Идея квантовых вычислений, высказанная физиками четверть века назад, уже довольно близка к воплощению в «материальном компьютерном мире», и не за горами то время, когда необычные машины, сочетающие в себе квантовые возможности и электронную точность, появятся в крупнейших вычислительных центрах. Некоторые ученые полагают, что их работа будет в чем-то похожа на функционирование нашего мозга, и этот синтез физики и математики в одном устройстве сможет сыграть огромную роль в жизни человека.

Нам хорошо знакомы два вида компьютеров — электронная вычислительная машина и наш собственный мозг. И если первому свойственны предельная точность и строгость во всем, то второй, напротив, характеризуется полной свободой ассоциаций и непредсказуемостью процесса мыслительной деятельности. Современные компьютеры, значительно усилившие наши «интеллектуальные мускулы», так и остались неспособными к интуитивным прорывам и решению целого ряда актуальных для человека задач. На помощь к ним уже пришли нейросети и нейрочипы, копирующие принципы функционирования биологического мира, ну а завтра к решению задачи по усилению нашего интеллекта, возможно, присоединятся машины, использующие в своей работе фундаментальные законы микромира.

Идею квантовых вычислений нам подарили физики. К концу XX века они научились проводить эксперименты с отдельными атомами и измерять квантовые состояния элементарных частиц, наблюдая их эволюцию. Однако законы квантового мира, которым подчиняются эти процессы, настолько сложны, что аналитическое и численное описание эволюции квантовых систем, состоящих из большого числа объектов, практически неосуществимо с использованием классических компьютеров.

В 1982 году, подводя итог многолетним исследованиям, связанным с моделированием квантовых процессов на ЭВМ, американский физик и нобелевский лауреат Ричард Фейнман пришел к неожиданному для многих выводу. В своей знаменитой статье «Моделирование физики на компьютерах», опубликованной в Международном журнале теоретической физики, он убедительно доказал, что для решения задач, предметом рассмотрения которых являются квантовые объекты и их взаимодействия, обычные компьютеры совершенно не годятся. По мнению Фейнмана, с задачами такого класса, требующими огромного объема вычислений, могут справиться принципиально другие вычислительные устройства, использующие квантовую логику и квантовые способы вычисления.

Идея Фейнмана содержала в себе определенный подтекст. Из сказанного следовал вывод не только о слабости современных ему компьютеров, но и о том, что любые их будущие модификации не «потянут» того объема информации и вычислений, который скрывают в себе квантовые процессы. В то же время авторитетный ученый прямо указывал направление исследований по созданию гораздо более эффективных вычислительных устройств.

Трудно сказать, кого больше впечатлил подсказанный Фейнманом инновационный, как назвали бы его теперь, путь развития компьютерной техники: физиков, математиков, программистов или аналитиков спецслужб. Первым он сулил постижение тайн микромира, вторым — решение целого ряда крайне трудных задач, третьим — абсолютно новые направления исследований по части как расшифровки чужих, так и укрепления собственных криптосистем.

Квантовый мир обещает подарки и обычным пользователям ПК, а также любителям компьютерных игр, интерактивного кино и электронных помощников — киборгов. Создание интеллектуальных систем, живо реагирующих на наши импульсы и желания, тоже невозможно без кардинального увеличения вычислительных мощностей электронных помощников. И быть может, уже к середине текущего века виртуальный мир станет не только похож на настоящий, но и заживет своей особой квантовой жизнью, активно взаимодействуя с нашим сознанием и имитируя не только простейшие ощущения, но и глубокие чувства.

Делите, Шор, делите!

В 1994 году американский математик Питер Шор совершил настоящий прорыв, написав для несуществующего квантового компьютера так называемый алгоритм факторизации, позволяющий разлагать на простые множители многоразрядные числа. Задача факторизации только на первый взгляд кажется безобидной. Для ее решения используют довольно примитивный, но единственно верный способ: деление заданного числа на простые числа, меньшие корня квадратного из самого числа. Количество необходимых математических действий при разложении сложного 1 000 значного числа достигает 21 000 , или приблизительно 10300 . Самый современный компьютер, способный произвести около 1015 операций в секунду, с таким числом управится не ранее чем за 10285 секунд — эта величина во много раз превышает возраст нашей Вселенной (ей, по мнению ученых, 15 млрд. лет, то есть всего 5х1017 секунд). Если к решению этой задачи подключить 10100 компьютеров, то и тогда ситуация мало изменится.

Квантовый алгоритм, предложенный Шором для решения этой «не решаемой» традиционными методами задачи, оказался гораздо эффективнее. Он предполагает выполнение всего 1 0003 , то есть миллиарда квантовых операций, и автоматически переводит данную задачу в разряд почти тривиальных. Специалисты по вопросам компьютерной безопасности быстро оценили алгоритм Шора, позволяющий без особого труда взламывать большинство современных криптосистем. Дело в том, что стойкость многих систем шифрования информации основана именно на невозможности быстрого разложения многоразрядного числа на простые сомножители. В первую очередь это касается систем шифрования, использующих два вида ключей: открытый (не требующий хранения втайне) и закрытый (секретный). Один используют для шифрования сообщения, другой — для дешифровки. При организации секретного канала связи отправитель и получатель обмениваются открытыми ключами своих криптосистем и далее шифруют свои послания с помощью открытого ключа получателя. Ключи взаимосвязаны между собой. Открытый ключ по сути является произведением двух очень больших простых чисел. Поэтому, разложив его на простые множители, можно легко восстановить закрытый, вот только «легко разложить на множители» пока не получается.

Неудивительно, что алгоритм Шора стал довольно удачной рекламной акцией. С подачи американского математика «раскрутка» нового метода пошла столь успешно, что 1994 год стал началом великого бума на квантовые компьютеры. Исследовательские группы из США, Европы, Японии и специально созданные подразделения крупнейших IT-корпораций начали активную работу сразу в нескольких направлениях. Одни ученые занялись поиском способов практической реализации «компьютера будущего», другие продолжили поиски новых областей применения, отличных от решения чисто квантовых задач и дешифровки секретных сообщений.

Спасти коммивояжера

Помимо задачи факторизации Шора, в которой достигается колоссальный выигрыш во времени, имеются и другие примеры «ускоренного» решения хорошо известных задач. Одна из них — так называемая «универсальная задача перебора». Предположим, необходимо отыскать номер телефона, записанный произвольным образом на одном из 10 000 лежащих в аккуратной стопке листов. Чтобы найти нужный, возможно, потребуется последовательно пересмотреть всю стопку, то есть произвести 10 000 операций. Один из простейших квантовых алгоритмов — алгоритм американского математика Лова Гровера, предложенный в 1997 году, позволяет справиться с этим вопросом с гораздо меньшими затратами: нужное количество операций оказывается пропорционально всего лишь квадратному корню из числа возможных вариантов. Если вариантов 10 000, то потребуется 100 попыток.

Аналогичным образом можно ускорить решение еще одной довольно трудоемкой задачи — о коммивояжере, состоящей в отыскании кратчайшего маршрута неутомимого ходока, последовательно посещающего ряд городов. Кстати, квантовый алгоритм Гровера позволяет не только ускорить процесс, но и примерно вдвое увеличить число параметров, учитываемых при выборе оптимального решения. Решение этой задачи имеет самое непосредственное отношение к нашей жизни и стоимости товаров массового потребления, поскольку в конечную цену входят и транспортные расходы по доставке в магазин. Минимизация транспортных издержек — классическая задача коммивояжера.

Достаточно быстро появились и обещанные Фейнманом квантовые алгоритмы для моделирования поведения квантовомеханических систем, главная сфера приложения которых — квантовая химия и непосредственно расчет свойств химических и биохимических соединений и молекул.

Перспективы применения квантовых вычислений часто связывают и с так называемой NP-полной проблемой, очерчивающей круг задач, для которых очень трудно найти решение, но достаточно просто проверить его правильность. Такие задачи часто относятся к классу невычислимых в том смысле, что они не могут быть решены на классических компьютерах за время, пропорциональное некоторой степени числа битов, представляющих задачу. Сегодня невозможно точно определить круг всех вопросов, решение которых может быть получено с помощью квантовых алгоритмов и компьютеров. И это связано не только с отсутствием последних, но и с тем, что квантовая информатика находится в самом начале своего развития.

Системные суперпозиции

За счет чего же столь эффективны квантовые вычисления? Как известно, в классических компьютерах мы имеем дело с ячейками памяти и элементами логики, которые содержат бит информации, находящийся в одном из двух состояний — «0» или «1». Соответствовать этим состояниям может, к примеру, низкое или высокое напряжение на выходе транзистора. Вычислительный регистр классического компьютера в каждый момент времени описывается только одной комбинацией из N битов, причем состояние каждого бита однозначно определено: «0» или «1».

В квантовом компьютере элементарной единицей информации является квантовый бит, или

кубит (его роль может выполнять атом или любой другой квантовый объект), а поведение системы кубитов — вычислительного регистра — определяется законами квантовой механики. Кубит тоже может принимать «пограничные» логические состояния, соответствующие, к примеру, двум уровням энергии атома и обозначаемые как I0〉 или I1〉. Но он способен находиться и в «суперпозиции» этих состояний, то есть (с определенной долей вероятности) в каждом из них одновременно. Наглядно совокупность состояний кубита иногда изображают множеством точек на поверхности сферы, находящихся между ее южным и северным полюсами — «0» и «1».

Кубиты обладают и другими удивительными свойствами квантовых объектов: иногда между парой кубитов возникают так называемые сцепленные (связанные между собой) состояния. В этом случае, изменяя состояние одного, можно управлять состоянием другого.

Классический регистр, например, состоящий из трех битов, содержит в каждый момент времени только одно из восьми возможных значений: 000, 001, 010, 011, 100, 101, 110, 111, в то время как квантовый регистр может одновременно хранить все эти восемь чисел. Если мы будем добавлять кубиты в регистр, то его объем будет увеличиваться экспоненциально — 3 кубита могут хранить 8 различных чисел, 4 кубита — 16, N кубитов — 2N чисел одновременно. Причем над всеми числами сразу можно произвести некие математические операции.

Таким образом, квантовый компьютер с 1 000 кубитами в своей оперативной памяти может содержать 21 000 или примерно 10300 комбинаций нулей и единиц, что значительно превышает возможности самых современных суперкомпьютеров с терабайтами (1012 ) оперативной памяти.

Специалисты считают, что, научившись управлять всего 1 000 кубитами, можно создать полномасштабный квантовый компьютер и достичь существенного ускорения вычислительного процесса. На первый взгляд 1 000 кубитов — не так много, если сравнивать это число с количеством транзисторов (сотни миллионов), которые содержат процессоры современных классических компьютеров. Однако пока наибольшим объявленным достижением в квантовых вычислениях является возможность управлять всего лишь пятью–семью кубитами.

Ловушки для ионов

Сразу условимся: поскольку реально действующий квантовый компьютер до сих пор не создан (по крайней мере, открыто об этом никем не заявлено), имеет смысл говорить лишь о возможных путях его реализации, которые рассматриваются и разрабатываются в различных лабораториях мира, в том числе и в российских. У нас в стране активно этими исследованиями занимаются в Физико-технологическом институте Российской академии наук, возглавляемом академиком РАН К.А. Валиевым, поделившимся с нами своими мыслями по данному поводу.

Теоретических и экспериментальных моделей квантового компьютера предложено достаточно много. Процесс вычислений в них происходит за счет управления квантовой динамикой отдельных атомов (кубитов), осуществляемого подачей на них внешних сигналов.

Одна из моделей — компьютер на ионах в ловушке — основана на использовании так называемых «подвешенных» в вакууме ионов. Кубитом в этом случае служит атом или ион. Его изолируют с помощью электромагнитного поля и «обстреливают» лазерными импульсами. Каждый кубит удален от соседей на несколько микрон, имеет определенное пространственное положение, поэтому на нем не сложно сфокусировать лазерный луч, который подается импульсами и меняет состояние атома. Сегодня ученые научились «подвешивать» несколько атомов в виде линейной цепочки, образующей одномерный ионный кристалл. Правда, больших кристаллов получить пока не удается, рекорд на сегодняшний день — цепочка из 30 ионов. Больше всего экспериментов по квантовым вычислениям с использованием таких кристаллов предложили ученые Инсбрукского университета в Австрии, а осуществили — исследователи в Лос-Аламосской национальной лаборатории США.

Логические преобразования над кубитами можно осуществлять и с помощью ядерного магнитного резонанса (ЯМР). Это явление, связанное с переориентацией магнитных моментов атомных ядер во внешнем магнитном поле, сегодня активно используется физиками, химиками, биологами и врачами в разного рода анализаторах и томографах, позволяющих заглянуть внутрь самых разнообразных устройств, материалов и живых объектов.

Существует и вариант жидкостного ЯМР-квантового компьютера. Его первый действующий «опытный образец» — импульсный ядерный магнитно-резонансный (ЯМР) спектрометр высокого разрешения. Спины ядер, входящих в состав атомов, образующих исследуемую в ЯМР-спектрометре молекулу, — это кубиты, единицы измерения квантовой информации. Уже имеются экспериментальные реализации квантовых алгоритмов с помощью ЯМР.

В таких компьютерах ампулу, содержащую «растворенные» в жидкости молекулы с нужными ядерными спинами, помещают внутрь установки. В качестве «программного обеспечения» используются импульсы переменного магнитного поля, которые воздействуют на атомные спины. Каждое атомное ядро имеет свою собственную частоту прецессии в магнитном поле, поэтому при воздействии электромагнитными импульсами этой частоты на одно из ядер оно начинает вращаться, в то время как остальные — нет. Для того чтобы заставить второй атом совершать регулярное резонансное движение, надо послать импульсы соответствующей ему частоты. По этой схеме ученым удается работать с системами, общее число кубитов в которых не более пяти – семи штук. Теоретически возможно увеличить его до 20—30, но затем возникает ряд существенных проблем. В частности, с увеличением числа кубитов происходит экспоненциальное уменьшение интенсивности регистрируемого радиосигнала. Это не позволяет довести число единиц обрабатываемой информации до заветной тысячи, необходимой для создания полноценного квантового компьютера.

Сегодня ученые активно ищут варианты создания масштабируемых кубитов, когда увеличение числа подконтрольных квантовых объектов не влечет за собой столь нежелательных последствий. Считается, что свойством масштабируемости обладают твердотельные модели квантовых компьютеров.

Существует модель твердотельного полупроводникового ЯМР-квантового компьютера. Роль кубитов в них выполняют ядерные спины атомов обычной донорной примеси, помещенной в кристалл кремния. В определенных точках полупроводника на расстояниях порядка 100 ангстрем располагают атомы примеси, например, фосфора. Их электронные облака на таком расстоянии перекрываются между собой, и атомы могут обмениваться состояниями: один атом «управляет» электронами другого и тем самым осуществляется взаимодействие ядер удаленных атомов примеси. Над атомами примеси устанавливают крошечные 50-ангстремные электроды и, регулируя величину текущего по ним тока, изменяют магнитное поле и как следствие — резонансную частоту вращения спина атомного ядра. Учитывая достижения современной электроники, в этом варианте можно было бы создать систему из тысяч кубитов. Однако проблемой для этого варианта является измерение состояния отдельного кубита.

Еще одно направление — сверхпроводниковый квантовый компьютер. Несмотря на имеющиеся достижения в реализации отдельного кубита, в таком квантовом компьютере также имеется ряд недостатков. Они связаны с необходимостью жесткого контроля за изготовлением так называемых сквидов, основанных на туннельных переходах Джозефсона. Сквид — сверхпроводящий квантовый интерференционный детектор. Технология сквидов позволяет достаточно легко построить квантовый кубит. Основные трудности возникают при попытке соединить несколько таких кубитов в один вычислительный регистр. Лучшим достижением в этой области пока считается управление взаимодействием всего двух кубитов.

Азы секретной связи

Довольно скромные успехи разработчиков на пути создания реальных квантовых компьютеров объясняются просто. Квантовое состояние очень хрупкое, и квантовые системы более чувствительны к воздействию окружающей среды, чем классические. Именно поэтому все перспективные с точки зрения квантовых вычислений прототипы таких компьютеров работают в режиме «жесткой изоляции» — при очень низких температурах и в вакууме. Но пока даже самая надежная защита негарантирует полного отсутствия внешних воздействий на кубиты. Например, подвешенные в вакууме ионы удерживаются в ловушках с помощью электродов, на которых кроме нужного напряжения присутствуют помехи — шумовое электрическое напряжение. Ионы на это реагируют и теряют свою когерентность (согласованность), другими словами, их рабочее квантовое состояние сохраняется очень недолго.

Определенную проблему в этих компьютерах представляют даже ввод и вывод данных, поскольку эти операции предполагают преобразование квантовой информации в классическую, и наоборот. Такая процедура предусматривает физическое измерение состояния объекта, что в квантовой механике может изменить само измеряемое состояние. Вообще в таких вычислениях любое дополнительное считывание информации грозит разрушить всю систему, поэтому явное выяснение результата промежуточных вычислений нерационально.

Кстати, в некоторых случаях «хрупкость» квантового состояния системы может оказаться весьма ценным свойством. Особенно для представителей спецслужб и других структур, курирующих каналы секретной связи, которая на сегодняшний день далеко не идеальна. Код можно подслушать, метод шифрования — украсть, передаваемые сигналы — записать и со временем расшифровать.

Если же удастся построить квантовый компьютер, способный выполнять разложение больших чисел на простые множители с помощью алгоритма Шора, защита информации в подавляющем большинстве современных секретных систем будет вообще ненадежной. Квантовый мир может дать и средство для обеспечения небывалой секретности при обмене информацией.

Как оказалось, абсолютно секретную связь вполне реально создать, используя квантовые способы передачи информации. К примеру, чтобы «подслушать» шифровку, передающуюся отдельными фотонами (квантами) через оптоволокно, необходимо каждый квант поймать, измерить его состояние и только затем вновь послать адресату. Вся беда в том, что проделать эти манипуляции без нарушения состояния отдельных квантов и квантовой системы в целом невозможно. Такие системы связи позволяют безопасным способом осуществлять передачу секретного ключа практически на неограниченные расстояния. Они уже выпускаются и используются для нужд спецслужб при наземной передаче информации, вскоре планируется их вывод в космос для создания системы глобальной секретности.

Но вернемся к когерентности. Для того чтобы квантовый компьютер работал бесперебойно, необходимо научиться поддерживать в нем определенные квантовые состояния и следить за тем, чтобы неконтролируемые воздействия со стороны окружающего мира не нарушали процесс квантовых вычислений. Исключительно чувствительны к подобным процессам сцепленные состояния кубитов, так как одно-единственное воздействие на любой из них может разрушить все состояние квантового регистра. Поскольку сбои, связанные с непредсказуемым изменением состояния бита, присущи любому вычислительному устройству, нужно постоянно проводить коррекцию ошибок, которая позволяет существенно продлить время работы квантовой системы. Накопились ошибки — почистили.

Классическая коррекция ошибок основывается на введении дополнительных «контрольных» битов (например, бита четности) и на регулярной проверке состояния этих битов в процессе вычислений. Однако есть и другой способ, основанный на избыточном кодировании исходной информации. К примеру, вместо одного кубита можно использовать три. В этом случае обработку информации строят таким образом, чтобы в процессе выполнения логических операций все три кубита изменялись одинаково. Нарушение когерентности может привести к изменению состояния одного из них. Поэтому для поиска возможных ошибок выясняют, находятся ли все три кубита в одинаковом состоянии, не определяя при этом самих состояний. При выявлении ошибки ее легко исправить, изменяя «неправильное» состояние.

Понятно, что квантовая коррекция требует значительного дублирования информации и как следствие — увеличения оперативной емкости квантовой системы.

Час «Х»

Когда же действительно войдут в нашу жизнь квантовые компьютеры и нужно ли нам это в решении повседневных задач? Некоторые специалисты считают, что если проблему создания квантовых компьютеров решать не в отдельных исследовательских лабораториях, а на государственном уровне, как решали в свое время вопросы космонавтики, атомной энергетики и микроэлектроники, то на это уйдет около четверти века.

Что касается применения, то на первых порах квантовый компьютер мог бы стать составной частью суперкомпьютера, как некий спецпроцессор. Все, что по силам классической части компьютера, она брала бы на себя, а по мере возникновения задач «нерешаемых» в дело включался бы спецпроцессор. Если говорить о размерах «компьютера будущего», то никакого «гигантизма» специалисты не прогнозируют. Работающая часть — всего несколько тысяч атомов, а остальное оборудование отвечает за изоляцию квантового мира от окружающих помех и связь с управляющим процессом вычислений компьютером. Все устройство будет выглядеть как обычная лабораторная установка, обеспечивающая вакуум и сверхнизкие температуры.

Некоторые ученые полагают, что мечта о появлении квантовых компьютеров сможет осуществиться лишь при определенных прорывах в физике и технике эксперимента, когда квантовый мир станет более понятным людям. Однако вне зависимости от того, будет построен квантовый компьютер или нет, квантовые вычисления уже заняли свое место в информатике и математике, а опыт работы с отдельными атомами существенно обогатил возможности экспериментальной физики, химии и инженерии.

Светлана Беляева, Василий Тарасов, кандидат физико-математических наук