерения или предоставлять какие-либо образцы.
Эйнштейн подчеркивал идеал чисто концептуальных теорий, которые не требуют в качестве исходных данных результатов измерений или образцов, в своих «Автобиографических заметках»: «Я хотел бы сформулировать теорему, которая в настоящее время может основываться не более чем на вере в простоту, то есть понятность, природы: произвольных констант не существует... это означает, что устройство природы подразумевает возможность логичного установления таких строго определенных законов, в которых имеют место только рационально определенные константы (то есть не константы, численное значение которых может быть изменено без разрушения теории)». Облегченная КХД — это редкий пример мощной теории такого рода. (Для экспертов: другим примером является теория структурной химии, основанная на уравнении Шрёдингера с бесконечно тяжелыми ядрами.) Эта проблема тесно связана с вопросом фиксации параметров, который был поднят в главе 9, а также с философскими/методологическими дискуссиями в главах 12 и 19.
Поскольку кварки не являются изолированными частицами, понятие их массы требует особого рассмотрения. В случае коротких временных интервалов и расстояний кварки движутся так, будто они являются свободными (асимптотическая свобода). Мы можем вычислить некоторые последствия такого движения, которые, разумеется, зависят от того, какое значение мы припишем массе кварков. Затем при сравнении результатов вычислений с экспериментальными данными мы определяем значение массы. Это хорошо работает в случае более тяжелых кварков. Для легких кварков более практичным способом является вычисление вклада их массы в массу содержащих их адронов, как описано в главе 9. Интуитивно под массой кварка мы понимаем массу голого кварка, свободного от окружающего его облака виртуальных частиц.
С. 64. Фраза «при строго идентичных условиях» предполагает отсутствие скрытых переменных, описывающих протоны, то есть то, что их степени свободы — это только положение и ориентация спина. Все приложения статистики Ферми к протонам основаны на данном предположении. Поэтому их успех неопровержимо это доказывает.
С. 67. Фраза «никакой внутренней структуры» ставит очень интересный и важный вопрос, который возникает не только для кварков, но и для протонов, ядер, атомов и молекул. Давайте обсудим его в применении к протонам. Как я уже упоминал в предыдущем примечании, существуют неопровержимые доказательства того, что состояние протона полностью определяется его положением и спином. Однако согласно нашей лучшей теории протоны представляют собой сложные системы кварков и глюонов или, если точнее (заглядывая вперед, в главы 7 и 8), сложные закономерности возмущений в Сетке. Как вся эта структура оказывается скрытой? Если внутри протона происходит все это дребезжание, почему различные протоны не могут предусматривать большое разнообразие различных состояний в зависимости от того, что именно происходит у них внутри?
В классической физике существовало бы множество возможных внутренних состояний или, если хотите, множество «скрытых переменных». Однако эти состояния устраняет квантовая цензура. В квантовой теории (опять же заглядывая вперед, в главу 9) мы узнаем, что протон или любая квантовая система реализует все возможные внутренние состояния сразу с разными амплитудами вероятности. Чтобы получить квантовое состояние с наименьшей энергией, протон объединяет множество классических состояний, каждое из которых имеет соответствующую амплитуду. Второе по предпочтительности квантовое состояние имеет совершенно иной набор амплитуд и гораздо более высокий уровень энергии. Вследствие этого вы должны довольно сильно потревожить протон, чтобы хоть как-то изменить его внутреннюю структуру. Небольшие возмущения не обеспечивают достаточного количества энергии для изменения амплитуды. Поэтому для малых возмущений всегда существует уникальный набор амплитуд — вариации подвергаются цензуре. Внутренняя структура, по сути, заморожена. Это похоже на то, как снежный ком представляет собой жесткий шар, хотя и состоит из большого количества молекул, которые при более высоких температурах пребывали бы в жидком состоянии.
Еще более близкая с точки зрения математики аналогия касается физики музыкальных инструментов. Если вы правильно играете на флейте, она будет издавать определенный желаемый тон (конечно, в зависимости от расстановки пальцев). Только если вы дуете слишком сильно или беспорядочно, это приведет к возникновению обертонов и скрипов. Желаемый тон соответствует определенной, довольно сложной структуре вибрации воздуха в флейте. Обертон соответствует совершенно другой структуре. В квантовой теории мы имеем вибрирующие волновые функции вместо вибрирующего воздуха, однако эти концепции и математика очень схожи. Действительно, когда была открыта «новая» квантовая теория, использующая волновые функции, физики вернулись к своим текстам по акустике, чтобы лучше разобраться с математикой.
Именно из-за квантовой цензуры, казалось бы, радикальные представления о глубинной структуре вещества могут оказаться малополезными. Например, широко распространено предположение о том, что кварки являются струнами. Тем не менее у нас есть четкая теория — КХД, точно описывающая многие эксперименты (на сегодняшний день все), которая не учитывает такую вероятность. Как это возможно?
Если кварк является струной, то квантово-механическая волновая функция для кварка будет поддерживать конфигурации основополагающей струны с разными размерами и формами, взвешенными по их амплитудам. С течением времени эти различные конфигурации эволюционируют друг в друга, однако общее распределение остается прежним.
Пока распределение амплитуд конфигураций струн остается неизменным, оно является инертным и незаметным. И изменение этого распределения может потребовать много энергии. Внутренние степени свободы струны невидимы при проведении экспериментов, которые не достигают этого критического уровня энергии. Для практических целей они с тем же успехом могли бы и вовсе не существовать. Никому точно не известно значение критической энергии для колебаний кварковой струны, однако она должна быть значительно больше того уровня, который достижим для какого-либо из существующих ускорителей.
С. 81. Более подробное описание различия между мягким и жестким излучением может быть основано на связи между импульсом глюона и длиной волны его волновой функции. Низкое значение импульса соответствует большей длине волны. Длинные волны не разрешают мелкую структуру кваркового облака и поэтому реагируют на него в целом с усилением его цветового заряда в результате антиэкранирования. Короткие волны разрешают внутреннюю структуру. Горбы и впадины этих волн нейтрализуют взаимодействие со всем облаком, оставляя вклад теперь уже разрешенного затравочного заряда.
Глава 7
С. 83. Классическим введением в тему симметрии, написанным великим пионером в математике и высокообразованным человеком Германом Вейлем, является книга «Симметрия» (Главная редакция физико-математической литературы издательства «Наука», 1968). Юджин Вигнер ввел теорию групп в современную физику, а его сборник эссе Symmetries and Reflections (Ox Box) интересен с различных точек зрения.
С. 101. Будничные особенности квантовой теории поля — не для слабонервных. Если вы хотите углубиться в предмет, я бы рекомендовал начать с упомянутой ранее книги Фейнмана «КЭД» и моей обзорной статьи «Квантовая теория поля», написанной к 100-летию Американского физического общества, напечатанной в книге More Things in Heaven and Earth (ed. Bederson, Springer) и размещенной на сайте itsandbits.com. В течение примерно четырех лет основным учебником была книга An Introduction to Quantum Field Theory (Michael Peskin and Daniel Schroeder, Addison-Wesley); отличным новым кандидатом на это звание является книга Quantum Field Theory (Mark Srednicki, Cambridge). В книге Энтони Зи «Квантовая теория поля в двух словах» (издательство «Регулярная и хаотическая динамика», 2009) в свежем ключе изложены многие необычные аспекты данного предмета. Наконец, трилогия Стивена Вайнберга «Квантовая теория поля» (издательство «Физматлит», 2015) является великим произведением великого мастера, однако, исключая историческое введение в первом томе, непрофессионалам оно, вероятно, покажется очень трудным для восприятия.
Глава 8
Биография Эйнштейна. Существует множество биографий Эйнштейна. Два лучших произведения, подчеркивающих его научные воззрения, — это его собственные автобиографические заметки в книге Albert Einstein, Philosopher-Scientist (edited by P. Schilpp, Library of Living Philosophers) и Subtle Is the Lord, Abraham Pais (Oxford). Абрахам Пайс был по-своему выдающимся физиком.
Биография Фейнмана. Фейнман не написал систематической автобиографии, однако его личность хорошо проявлена в его сборниках рассказов «Вы, конечно, шутите, мистер Фейнман!» (издательство АСТ, 2015) и «Не все ли равно, что думают другие?» (издательства АСТ, Neoclassic, 2014). Книга Genius (James Gleick, Pantheon) представляет собой хорошо написанное и глубокое исследование яркой жизни Фейнмана.
С. 108. «противоречия». Противоречия с чем? С сохранением заряда. Максвелл применил известные уравнения к «мыслительной цепи», включая то, что сегодня мы назвали бы конденсатором, и обнаружил, что они требуют, чтобы электрический заряд возникал из ниоткуда. Поскольку экспериментальные данные, казалось, очень сильно свидетельствовали в пользу сохранения заряда при всех обстоятельствах, Максвелл соответствующим образом модифицировал уравнения.
С. 118. Цитата Эйнштейна «о поисках истины» взята из речи, с которой он выступил в университете Глазго в 1933 году. Цитата «об одновременности» взята из его «Автобиографических заметок».
С. 119. В этом обсуждении, касающемся необходимости полей, я говорю об универсальной ценности момента «сейчас», о поиске решения для полей в будущем, исходя из состояния полей в настоящее время и т.д. Как это может работать, учитывая относительность одновременности?
Технический ответ: в ускоренной системе отсчета горизонтальный срез «сейчас» будет изменен на наклонный срез. Но поскольку уравнения принимают одинаковую форму, все равно можно будет вычислить значение полей вне среза, используя их значения на срезе. (Иными словами, вы должны знать как значение полей, так и их производные по времени.) Короче говоря, разные моменты «сейчас», тот же аргумент.
Тем не менее здесь присутствует значительная сложность, которая мешает заключению «брака» между квантовой теорией и теорией относительности. В уравнениях квантовой теории и в их интерпретации время очень отличается от пространства. Однако в уравнениях теории относительности время и пространство смешиваются. Поэтому, когда мы занимаемся квантовой механикой, мы отмечаем очень сильное различие между временем и пространством, но мы должны показать, если мы верим в относительность, что это различие в конечном итоге не имеет значения. По сути, именно поэтому так трудно создать квантовые теории, которые согласовывались бы со специальной теорией относительности. Единственный известный нам способ это сделать подразумевает использование сложного формализма квантовой теории поля (или, возможно, еще более сложного — и по-прежнему неполного — формализма теории суперструн). Обратная сторона этой сложности заключается в том, что это приводит нас к очень жесткой, специфической схеме, а именно к квантовой (для специалистов: локальной) теории поля. К счастью, это оказывается той схемой, которую Природа использует в нашей Центральной физической теории. Возвращаясь к брачной метафоре: если вы очень разборчивы в отношении того, что вы готовы принять в партнере, то, если вы вообще кого-то найдете, этот кто-то, скорее всего, окажется подходящим человеком!
С. 131. В упомянутых ранее книгах Клоуза и Олмерта содержится обстоятельное описание слабого взаимодействия.
С. 135. В книге Lectures on Classical Differential Geometry (Dirk Struik, Dover) хорошо освещена математическая картография. Книгой, в которой подчеркивается геометрический подход к общей теории относительности, является «Гравитация», написанная Чарльзом Мизнером, Кипом Торном и Джоном Уилером (издательство «Мир», 1977). Классическим произведением, освещающим полевой подход, является книга Gravitation and Cosmology (Steven Weinberg, Wiley). Я должен подчеркнуть, что между этими подходами нет противоречия, и хорошие физики учитывают оба.
С. 140. Книга Брайана Грина «Элегантная Вселенная» (издательство «Либроком», 2017) представляет собой популярное и восторженное представление о теории струн.
С. 140. «многообещающая возможность»: последние разработки в космологии все чаще указывают на то, что в начале своей истории Вселенная пережила период очень быстрого расширения, известного как инфляция. Книга The Inflationary Universe (Alan Guth, Perseus) представляет собой превосходное популярное изложение лежащей в основе этой идеи теории ее отцом-основателем. Согласно этой теории к числу объектов, подвергшихся инфляции, относятся и квантовые флуктуации в метрическом поле. Эти флуктуации, увеличенные до космологических масштабов, могут быть обнаружены сегодня. Планируются смелые эксперименты по поиску этого эффекта.
Точная причина инфляции (если она действительно имела место) неизвестна. Однако вероятный виновник является следствием объединения двух идей, обсуждаемых в этой главе.
• Мы говорили о том, что пустое пространство заполнено различными материальными конденсатами. При чрезвычайно высоких температурах эти конденсаты могут «плавиться» или иным образом изменять свое состояние. Мы говорим о фазовом переходе, концептуально похожем на знакомые фазовые переходы: (твердое тело) лед
(жидкость) вода
(газ) пар; однако здесь мы говорим о космических фазовых переходах. Поскольку само пространство изменяет свои свойства, меняются законы физики.
• Одной из вещей, которая изменяется при таких космических фазовых переходах, является энергия конденсата. Как мы обсудим далее, это изменение проявляется в виде вклада в темную энергию. Таким образом, очень правдоподобным кажется то, что очень ранняя Вселенная могла характеризоваться гораздо более высокой плотностью темной энергии по сравнению с тем, что мы видим сегодня. Существующая в настоящее время темная энергия способствует ускорению расширения Вселенной, но лишь слегка. Значительно большая плотность на ранней стадии вызвала бы гораздо более сильное ускорение.
Именно этим может объясняться инфляция.
С. 149. Книга The Extravagant Universe (Mark Kirshner, Princeton) — это отчет о наблюдениях одного из ведущих астрономов.
С. 151. «Популярное предположение»: эти идеи ясно объясняются и отстаиваются в книге Леонарда Сасскинда «Космический ландшафт» (издательство «Питер», 2016).
Глава 9
С. 155. «Классический компьютер должен»: эти шаги описывают то, что связано с прямым решением уравнений. Существуют хитроумные трюки, которые в некоторых случаях позволяют обойти какие-то из них. Они имеют такие названия, как евклидова теория поля, функция Грина Монте-Карло, стохастическая эволюция и т.д. Это сугубо технический вопрос, обсуждение которого выходит за рамки данной книги. Прогресс в решении уравнений квантовой механики мог бы изменить мир, позволив заменить эксперименты в химии и материаловедении вычислениями. Прогресс в вычислительной аэродинамике в значительной степени достиг этой цели в плане проектирования самолетов, так что новые проекты можно опробовать с помощью вычислений, минуя этапы прототипирования и тестирования в аэродинамической трубе.
С. 155. «Квантовые компьютеры»: два направления спина — вверх или вниз — можно интерпретировать как единицы и нули, поэтому их можно воспринимать в качестве битов. Однако, как будет подробно рассказано далее, квантовое состояние набора спинов может описывать многие конфигурации спинов одновременно. Таким образом, можно представить себе одновременную работу с множеством различных конфигураций битов. Это своего рода параллельная обработка, обеспечиваемая законами физики. Кажется, что Природа очень хорошо с этим справляется, поскольку она решает уравнения квантовой механики очень быстро и без особых видимых усилий.
Мы не настолько хорошо с этим справляемся, по крайней мере пока. Проблема состоит в том, что различные спиновые конфигурации по-разному взаимодействуют с внешним миром, и это нарушает процесс упорядоченной параллельной обработки, который мы хотели бы осуществить. Сложность при создании квантового компьютера заключается в нахождении способов предотвращения взаимодействия спинов с внешним миром, или внесения поправок с учетом этих взаимодействий, или изобретения менее чувствительных по сравнению со спинами объектов, которые подчинялись бы аналогичным уравнениям. В этой области активно ведутся исследования; решения, которое являлось бы очевидным победителем, пока не существует.
С. 160. «ЭПР-парадокс»: Более точные количественные формы ЭПР-парадокса, включающие такие понятия, как неравенство Белла и состояния Гринбергера — Хорна — Цайлингера, описаны в книгах, посвященных основам квантовой механики. Хорошее ясное изложение можно найти в книге Consistent Quantum Theory (Robert Griffiths, Cambridge). Существует множество книг, посвященных различным интерпретациям квантовой теории, тестированию ее элементарных составляющих и т.д. По моему мнению, если вы видите небоскреб, простоявший десятилетия и выдержавший даже сильную бомбардировку, вы должны заподозрить, что его фундамент чрезвычайно прочный, даже если вы его не видите. С другой стороны, идея сохранения массы когда-то казалась очень правдоподобной...
С. 160. «32-мерная»: это примечание предназначено исключительно для экспертов. Ненормализованные амплитуды описывают пространство, имеющее 32 комплексных измерения. Это соответствует 64 реальным измерениям. При нормализации состояния мы теряем два из них. Таким образом, на самом деле мы имеем дело с 62-мерным пространством.
С. 162. «Является бесконечным»: квантовый континуум настолько сложно сконструировать, что мы начинаем думать, как от него избавиться. Эдвард Фредкин и Стивен Вольфрам — выдающиеся сторонники этой точки зрения. Грубые попытки, разумеется, не работают.
Не вдаваясь в дебаты, я просто скажу, не боясь противоречия, что из существенно отличающихся конкурирующих идей не возникло ничего даже отдаленно приближающегося к полноте и точности Центральной теории. С другой стороны, нас смущает наличие ограничивающих процессов (и, следовательно, в принципе бесконечно длительных вычислений) в самой базовой формулировке физических законов. Но так ли это на самом деле? Для меня не является очевидным то, что истинные бесконечности возникают, только если мы просим теорию ответить на вопросы, которые можем задать и экспериментально. При проведении экспериментов нам доступно ограниченное количество времени и энергии и мы можем производить измерения с ограниченной степенью точности. А приблизительные вычисления не требуют достижения предела!
У меня голова кружится от этого примечания, поэтому я лучше завершу его прямо сейчас.
С. 165. «Ошибки также будут небольшими»: я хотел бы посвятить этот короткий и необязательный к прочтению абзац очень важному, хотя и слегка техническому концептуальному моменту. Вас может беспокоить то, что упомянутые ошибки способны заменить непрерывное пространство-время дискретной решеткой. При решении многих научных задач, например при предсказании погоды или моделировании климата, это создает огромную проблему. Однако здесь благодаря асимптотической свободе не все так плохо. Поскольку кварки и глюоны слабо взаимодействуют на малых расстояниях, вы можете вычислить аналитически, то есть с помощью ручки и бумаги, эффект от замены реальной динамики на локальные средние, соответствующие узлам решетки. После этого вы можете внести соответствующие поправки.
С. 169. «Приспосабливаем, а не прогнозируем»: масса mπ пиона наиболее чувствительна к mlight; масса mK K-мезона K наиболее чувствительна к ms, а относительная масса ΔM1P состояния боттомония 1P наиболее чувствительна к силе связи, поэтому мы используем измеренные значения mπ, mK и ΔM1P для фиксации этих параметров.
С. 171. На самом деле популярного описания численной квантовой теории поля, также известной как решеточная калибровочная теория, не существует и, вероятно, никогда не будет существовать. Хотя некоторые из ее результатов можно описать довольно просто, как я уже делал это здесь, технические подробности — это материал для выпускников.
Глава 10
С. 175. «Зловещую грозовую тучу»: для минимизации энергии возмущение на самом деле самоорганизуется в трубку, а энергия пропорциональна длине этой трубки (как и ее масса, согласно второму закону Эйнштейна). Трубка прослеживает влияние цветного заряда кварка, поэтому она не может закончиться (кроме как на антикварке) и ее выраженная в энергии стоимость бесконечна.
Глава 11
Книга The Physics Of Music And Musical Instruments (David Lapp) по адресу представляет собой лаконичное, большей частью нематематическое введение в физику звука и музыкальных инструментов со множеством изображений. Двумя шедеврами являются On the Sensations of Tone (Hermann Helmholtz, Dover) и два тома The Theory of Sound (Lord Rayleigh, Dover). Только профессионалы захотели бы прочитать эти тома от корки до корки, а некоторые части книги Гельмгольца являются устаревшими, однако простое их пролистывание может послужить источником вдохновения. Они заставят вас гордиться тем, что вы человек.
Глава 12
С. 183. «И говорит»: разумеется, на самом деле это говорит сценарист!
С. 184. Эта шутка взята из книги Quirkology (Richard Wiseman, Macmillan).
С. 185. На странице размещена книга The Life of James Clerk Maxwell, with a selection from his correspondence and occasional writings and a sketch of his contributions to science (Lewis Campbell, William Garnett). Это отличный ресурс, на котором можно найти все, что касается Максвелла. В дополнение к отличной биографии там можно найти превосходный отчет о его научных воззрениях, а также множество его рисунков, писем и даже несколько сонетов.
C. 186. «Избыточную или несущественную информацию»: помимо простой цели сохранения краткости сообщения, хорошая система сжатия данных включает несколько дополнительных смыслов. Мы можем допускать некоторые ошибки, если они не слишком сильно портят результат. Формат JPEG, например, подразумевает разбиение непрерывного изображения на отдельные пикселы, при котором снижается точность передачи цветов, однако обычно получаются хорошие «репродукции». Если бы приоритетом была точность, а канал был бы шумным, мы могли бы обеспечить некоторую избыточность в передаваемом сообщении даже ценой его удлинения. Такой подход применяется к отчетам об измерениях, получаемых с астрономических или GPS-спутников. Подобным образом при создании математических моделей, например, в машиностроении или экономике люди могут быть очень заинтересованы в использовании уравнений, которые допускают ошибки в обработке данных, а также вмещают как можно большее количество эмпирической информации. Тем не менее теоретическая физика делает значительный акцент на сжатии и точности.
С. 189. «Существование новой планеты». История открытия планеты Нептун сложна и, насколько я понимаю, несколько противоречива. Алексис Бувар еще в 1821 году предположил, что некая «темная материя» может оказывать влияние на Уран (приношу свои извинения Барту Симпсону). Однако без математической теории он не мог предположить, где ее следует искать. В 1843 году Джон Куч Адамс произвел расчеты, согласно которым проблемы с орбитой Урана могли объясняться существованием новой планеты, и предоставил координаты, однако он не опубликовал свою работу и не убедил никого из наблюдателей проверить его предположения.
С. 189. «Оптимального сжатия данных»: концептуальные основы современных методов сжатия данных можно найти в книге Information Theory, Inference, and Learning Algorithms (David MacKay, Cambridge). О связях с построением теорий и с работой Геделя и Тьюринга можно почитать в книге An Introduction to Kolmogorov Complexity and Its Applications (Ming Li, Paul Vitányi, Springer).
Глава 13
С. 194. «А именно, обратно пропорционально квадрату расстояния»: это верно на макроскопических расстояниях. На сверхкоротких расстояниях в игру вступают два новых эффекта и работают другие законы силы. Мы уже обсуждали, как флуктуации Сетки могут модифицировать силу в результате ее экранирования (уменьшения) или антиэкранирования (увеличения) виртуальными частицами. Другой эффект, который мы обсуждали, заключается в том, что в квантовой механике зондирование малых расстояний обязательно связано с большими значениями импульса и энергии. Это влияет на силу гравитации, поскольку гравитация непосредственно реагирует на энергию. Такие модификации законов взаимодействия имеют очень большое значение в идеях об их объединении, которые обсуждаются в третьей части данной книги.
Глава 14
С. 197. «Тем же путем»: так же как через данную точку можно провести бесконечное число прямых, через данную точку пространства-времени проходит бесконечное число «прямых» путей с разными углами наклона. Они соответствуют траекториям частиц с разными начальными скоростями. Таким образом, точное утверждение об универсальности подразумевает то, что тела, начавшие движение из одной и той же позиции и с одинаковой скоростью, будут двигаться одинаково под действием силы тяжести.
Глава 16
С. 204. «Троим счастливчикам»: в 2004 году Дэвид Гросс, Дэвид Политцер и я разделили Нобелевскую премию «за открытие асимптотической свободы в теории сильного взаимодействия».
С. 204. «Итальянскую натуру»: это от моей мамы. Мой отец поляк.
С. 205. «Не является даже неправильным»: история о Фейнмане и Паули — хорошо известный среди физиков случай. Я не знаю, произошло ли это на самом деле, и, честно говоря, не хочу знать. Лучше оставить эту историю как есть.
С. 211. «Затравочная постоянная сильного взаимодействия»: выбор взаимодействия как меры силы связи является несколько произвольным. Возможно, более фундаментальной мерой будет число, на которое умножаются узлы в диаграммах Фейнмана, когда в процессе участвуют частицы с планковской энергией и импульсом. Это число еще ближе к масштабу объединения и составляет около 1/2. Любая разумная мера даст результат, близкий к масштабу объединения безусловно, намного более близкий по сравнению с 10–40!
Глава 17
Идеи объединения Центральной теории путем расширения ее локальной симметрии были впервые предложены Джогешем Пати и Абдусом Саламом, а также Говардом Георги и Шелдоном Глэшоу. Симметрия SO(10) и классификация, подчеркнутые в этой главе, были впервые предложены Георги. Хорошее их изложение можно найти в книгах Grand Unified Theories (Graham Ross, Westview) и Unification and Supersymmetry (Rabindra Mohapatra, Springer).
С. 218. «Возможно, навсегда»: я не хочу утверждать, что Центральная теория никогда не будет превзойдена. Надеюсь, что будет, и я попытаюсь описать, почему и как. Но так же, как ньютоновская теория механики и гравитации остается тем описанием, которое мы используем в большинстве случаев, Центральная теория имеет такой большой список успешных применений, что я не могу себе представить, почему люди захотели бы от нее отказаться. Более того, я считаю, что Центральная теория предоставляет исчерпывающую основу для биологии, химии и звездной астрофизики, которая никогда не потребует модификации. («Никогда» — это слишком долго. Скажем, в ближайшие несколько миллиардов лет.) Упомянутая в предыдущем примечании квантовая цензура защищает эти предметы от той дикости, которая происходит на сверхкоротких расстояниях и сверхвысоких уровнях энергии.
С. 219. В книге Weak Interactions of Leptons and Quarks (Eugene Commins, Philip Bucksbaum, Cambridge) содержится исчерпывающее обсуждение астрофизических приложений. Книга Neutrino Astrophysics (John Bahcall, Cambridge) представляет собой авторитетное изложение темы от великого мастера в данной области.
С. 219. «Звезды живут»: к ядерным превращениям, из которых звезды черпают свою энергию, также относятся реакции синтеза, не требующие превращения протонов в нейтроны, например процесс, при котором три альфа-частицы (каждая из которых состоит из двух протонов и двух нейтронов) объединяются в углеродное ядро (шесть протонов и шесть нейтронов). Такие реакции не связаны со слабым взаимодействием, а подразумевают только сильное и электромагнитное взаимодействия. Они особенно важны на более поздних этапах эволюции звезд.
С. 224. «Леворукие» и «праворукие» частицы: на самом деле следовало бы сказать «леворукие и праворукие поля».
Частица с ненулевой массой движется со скоростью, меньшей скорости света, и это порождает следующую проблему: вы можете представить себе такое быстрое ускорение, при котором можно обогнать эту частицу. Движущемуся с ускорением наблюдателю покажется, что частица движется назад, то есть в направлении, противоположном направлению, в котором она движется для неподвижного наблюдателя. Поскольку направление вращения выглядит по-прежнему, частица, которая кажется «праворукой» для неподвижного наблюдателя, покажется «леворукой» движущемуся наблюдателю. Однако согласно теории относительности оба наблюдателя должны наблюдать одни и те же законы. Вывод: законы не могут напрямую зависеть от «рукости»частиц.
Правильная формулировка является более тонкой. У нас есть квантовые поля, которые создают «леворукие» частицы, и отдельные квантовые поля, создающие «праворукие» частицы. Уравнения для этих основополагающих полей различны. Однако, как только создается частица (любого вида), ее взаимодействия с Сеткой могут изменить ее «рукость». В электрослабой стандартной модели взаимодействия частиц с конденсатом Хиггса делают именно это.
Мы можем провести строгое (то есть буст-инвариантное) различие между «леворукими» и «праворукими» безмассовыми частицами или использовать квантовые поля. Тот факт, что наши успешные уравнения для слабых взаимодействий опираются на это различие, показывает, что Природа предпочитает безмассовые частицы и квантовые поля в качестве первичных материалов.
С. 230. «Джейн Эллен Харрисон» (The Ker as siren, Prolegomenma to the Study of Greek Religion (3rd ed. 1922:197–207, p. 197). Этот фрагмент присутствует здесь, поскольку я собирался использовать на обложке книги репродукцию картины «Сирена» Джона Уильяма Уотерхауса. Увы, этого не случилось. Однако вы можете посмотреть изображение на сайте itsfrombits.com.
Глава 18
Говард Георги, Хелен Куинн и Стивен Вайнберг первыми рассчитали поведение трех сил на малых расстояниях, чтобы посмотреть, можно ли их объединить. (Разумеется, для сильного взаимодействия это всего лишь расчет Гросса — Политцера — Вильчека.)
С. 232. «Меры их относительной мощности»: заметим, что на фундаментальном уровне, в терминах чисел, на которые умножаются узлы в диаграммах Фейнмана, слабая связь на самом деле больше, чем электромагнитная (для специалистов: здесь имеется в виду гиперзаряд). Тем не менее сверхпроводимость Сетки делает слабую силу короткодействующей, поэтому на практике она оказывает гораздо меньшие эффекты.
С. 232. «Намного меньше атомов»: контраст между размерами атомов и ядер лишь отчасти связан с относительной слабостью электромагнитных сил. Важным фактором также является малое значение массы электрона по сравнению с массой протонов и нейтронов.
Мы можем понять почему, если вспомним логику пункта 3 схолии из главы 9. Размер атомов определяется компромиссом между обнулением электрических полей путем помещения электронов прямо поверх протонов и учетом волновой природы электронов. Чем меньше масса частицы, тем больше ее волновая функция стремится распространиться, и поэтому малая масса электрона смещает компромисс в сторону больших размеров.
Глава 19
Более подробно о Поппере и его философии можно почитать в книге The Philosophy of Karl Popper (2 vols.) (ed. P. Schilpp (Open Court)).
Глава 20
Влияние суперсимметрии на эволюцию связей было впервые рассмотрено Савасом Димопулосом, Стюартом Раби и мной. Личное воспоминание приведено в приложении В.
С. 241. Подробнее о частицах Хиггса вы можете узнать в популярных книгах Оэртера и Клоуза, о которых упоминалось выше, более техническое описание можно найти в книгах Пескина, Шредера и Средники.
С. 242. Книга Supersymmetry: Unveiling the Ultimate Laws of Nature (Gordon Kane (Perseus)) представляет собой популярную работу, написанную выдающимся исследователем.
С. 242. «Их объединения»: суперсимметрия напрямую не связывает различные части Центральной теории. Ни одна из известных в настоящее время частиц не имеет подходящих свойств для того, чтобы считаться суперсимметричным партнером для любой другой. Все объединить мы сможем, только одновременно учитывая объединение зарядов и суперсимметрию.
С. 243. «Не намного тяжелее»: суперсимметрия должна быть нарушена, однако в отношении того, как это происходит, существует еще больше неопределенности, чем в отношении вопросов космической сверхпроводимости, обсуждавшихся в главе 8 и приложении Б. Однако нарушение суперсимметрии происходит, и конечным результатом должно быть то, что известные нам партнеры частиц являются значительно более тяжелыми. Если они слишком тяжелые, они не внесут достаточный вклад в колебания Сетки и мы вернемся к состоянию «на грани промаха», описанному в главе 18.
Существуют и другие, независимые причины заподозрить, что суперсимметричные партнеры не являются слишком тяжелыми. Наиболее важной из них является следующая.
Если вы вычислите, какой эффект оказывают виртуальные частицы на массу частицы Хиггса в единой теории, вы обнаружите, что они имеют тенденцию подтягивать эту массу до масштабов объединения. В этом заключается суть того, что часто называют проблемой иерархии. Вы можете обнулить эти эффекты одним росчерком пера, задав достаточное значение начальной массы для практически полного обнуления вклада виртуальных частиц, однако большинство физиков находят такую «тонкую настройку» возмутительной — они называют ее неестественной. С суперсимметрией эти поправки отменяются, и такой тонкой настройки не требуется. Однако если суперсимметрия сильно нарушена, то есть если партнеры являются слишком тяжелыми, у нас снова возникают проблемы.
С. 244. «Корректировки этих искажений»: в данный расчет я включаю только эффекты частиц, необходимые для реализации суперсимметрии (для экспертов: я имею дело с минимальной суперсимметричной стандартной моделью, или МССМ). Дополнительные (гораздо более тяжелые) частицы, необходимые для создания исчерпывающей единой теории, не были сюда включены. Именно поэтому связи, объединившись при высоких энергиях, снова распадаются. В полной теории, однажды объединившись, они останутся вместе. Однако поскольку мы не знаем достаточно для того, чтобы определить соответствующие детали полной теории, я решил рассматривать вещи по мере их поступления.
С. 246. «Довольно близко»: поскольку у нас нет надежной теории, объясняющей, как гравитация ведет себя на коротких расстояниях, я коснулся этого вопроса лишь вскользь.
Глава 21
Дополнительную информацию и последние новости о проекте БАК вы можете получить на сайте ЦЕРН public.web.cern.ch/Public/Welcome.html. Perspectives on LHC Physics (edited by G. Kane, World Scientific) — сборник статей ведущих экспертов. Я также рекомендую свою научную работу Anticipating a New Golden Age. Вы можете найти ее на сайте itsfrombits.com.
С. 252. Книга Quintessence (Lawrence Krauss, Perseus) представляет собой хорошее популярное изложение темы темной материи, темной энергии и современной космологии в целом.
С. 255. «Протоны должны распадаться»: сила и слабость нашего расчета, показывающего, что (низкоэнергетическая) суперсимметрия обеспечивает точное объединение сил, заключается в его нечувствительности к деталям. Вклад новой частицы в виде экранирования (или антиэкранирования) вступает в игру только при энергиях, превышающих энергию покоя частицы mc2. Поскольку изменения, имеющие решающее значение для объединения, накапливаются в пределах огромного диапазона энергий, не имеет большого значения, где именно они начинаются, и поэтому масса частицы незначительно влияет на ее вклад. Таким образом, на результат нашего расчета объединения не сильно повлияло бы, скажем удвоение или уменьшение вдвое массы новых суперсимметричных частиц. Результат незыблем, его нелегко пошатнуть.
С. 256. «Каких новых эффектов следует ожидать»: теория струн вдохновила ученых на предположения о существовании дополнительных пространственных измерений. Дополнительные измерения должны быть либо очень маленькими (свернутыми), либо сильно искривленными и трудными для проникновения, иначе мы бы их заметили. Однако, возможно, более пристальное исследование с помощью ускорителя БАК позволит их обнаружить. Популярное изложение этих идей можно найти в книгах Hiding in the Mirror (Lawrence Krauss, Viking) и «Закрученные пассажи» (Лиза Рэндалл (издательства «Едиториал УРСС», «Либроком», 2011)).
Эпилог
С. 260. «Далеко от объяснения»: согласно идеям, описанным в приложении Б, конденсат Хиггса непосредственно ответственен за массу W- и Z-бозонов благодаря космической сверхпроводимости. Итак, если эти идеи верны, то, выяснив природу конденсата Хиггса, мы поймем происхождение масс этих конкретных частиц.
Приложение Б
С. 273. «Легко генерировать»: вы можете проверить это, испуская бозон, который уносит единицу красного заряда и вносит единицу фиолетового заряда (то есть уносит отрицательную единицу фиолетового заряда); u-кварк в верхней строке превратится в антиэлектрон ec в 15-й строке. (Помните, что символы + и – соответствуют зарядам, величина которых равна половине единицы.) Поглощая один и тот же бозон, d-кварк в пятой строке превратится в анти-u-кварк в девятой строке. На кредитном счете эти ребята связываются путем обмена символами + и – между первым и последним столбцами. Таким образом, излучая и поглощая этот специфический изменяющий цвет бозон как виртуальную частицу, мы получаем процесс:
u + d
uc + ec.
Теперь мы добавим в обе стороны наблюдателя u-кварк: u + u + d
u + uc + ec — и окажемся почти у цели. Нам просто нужно признать, что u + u + d — это составляющие протона и что u + uc может аннигилировать в фотон. Наконец, мы получаем процесс распада протона:
р
+ ec,
как и было обещано.