ББК 22.253.3 В70
Рецензенты:
А. Г. Прудников, доктор технических наук, Л. А. К л я ч к о, доктор технических наук.
Волынский М. С.
В70 Необыкновенная жизнь обыкновенной капли.—* М.: Знание, 1986.— 144 с. (Наука и прогресс).
25 к. 110000 экз.
Капля жидкости. Вот она сорвалась с кончика пипетки и летит вниз — какую форму она при этом принимает? Как происходит испарение неподвижной капли и капли, которая обдувается потоком воздуха? А как и почему вообще образуется капля? Ответы на эти простые, казалось бы, вопросы на самом деле не так просты. Капля всегда в движении, в динамике рождения и исчезновения: полет, колебание, распад, испарение и конденсация. Бесконечная цепь превращений, форм и размеров. Поэтому каплю можно назвать перекрестком, на котором сходятся интересы разных научных дисциплин — от гидродинамики до химии.
Для широкого круга читателей.
----------------------- ББК 22.253.3
© Издательство «Знание», 1986 г
ЭНЦИКЛОПЕДИЯ КАПЛИ
(Вместо предисловия)
О капле писали многие и по-разному.
В целях познавательных, строго технических, популярно-художественных. А мне всегда хотелось написать о капле еще что-нибудь личное, лирическое. Тому есть серьезные причины: ей, капле, обязан я выбором научного пути. Эта скромная тропинка вела меня долгие годы непростыми маршрутами, они сходились и расходились с путями человеческих судеб, пересекали шумные магистрали и отворачивали порой от манящих горизонтов. Я продолжал с упорством, достойным лучшего применения, как считали иные, идти к своей, «мелкой», «капельной» цели. Потом выяснилось — цель не мельче, а путь не уже и не хуже других в сложном перепутье современных научных специализаций. Он привел меня в удивительный и многообразный «мир в капле воды».
Маленький прозрачный шарик, а сколько научных направлений и проблем пересекалось в нем, как лучи в фокусе линзы!
Еще недавно, в преддверии века, ученые и инженеры не знали, какая ответственная роль уготована капле в развитии современной техники.
В наше время мудрено не видеть телепередачи или фотографии величественных ракетно-космических стартов, красавцев авиалайнеров. Все слышали про реактивные двигатели. А что их двигает, что там внутри? Там сложно и много всего, и среди многого — капля. Нам помнится капля дождя на оконном стекле. Мы любуемся жемчужиной в ювелирной оправе цветочного бутона на лесной поляне в выходной день.
Ну а в будни? Глубоко спрятан от постороннего взгляда, но не менее важен для человека повседневный, будничный быт капли-труженицы в тесных отсеках и огненных вихрях камер сгорания, в реве турбин, в перестуке поршней.
Капля — гениальное изобретение природы, которое успешно использует человек. В природе тоже работает основанная на каплеобразовании «машина» — круговорот влагообмена на нашей планете: испарение, конденсация, дождь.
Где капля, там и пузырь,— общие законы поверхностного натяжения сближают их: пузырь в жидкости — это капля и воздух, вывернутые наизнанку; кристаллик льда — это замерзшая капля или капля — это оттаявший лед.
Капля необходима для всего живого — защитная капля крови на царапине, очистительная слеза в глазу. Капля — носитель зародыша в процессе оплодотворения. Велика вероятность гипотезы, что жизнь зародилась именно в капельной форме. Может быть, Земля и планеты Солнечной системы — огромные остывающие капли, выброшенные когда-то нашим Солнцем...
В очень интересной книге Я. Е. Гегузина «Капля» рассказывается, как некий физик-энтузиаст мечтал создать особую науку о капле — «сталагмологию» (каплеведение). Но капля — перекресток многих наук: гидродинамики, физики, физикохимии, биологии и других.
Трудно дать краткое и полное определение капли. Можно, конечно, сказать: капля — частица жидкости, в состоянии равновесия ограниченная поверхностью вращения и стремящаяся под действием силы поверхностного натяжения к шарообразной форме. Но это скучно и неточно. Капля всегда в движении, в динамике рождения и исчезновения: полет, колебание, распад, слияние, испарение и вновь конденсация. Бесконечная цепочка метаморфоз. А разнообразие форм: эллипсоид, кольцо, купол парашюта. А диапазон размеров: капельки туманов диаметром с длину волны света (десятые доли микрометра), капли форсунок — сотня микрометров, дождь — это два—четыре миллиметра. Хотите каплю величиной с яблоко, ее можно получить в невесомости, но попробуйте откусить — очень неудобно: выскальзывает изо рта...
«Поле деятельности» капли настолько обширно и разнообразно, что попытка подробного описания и объяснения всех связанных с каплей явлений вылилась бы в несколько объемных томов. В этой книге мы не будем претендовать даже на популярное изложение еще не созданной науки «сталагмологии». Задача автора много скромнее: рассказать о личном участии в изучении свойств и поведения капли, о тех каплях знаний о капле, которые были добыты в лаборатории, чтобы затем влиться в море сведений, которыми располагает наука.
Надеемся, что знакомство с каплей лишний раз убедит читателей в неправомерности бытующего мнения, будто в науке уже почти не осталось нехоженых троп. В мире достаточно такого, что скрыто от нашего взора покровом привычных, обыденных представлений («обманчивость видимости вещей»). Полным загадок может оказаться каждое явление, каждый даже самый примелькавшийся предмет, коль скоро мы дерзнем погрузиться в его глубину.
Но погружение имеет смысл в том случае, когда ясна цель. Поэтому перед тем, как начать рассказ об исследованиях свойств и поведения капли, хотелось бы дать читателям общее представление о том, насколько широк круг связанных с каплей проблем. Но как это сделать? Подробный рассказ обо всех явлениях, в которых участвует капля, был бы равносилен попытке объять необъятное. Ограничить рассказ рамками технического использования капли — значит, сузить ракурс до ложного впечатления, что человек не заимствовал у природы каплю, а изобрел ее сам.
В поисках формы повествования, которая позволила хотя бы кратко коснуться многих связанных с каплей сторон, пришлось вспомнить, что людей, обладающих пусть не слишком детальной, зато широкой эрудицией сразу в нескольких областях знаний, именуют энциклопедистами. Энциклопедия — вот та емкая форма, которая издавна используется для краткого изложения сведений из разных областей!
Так зародилась идея «Малой энциклопедии капли», сокращенно МЭК (см. Приложение).
Возможно, кому-то такое название покажется чересчур громким, поскольку количество содержащихся в МЭК сведений даже для малой энциклопедии слишком мало. Чтобы спасти идею энциклопедии, будем считать, что буква М в названии МЭК обозначает не «малая», а «микро». Согласны даже считать МЭК не энциклопедией, а всего лишь микроэнциклопедическим словарем. Главное — сосредоточить в одном месте самые разнородные сведения о капле, чтобы в отличие от остальных разделов книги читатель мог читать МЭК не подряд, а выборочно, как и любую другую энциклопедию, которую вряд ли кто-то возьмется читать том за томом от «А» и до «Я».
Для начала можно, быстро перелистав страницы МЭК, пробежать глазами включенные в нее термины. Это даст самое общее представление о круге связанных с каплей проблем. Не исключено, что уже при первом беглом просмотре возникнет желание узнать о чем-то чуть-чуть подробнее.
В МЭК найдутся, надеемся, некоторые интересные сведения о применении капель и в области химии, металлургии, геологии...
Сказанное в МЭК о капле в двигателях (внутреннего сгорания, реактивных, твердотопливных, жидкостных и др.) будет освещено подробнее на страницах соответствующих глав книги.
Еще раз подчеркнем, что МЭК, конечно, не претендует на какую-либо полноту — для этого она должна была бы превратиться в многотомную БЭК.
Наша цель будет достигнута, если после просмотра МЭК читатель проникнется интересом и уважением к капле за ее неутомимую и разнообразную деятельность в природе, в промышленности, в сельском хозяйстве и связанных с ними научно-технических областях.
И наконец, еще одно замечание, которое хочется сделать, прежде чем начать наш рассказ о капле. В этой книге роль героини, безусловно, отводится ей. Но жизнь героини не была бы столь насыщенной и содержательной без участия изучающих каплю людей. По ходу рассказа о капле в действие будут включаться и люди, чьими трудами постигается природа капли, ее капризный и непоседливый нрав. Вместе со скромными тружениками науки с проблемами капли соприкасались и такие корифеи, как академики М. В. Келдыш, Л. И. Седов, Б. В. Раушенбах, Г. И. Петров, профессора Г. Н. Абрамович, А. А. Гухман, Е. С. Щетинков, и другие ученые, имена которых упоминаются на страницах книги.
Надеемся, что пример исследований капли поможет читателю ярче представить себе, с каким трудом добывается каждая капля истины, как трудоемок и кропотлив каждый научный эксперимент, как капля за каплей наполняется море человеческих знаний, рождающих научно-технический прогресс.
Глава I
РАДУГА НА УЛИЦЕ РАДИО
Огонек на ветру
Желание написать книгу о капле, кажется, впервые возникло у меня в самолете. Мы летели в командировку на старом добром Ил-14, в вышине за хвостом самолета сияло солнце, а впереди по курсу из темно-пурпуровых туч опускался, зашторивая небо, густой дождь. Там, в его зыбкой глубине, висело роскошное кольцо радуги. Пассажиры, все как один, повернулись к окнам.
— Вот здорово, пролетим сквозь него, как в цирковом аттракционе,— сказал сосед-киношник.
— Так сказать, под куполом неба,— добавил жизнерадостный толстяк сзади.
— Не получится,— отозвался я,— не позволят законы оптики.
И мне пришлось объяснить, что такое радуга и почему на земле видно только полукружие, а отсюда весь круг. Радуга всех разговорила. Кто-то философски заметил, что небесный художник дал образцы своих красок, которыми расписывал этот мир.
В мой адрес посыпались метеорологические вопросы. Хорошо, никто не спросил, почему градины иногда бывают величиной с голубиное яйцо, а капли дождя у земли не более нескольких миллиметров. Я сам разобрался в этом значительно позже. А пока лишь пояснил им, что каплям не дает опасно разогнаться сопротивление воздуха. Не будь этой силы, капли, падающие с высоты трех километров, долбили бы по нашим черепам со скоростью револьверной пули. И тут же на обложке журнала прикинул величину скорости у Земли по школьной формуле для свободно падающего тела. Получилось около 250 м/с, в то время как действительная скорость крупной капли (0,2 грамма) не превышает 10 м/с.
К нашему разговору прислушивались другие пассажиры, и я понял: мои капли могут заинтересовать не только специалиста.
Самолет стал набирать высоту.
Мы прошли над грозой... А я погрузился в воспоминания.
...Корпуса московского ЦАГИ на улице Радио, просторный двор около ангара, идут испытания огромной модели центробежной форсунки. Она теперь принадлежит истории техники, ее помнят поколения студентов и инженеров по фотографиям в учебниках и научных статьях. Эта непривычно громадная «царь-форсунка» со стеклянным дном позволяла заглянуть сзади в камеру закручивания и увидеть на ее оси миниатюрный смерч воздушного вихря. Конус распыливания — широкий веер капель бил из соплового отверстия чуть не до знаменитой кирпичной башенки с ветряком, венчающим здание ЦАГИ. И в этой плотной сетке капель, почти у моих ног, возникла радуга — символ будущего решения моей неотвязной задачи...
...В те дни все мы, небольшой молодой коллектив группы реактивной техники, ложились спать и вставали с вопросом: как измерить летящую каплю? Тогда я не знал, что имеется теория радуги, что в природе есть и другие оптические чудеса и существует целая наука — метеорологическая оптика.
«Однако,— резонно думал я,— должна же быть какая-то связь между диаметрами капель и структурой радуги, по ней я и определю каплю, только нужно получить радугу в лабораторной комнате».
В моем воображении радуга превратилась в радостно многоцветную триумфальную арку. За ней, думалось мне, открывается путь научных побед. Позднее я убедился, что к истине ведет отнюдь не прямой и не ровный путь.
***
Годы войны. Пространством над планетой еще владеют винтомоторные самолеты, но уже восходит эра реактивной авиации и ракетной техники. Поршневой двигатель и пропеллер начинают задыхаться на пределе своих возможностей. Быстрее, выше, дальше — война резко ускорила процесс создания новых летательных аппаратов. Мысль ученых, инженеров, изобретателей разных стран, созревшая уже в довоенные годы, теперь воплощалась в металл.
Истребитель на фронте еще летает со скоростью 500—550 км/ч, но уже самолеты с ТРД (турбореактивным двигателем) дают скачок скоростей до 700— 800 км/ч. Сообщения следуют одно за другим. Героический и трагический полет советского летчика Г. Я. Бахчиванджи на самолете конструкции А. Я. Березняка и А. М. Исаева, созданного под руководством В. Ф. Болховитинова,— первый полет аэроплана БИ1 с ЖРД (жидкостным реактивным двигателем).
Схватки реактивных аппаратов в воздухе Европы: английские «Метеоры» с ТРД догоняют и сбивают над Францией немецкие «летающие консервные банки» — ракеты ФАУ-1 с пульсирующим ВРД (воздушно-реактивным двигателем). Итальянцы испытали самолет «Капрони-Кампини». Появляются на нашем и западном фронтах немецкие «Мессершмитты-262» с ТРД. В сентябре 1944 года немцы стали применять баллистические ракеты ФАУ-2 с мощными ЖРД. Из 1402 ракет, выпущенных по Великобритании, 517 взорвались в Лондоне.
Новые, невиданные двигатели строились, опережая едва зарождающуюся науку о рабочих процессах, происходящих в них,— так часто случается при быстром развитии техники. Смелый бросок инженерной мысли опережает точный расчет, опирается на первых порах лишь на интуицию и приближенные рассуждения. Некоторые узлы двигателей — плоды «голой» эмпирики, долгой отработки без глубокого понимания природы сложных явлений, с которыми столкнулись инженеры.
Как известно, ТРД большинства самолетов — от многоместного пассажирского до истребителя-перехватчика — это большая труба-сигара со сложной начинкой (рис. 1). При полете через воздухозаборник в нее нагнетает воздух многоступенчатый входной компрессор. Он вращается на центральной оси и похож на детскую пирамидку с «кружочками» метрового диаметра, с лопатками и с «колпачком» пирамидки — передним коком-обтекателем.
Поток попадает в камеры сгорания — трубки, расположенные внутри венцом по окружности. В каждой камере— форсунка, разбрызгивающая топливо, источник энергии двигателя.
Его надо сжечь, но в необычных и сложных условиях ураганного газового потока. В камере химическая энергия топлива перейдет в тепло, нагреет и разгонит газ. Далее поток пройдет сквозь турбину, заставит ее вращаться, а вместе с нею и компрессор. И уж затем поток сжатых газов вырвется из выходного сопла двигателя, и по законам механики самолет или ракета получит импульс движения в противоположную сторону.
Камера сгорания реактивного двигателя — узел, обычно самый простой по конструкции и самый сложный по физике процессов. В камерах ТРД авиалайнеров нет сложных вращающихся деталей, подобных турбине или компрессору, которые работают в других частях двигателя. Здесь работает капля.
Как это происходит? Через цепь трансформаций, претерпеваемых жидкой частицей. Эту цепь составляют пять сложносочлененных звеньев: распыливание, полет роя капель, испарение, смешение паров с воздухом и горение. Цепочка сплетена из разнородных по природе процессов, подведомственных многим наукам (гидроаэромеханике, физике, химии) и называемых в технике элементарными процессами смесеобразования и горения. Анахронизмы, рожденные первым подходом к явлению, живучи: в действительности процессы не более элементарны, чем элементарные частицы в атомной физике, и термин выражал лишь уровень тогдашнего знания и мышления. В принципе смесеобразование одинаково для разных типов двигателей. Но наблюдать его легче и наглядней всего в камере сгорания ПВРД — прямоточного воздушно-реактивного двигателя.
ПВРД — попросту «летающая труба», где в проходящий воздух подается и сжигается топливо. За такую простоту нужно платить — аппарат с ПВРД (рис. 2) не способен к самостоятельному взлету, ведь у него нет турбины и входного компрессора, как в ТРД, лопатки которого, вращаясь, засасывают воздух из атмосферы, сжимают его и гонят по тракту двигателя. Но если он взлетел с помощью стартового движка — небольшого ЖРД или двигателя на твердом топливе («пороховика») ,— полет будет продолжаться. Набегающий воздух по законам аэродинамики затормозится и сожмется до нужного давления во входном диффузоре, который таким образом заменит компрессор.
Все же первой взлетела не заманчивая своей простотой «прямоточка», а ее более сложные собратья — аппараты с ТРД и ЖРД, может быть, в подтверждение мысли Б. Л. Пастернака:
Хоть простота нужнее людям,
Все ж сложное понятней им.
Чтобы «пламенный мотор» тянул многотонный летательный аппарат, его «луженый желудок» — камера сгорания — должен переварить все или почти все топливо. Но какие-то недоиспарившиеся крупные капли могут недогореть, попадая в зоны, бедные воздухом и переобогащенные продуктами сгорания. А химическая реакция привередлива, ей подавай определенную пропорцию масс компонентов — воздуха и топлива. В единице смеси выделится максимум тепловой энергии, и тяга двигателя будет наибольшей, если на каждый килограмм углеводородного топлива (бензина, керосина) затратить примерно 15 килограммов воздуха. Самые «комфортные» условия для реакции горения будут, если такое соотношение окажется выполненным в каждой точке потока. Если же перемешивание компонентов недостаточно равномерно, химия «сработает» не полностью, несгоревшие частицы вылетят из двигателя, унося часть энергии, и тяга упадет. К тому же всей «драме жизни» капли положено уложиться на сравнительно коротком интервале камеры (в длинной-то камере она рано или поздно сгорела бы), так как авиация и ракетная техника требуют предельной легкости и компактности конструкций. Перед наукой смесеобразования и горения встает непростая задача: в малые доли секунды массу топлива надо тонко измельчить, равномерно распределить, испарить, хорошо смешать с воздухом и полностью сжечь. А чтобы рассчитать и сделать под это «тонко» и «хорошо» камеру сгорания, необходимо знать, кроме многого другого, весь набор капель, или иначе спектр распыливания форсункой.
***
В нашей лаборатории неделями, не принося особых радостей, шли стендовые испытания модели прямоточного двигателя. Сегодня был опять неудачный запуск — что-то не так в системе смесеобразования или горения. Капли топлива из форсунок не хотели воспламеняться. Горючая смесь, как будто издеваясь над своим названием, не горела, а просто гасила электроискру, заливая электроды в нашем поджигающем устройстве, заключенном в экранирующую трубку. Если же пламя вдруг робко вспыхивало, его наотмашь гасил мощный поток воздуха.
— Что будем делать?
Мы хмуро обступили ведущего инженера огневого стенда. Уныло протянулась через всю лабораторию несработавшая камера с присоединенным воздухопроводом.
В паутине проводов и шлангов она казалась большим мертвым питоном, попавшим в сети. Металлическая поверхность кишки противно холодила руки.
— Тоже мне, горячий стенд называется,— механик потирал пахнувшие бензином пальцы, уставшие от безуспешного нажатия кнопки включения.— От него даже не прикуришь!
— Разойдемся по рабочим местам,— сказал ведущий.— Надо снова все продумать, посмотреть протоколы прошлых опытов, ведь при каких-то скоростях воздуха камера хоть поначалу включается...
— Уже смотрели: цифры пляшут — никакой закономерности, придется менять что-то в схеме, нужна новая идея.
— Имеем одну такую... «Вы просите песен, их есть у меня»,— с одесским напевным акцентом сказал молодой конструктор Д. Он провел детство в Одессе и любил «играть под одессита».
— Ну высказывайся, какая идея?
— Не так сразу... А что делают, закуривая на ветру?
— Нельзя ли без одесских загадок и не вопросом на вопрос? Их у нас и без тебя хватает, давай конкретное предложение.
— Хорошо заданный вопрос — половина ответа.
Д. поискал взглядом нашей поддержки, но мы, всегда понимавшие друг друга с полуслова, на этот раз, утомленные неудачами, ответили лишь унылым молчанием.
— Так. Я, кажется, в вагоне для некурящих...
— Ладно, на сегодня разговорчики кончаем,— рассердился ведущий.— Завтра пусть Д. доложит свои соображения, но без этих штучек, обоснованно и со схемой двигателя.
Перед концом рабочего дня Д. подошел ко мне и попросил материалы по распылителям.
— Все-таки наш ведущий — изрядный чурбан.
— Не ругайся, ведь он отвечает за объект, и с него будут снимать стружку. Пошли домой.
— Нет, я немного задержусь...
Утром следующего дня началось оперативное совещание. Пришли соседи из КБ. Докладчик, подтянутый, серьезный, с чуть утомленными, покрасневшими глазами, стоял около кульмана. Он картинным жестом сорвал прикрывающий лист, и на доске открылась красиво вычерченная схема ПВРД.
«Когда только успел? Значит, работал ночью». Я следил за четким, без вчерашних одесских словечек, докладом. Картину за. картиной я постепенно и отчетливо представил все сложное сплетение явлений в двигателе. На входе в камеру стоит коллектор из центробежных форсунок. Они выбрасывают «бутоны» топливных конусов, которые мгновенно выворачивает «наизнанку» поток воздуха. Еще не зная законов распыливания, мы интуитивно понимали: встречное расположение струй улучшает обдув и дробление капель.
— Пусть скорость воздуха 80 м/с и давление подачи керосина приличное — 50 атмосфер. Это значит, скорость истечения около 100 м/с. Но если впрыск по потоку, скорости вычитаются и относительная скорость близка к арифметической разности 20 м/с. Если же впрыск противоточный, скорость обдува близка к сумме, то есть к 180 м/с. В этом случае поток сразу раздробит струю на мелкие капельки.
Докладчик переносит указку в нижний левый угол кульмана — узнаю свою прикнопленную фотографию, моментальный снимок с большим увеличением фрагмента факела распыла в пяти сантиметрах от точки впрыска, на самом развороте жидкости. Факел напоминает разрыв снаряда на рой осколков: черное пятно — недра зоны переобогащенной смеси, там концентрация жидкости максимальна, а воздуха мало. Далее смесеобразование развивается в «холодном» участке камеры (см. рис. 2), где еще нет горения. Капли летят и «худеют», отдавая пар в окружающий поток. Следовало бы рассчитать интервал испарения жидкости и установить коллектор нужного сечения, но пока это нам не под силу: размер капель неизвестен, да неизвестна и скорость парообразования, и потому интервал выбирается эмпирически. Газ с еще недоиспаренными каплями должен влететь в зону поджигания и стабилизации пламени.
Вот тут цепь рвется. Оказывается, совсем не просто поджечь поток и удержать устойчивое горение на ветру со скоростью под 100 м/с. Докладчик делает интригующую паузу, смотрит в окно - потом четко формулирует свое предложение:
— Нужно сделать «дежурный огонек», небольшую камеру в камере. Короче, форкамеру, со своей отдельной малорасходной форсункой и электросвечой. Зажатый вход с завихрителем едва-едва пропустит сюда слабую струйку по аналогии с тем, как ладони курильщика, сложенные лодочкой, заслоняют огонек спички от ветра.
«Так,— соображал я,— здесь всегда будет штиль, малые скорости, мелкие вихри высокой турбулентности — короче, тепличные условия для произрастания пламени. Вот оно, блестящее решение задачи. Вчера Д. только морочил голову намеками на каких-то курильщиков, а сегодня дал-таки всем прикурить!»
(Теперь устройство такого рода описано в учебниках и кажется простым и естественным. В разных исследовательских центрах, у нас и на Западе, пришли почти одновременно к идее форкамеры — огневого якоря спасения от шторма газового потока.)
— Дальше,— продолжал докладчик,— дежурный поджигающий огонь из форкамеры перекидывается в топливовоздушную смесь. Однако здесь он снова открыт всем ветрам, и его без страховки мгновенно сорвет. Но у нас уже есть опыт: выручают плохо обтекаемые тела.— Указка касается схемы (см. рис. 3).— Это конические кольцевые стабилизаторы,— указка сначала тычется в схему, изображенную на рис. 2, затем перескакивает на рис. 3.— За ними тянется аэродинамическая тень — зона относительно малых скоростей. Здесь крутятся крупные спирали кольцевых вихрей, создавая разрежение и питая зону мелкими вихорьками. Горючая смесь с каплями засасывается в этот круговорот и сгорает, давая высокий жар. За него-то и цепляется пламя. Напитавшись теплом, окрепший фронт пламени рвется в набегающую горючую смесь по ступенькам стабилизаторов.
Вспоминаю камеру ТРД (рис. 4). Там пламя распространяется в чуть более спокойных условиях. Сначала оно цепко держится у входного завихрителя-решетки; потом вторичный воздух подмешивается к разгоревшемуся огню через отверстия рубашки. Дальнейшие опыты показали: чем богаче набор капель по размерам, тем устойчивее пламя за стабилизатором, а чем они в среднем мельче, тем полнее сгорание.
Процесс горения основной массы топлива развивается на довольно протяженном участке камеры, где протекает химическая реакция окисления. Топливовоздушная смесь не сгорает во фронте пламени полностью, зона догорания простирается далеко за ним.
Доклад еще длился, но я слушал плохо. Мысль отцепилась, как вагон от состава, и пошла по своей, ответвленной колее. Я думал о привычном: как измерить эту каплю?
Миллиарды капель и космический старт
Те же «капельные», но совсем не малые проблемы встали и перед создателями ЖРД. Здесь камеры особенно прожорливые: рабочий процесс должен «переварить» огромные массы топлива, обеспечить высокие мощности, необходимые, чтобы вывести ракету в космическое пространство. Но сначала немного истории.
Созданная упорным и вдохновенным трудом ученых, инженеров, конструкторов ракета с ЖРД свершила техническое чудо и проложила человеку путь в космос. Основы этой гигантской победы человеческого разума были заложены на рубеже XIX и XX веков. Основоположником современной космонавтики и реактивной техники был, как известно, Константин Эдуардович Циолковский (1857—1935). Школьный учитель физики из Калуги первый увидел реальные очертания будущих космических аппаратов. В своей замечательной работе «Исследование мировых пространств реактивными приборами» (1903) он дал законы движения ракеты и впервые в мире предложил и обосновал новый тип двигателя — ЖРД. Этим же путем позднее пошли и другие ученые: Р. Эно-Пельтри во Франции (1913), Р. Годдард в США (1919), Г. Оберт в Германии (1923). Интересно, что Оберт, имя которого для многих наших специалистов звучало лишь вехой ушедших лет, неожиданно «ожил» и в 1982 году прибыл, достаточно бодрый для своих 88 лет, в числе почетных гостей к нам в страну, когда мы отмечали 125-летие со дня рождения Циолковского и 25 лет с начала космической эры.
В беседе с академиком Б. В. Раушенбахом, нашим известным ученым, соратником С. П. Королева, Оберт с гордостью напомнил собеседнику, как одним из первых понял и высоко оценил труды Циолковского.
Не все ученые того времени были столь прозорливы, отчасти из-за своеобразия формы публикаций Константина Эдуардовича, заменявшего часто в формулах алгебраические символы словами. Оберта повезли в Центр подготовки космонавтов и среди прочего показали специальный бассейн, где удельные веса жидкости и плавающего тела одинаковы. Космонавты в скафандрах демонстрировали тренировку в условиях невесомости. Борис Викторович Раушенбах рассказывал: Оберту все очень понравилось, и он ко всеобщему веселью сделал вдруг заявку на приоритет:
— О да, интересно! Но я сам проделал это еще в 1916 году. Погружался с головой в свою ванну, держа трубочку во рту. Мне очень хотелось почувствовать, что есть невесомость...
Прошли годы. Вот-вот станет явью мечта Циолковского, говорившего, что Земля — колыбель человечества, но нельзя все время жить в колыбели. По обе стороны океана уже шли к космическим стартам. Но первым взлетел в космос 12 апреля 1961 года наш Юрий Гагарин на корабле «Восток», и одним из решающих факторов успеха были мощные и надежные ЖРД.
Вспомним рациональный, поразительно простой и эффективный принцип действия ЖРД (см. рис. 5). Горючее и окислитель из баков подаются центробежными насосами в камеру сгорания: окислитель — непосредственно к своим форсункам, а горючее — к своим, но через узкую полость между двойными стенками камеры сгорания и сопла. Только так, используя большой поток горючего в качестве охладителя, можно защитить камеру и сопло (конструктивно они представляют одно целое) от чудовищного (выше вулканического) жара, развиваемого внутри этого химического двигателя. Горючее, подогреваемое между стенками, готовится к процессу смесеобразования. В реальных двигателях вспомогательный насос подает его из отдельного бака в газогенератор — специальную меньшую камеру, работающую при более низкой температуре. Здесь оно газифицируется и идет как рабочее тело на колесо турбины. Турбина вращает соосно расположенные основной и вспомогательный насосы — все в целом образует ТНА (турбонасосный агрегат), компактный сгусток современной технической мысли; перед запуском ЖРД его раскручивает специальный стартовый движок. Автоматика регулирует режим работы, поддерживает заданную пропорцию жидких компонентов.
Камера сгорания ЖРД — подлинное царство капель, они владеют всем пространством на начальном ее участке — там нет никакой металлической начинки, как в ВРД (форкамеры, стабилизаторы). Здесь оба компонента реакции — и горючее, и окислитель — используются в виде жидкости, например керосин и сжиженный кислород (или спирт с азотной кислотой, отдающей кислород при разложении). В этом заключается отличие от ВРД, для которого возят с собой только жидкое горючее, а окислитель даровой — из воздуха атмосферы.
Все ВРД — проточные каналы, ЖРД — глухой горшок, дно его плотно усажено сотнями форсунок — форсуночная головка должна за секунду пропускать многие килограммы жидкости. В форсуночной головке распылители обоих компонентов расположены в определенном порядке, чтобы каждый факел горючего равномерно по возможности насытить окислителем. Часто используют сотовое расположение, подсказанное архитектурой пчелиного улья.
В адском горшке ЖРД приготовляется более калорийное варево, чем в камере ВРД. Температура газов на выходе из двигателя достигает 3500 К и более. Однако набор процессов смесеобразования здесь в принципе тот же, что и в воздушных камерах: распыливание, движение и испарение капель, смешение паров до горючей концентрации, только организованы они сложнее во времени и в пространстве. Все явления протекают почти рядом, бок о бок друг с другом и горением. Исследователи нарисовали картину рабочего процесса в ЖРД. Плотное облако капель в факелах форсунок увлекает за собой слои окружающего газа, на их место обратно засасываются встречные струи горячего газа — продукты полного и неполного сгорания из начальной зоны пламени. Образуются обратные токи — вблизи форсуночной головки крутятся колечки интенсивных вихрей. Только жидкие розетки, и густое облако капель спасают сами форсунки от выгорания.
Химическая реакция горения протекает бурно и идет преимущественно в газовой фазе; сквозь газ движутся горящие капли — давление в камере высокое: 50 и более атмосфер. Температура быстро нарастает от задней стенки к выходу камеры. Продукты сгорания поступают в реактивное сопло, где поток разгоняется до высоких сверхзвуковых скоростей, и таким образом тепловая энергия преобразуется в кинетическую. Мы помним счетверенные слепящие блики на теле- или киноэкране, когда показывают запуск космического корабля,— это огненные выхлопные струи из сопел связки двигателей, ими оснащена космическая ракета, идущая в зенит.
Мощность и тяга современных ЖРД очень велики. Пять двигателей первой ступени американской ракеты «Сатурн», забросившей «Аполлоны» на Луну, имели тягу около 600 тонн каждый.
Приведем некоторые цифры для характеристики таких мастодонтов современной ракетно-космической техники, как «Сатурн-V» (двигатель F-1). Мощность одного двигателя первой ступени оценим по параметрам реактивной струи. Массовый расход компонентов G (керосин и жидкий кислород) составляет примерно 2650 кг/с, а скорость истечения газов из сопла двигателя w достигает примерно 2400 м/с. Тогда мощность газовой струи оказывается равной 7.6-103 МВт :
Таким образом, двигатель диаметром около метра развивает мощность примерно 10 Днепрогэсов!
Оценим число капель, вылетающих в секунду из форсунок такого двигателя. Секундный расход жидкости равен произведению числа капель п на среднюю плотность жидкости ρ ср и объем капли:
Если принять средний диаметр капли в спектре распыливания равным 100 мкм, а среднюю плотность равной 1 г/см3, то получим, что
n = 5 х 1012 капель в секунду. Такой невероятный рой капель рождается в секунду примерно из 6000 распылителей форсуночной головки, питая бушующее пламя камеры.
Упомянем еще один класс двигателей—РДТТ: ракетные двигатели твердого топлива — дальнейшее развитие древней пороховой техники. Главные части здесь — тоже камера сгорания и сопло, но в камеру заложен заряд твердого топлива сравнительно медленного горения. Заряд содержит оба компонента — горючее и окислитель. Наша знаменитая «Катюша» — пример твердотопливной ракеты.
— Но капель в РДТТ нет? — может спросить внимательный читатель.
Представьте, есть, но это особые, «железные» капли. Для повышения тяги ракеты иногда увеличивают калорийность топлива, закладывая в него мелкие частицы алюминия. Сгорая, они выделяют много тепла и превращаются в мельчайшие капельки окисла — Аl2О3. Сделав свое полезное дело, они потом становятся балластом. Хотя общая выгода получена, потоку газов приходится возвращать «сдачу» — часть своей энергии— на разгон и вынос частиц из сопла. Такие потери называются двухфазными (первая фаза— газ, вторая фаза — твердые или жидкие частицы); их надо уметь рассчитывать, а для этого надо знать диаметры частиц. И вот мы снова пришли к спектру капелек, только из окисла металла, которые обычно меньше, чем капли в ВРД. Механизм образования спектра здесь другой. Капли жидкого горючего — результат распада струй, капли окислов — продукт конденсации в жидкость из газообразного состояния, и поэтому их называют конденсатом.
Архитектура из света и капель
Между тем затянувшаяся охота за каплей продолжалась, но шла пока без особого успеха. Оказалось совсем не просто измерить мелкую, иногда микронных размеров, частицу, летящую со скоростями 50—100 м/с. Дело усугублялось широтой спектра диаметров частиц. Имевшиеся в литературе способы измерений в двигателях внутреннего сгорания нам не подходили.
Обычно рабочий день начинался с открытия. Кто-нибудь приносил очередную «блестящую идею», она представлялась дома такой обещающей, к обеду ее обычно «закрывали» под аккомпанемент беспощадной критики.
В те годы еще не родился метод «мозгового штурма», метод психической мобилизации творческой мысли в коллективе. Но мы, начинающие исследователи, нащупывали его интуитивно. Из шутки, смеха, «всеобщего трепа» постепенно вырастал серьезный разговор. Как-то сам собой возник обычай свободно высказывать любые безумные или смехотворные предположения и идеи. Поначалу слушатели не без труда воздерживались от зубастых, ехидных замечаний, на которые все были горазды. Но наш руководитель установил правило — отбор и строгая критика отодвигались на последующую дискуссию, когда набирался запас предложений (теперь психологи так и поступают).
— Надо ловить каплю на излете в какую-то мягкую подушку, чтобы не дробилась. Я думаю, подойдет паутина...
— Отлично, берем проволочные рамки и айда на чердак.
— Нет, так нельзя... нужно по плану. Рамки пока раздаем уборщицам... а нам всем оформить командировку на завтра в Серебряный бор, там в лесу паутина — залюбуешься.
— Заведем казенного паука, будет новое лабораторное оборудование; использование пауков в технике — авторское свидетельство. Пусть завхоз ставит его на довольствие, как нашу серую Мурку...
Возникала атмосфера раскованности; шутка, игра помогали ломать жесткий стереотип привычной мысли. Нам тогда не грозила опасность впасть в бездумную болтовню. Всех будоражили, тонизировали каждодневные сообщения о новых технических идеях, конструкциях, полетах, об успешных действиях наших Илов, штурмовиков с кинжальными эрэсами (ракетными снарядами), наших реактивных «Катюш», явно превосходивших немецкие шестиствольные минометы, о наших новых типах пороховых ракет, которые иногда запускались прямо с деревянной тарой («Русские бросаются сараями!»— вопили фашисты).
В издававшемся тогда журнале «Британский союзник» появились эффективные чертежи-рисунки первых турбореактивных двигателей. Но старые опытные цаговцы предостерегающе качали головами:
— Не очень доверяйтесь, здесь поработало бюро искажений.
Мы всматривались в них квадрат за квадратом, как в загадочные картинки — «найти взломщика», но так и не находили. Позже, когда мы работали уже в другом институте, появились первые трофейные немецкие ТРД и огромные, как нам тогда казалось, марсианского вида ФАУ-2...
Мы сбились с ног в поисках материалов для улавливания капель. Пробовались новые по тем временам пластики и полимеры, пористый пенопласт, желеобразные среды (гели), смолы, различные пасты вплоть до гуталина, который был тогда дефицитом.
Пока же опыты ставились на модельной установке, капли распыленной воды улавливались в касторовое масло. Каждую пробу, приходилось утомительно и кропотливо обрабатывать под микроскопом. Способ годился для условного сопоставления форсунок по качеству распыливания, но не для измерения частиц реального топлива в камерах. Кто-то однажды предложил:
— Хватит ловить капли, как мух на липкую бумагу. Применим метод моментальной, искровой фотографии.
Он уже тогда был достаточно усовершенствован. Время экспозиции, то есть вспышки искры, составляло 10-5—10-6 с. Экспериментатор, жаждавший остановить мчащуюся каплю, мог скомандовать: «Остановись, мгновение, ты прекрасно!» Метод позволил впоследствии многое разглядеть и понять в самом явлении распада, но для систематических измерений не пошел. Вступили в противоречие два главных требования — точность замеров и массовость объектов. Для хороших измерений нужен увеличенный портрет капли. По законам оптики укрупнение масштабов изображения оплачивается уменьшением глубины резкости и сужением поля зрения. Из массы летящих капель объектив фотоаппарата выберет несколько резко сфокусированных, остальные получатся размытыми пятнами — не напасешься дефицитной мелкозернистой пленки.
Тут как раз и подоспело мое предложение использовать радугу. В литературе по метеорологической оптике я отыскал теорию радуги, ее создал известный английский астроном и физик Эри (1801—1892).
Простой принцип этой дивной архитектуры из солнечного света и капель совсем нетрудно понять. Наблюдатель видит радугу, стоя спиной к солнцу (рис. 6). Лучи солнца претерпевают в каплях полное внутреннее отражение и возвращаются обратно к зрителю под определенным углом. Это сопровождается дисперсией — капли «работают» как миниатюрные призмы, разлагая свет на цвета исходного спектра, от красного до фиолетового. На рис. 6 одна из капель и ход лучей в ней показаны крупным планом.
Вследствие интерференции световых волн интенсивность возвращенного света имеет для каждого цвета ряд максимумов, которые соответствуют определенным углам наблюдения. Только эти максимумы и может видеть глаз, слабые лучи всех других направлений не дают зрительного восприятия. Но максимумы — от первого к последующим — в каждом цветовом ряду резко слабеют, и различать вторые, третьи и т. д. глазу становится трудно. Поэтому мы обычно видим одну арку, так называемую главную радугу — это сомкнутые полосы, соответствующие первым максимумам всех цветов; она всегда наблюдается под углом примерно 42°.
Изредка в очень чистом небе видна и вторая многоцветная арка — от капель, где свет прошел двойное внутреннее отражение.
Такая интерференционная картина обладает особенностью — стоящий в данном месте наблюдатель видит радугу только от определенной группы частиц. Глаз служит вершиной конуса с углом 42°, а все «избираемые глазом» капли дождя образуют круг в основании конуса.
Первым дал объяснение радуги знаменитый французский философ, математик, физик и физиолог Рене Декарт в 1631 году. Не зная еще явления дифракции, он имел терпение и трудолюбие построить чисто геометрически ход 10 000 лучей, прошедших через каплю. Обнаружилось, что только небольшая группа лучей под номерами от 8500 до 8600 выходит из капли компактным пучком, давая примерно одинаковый угол отклонения, порядка 42°, все остальные расходятся широким веером, то есть рассеиваются.
Земной зритель не может видеть всю окружность, а только ее верхнюю часть. На самолете другие геометрические условия обзора: они позволяют объять глазом весь круг (одно из бесплатных преимуществ авиапассажира, которое Аэрофлот забыл указать в своих проспектах и рекламе).
Радуга принадлежит к «призракам, идущим за тобой». Вы отходите — она перемещается за вами на другой Слой капель, строго соблюдая постоянство угла зрения. Солнечные и лунные дорожки на воде «из той же компании»: помните, они тоже всегда следуют за вами; причины аналогичные — максимум интенсивности света, отраженного от ряби волн, соответствует определенному углу зрения.
Теория Эри мне очень понравилась. Все было так красиво и просто, а главное, подтвердилась моя надежда: теория давала нужную зависимость. Это была связь углового расстояния между соседними максимумами световых интенсивностей (для каждого цвета) и диаметром капли. «Теперь ясно, как ставить опыт,— мне необходима монохроматическая (одноцветная) радуга».
Я работал все дни до 10 вечера, и в неделю мы собрали простую оптическую установку в темной комнате на пятом этаже. Всем не терпелось проверить правильность идеи. «Солнцем» служил межэлектродный промежуток вольтовой дуги, помещенный в фокусе большого конденсора. Красный светофильтр (иных не нашлось) отсекал все другие цвета, потому и требовался очень яркий источник. Под форсункой стояло устройство с улавливателем капель в касторовое масло для контрольного измерения. Все было готово. Мы застыли в полной темноте и тишине ожидания. Сердце у меня колотилось, казалось, о стены комнатки — выйдет или не выйдет этот первый в жизни самостоятельный эксперимент?
— Давай давление воды... держи десять атмосфер, включай рубильник...
На бисерных нитях конуса распыливания небольшой центробежной форсунки повисли бледные, но ясно различимые красные дуги комнатной радуги, разделенные темным промежутком, как и предписывала теория. Мне самодельная радуга показалась прекрасней многоцветной, естественной.
Все были довольны — «момент истины», когда реальность совпадает с предсказанием теории, доставляет какую-то детскую радость. Дескать, фокус удался, хотя вы читали о нем и знаете, как это делается. На другой день я вычислил диаметры капель по формуле радуги, через измеренное угловое расстояние между ее первым и вторым кольцом. Потом мы обработали пробу капель, уловленных в касторовое масло,— данные обоих измерений неплохо согласовывались.
Итак, мои радужные надежды оправдались. Метод давал величину, близкую к среднеарифметической величине диаметров капель в спектре распыливания.
Природа образует радугу не на любой жидкости — все зависит от величины коэффициента преломления. Но керосиновая радуга оказалась в числе «разрешенных». Это уже сулило практический результат, так как керосин применялся в ТРД. (Правда, запротестовали пожарники, требуя для опытов более сложной взрывобезопасной установки.) Конечно, до решения всей капельной проблемы было еще очень далеко. Для понимания физики распыливания и создания расчета смесеобразования требовалось определение всего спектра частиц. Но теперь хоть можно было определять и довольно просто средние значения диаметров капель спектра.
Глава II
ОХОТА ЗА КАПЛЕЙ
В поисках уравнений
Начальник одной из лабораторий ЦАГИ и наш научный руководитель Генрих Наумович Абрамович предложил мне написать статью. Я писал ее в состоянии внутреннего подъема. Мне нравилась радуга, ее теория, мир капель и вообще весь мир. Статья содержала такой перл: «Теория Эри по своей красоте и изяществу может соперничать с явлением, ею описываемым». Мой товарищ по работе инженер Л. А. Клячко, острослов, не без ехидства выдернул эту фразу из текста, как смешную редиску из грядки, и бегал с нею по всем комнатам, потешая сотрудников. Через несколько лет мы поквитались. Отыскался в его статье соответствующий перл: «Кривая концентраций топлива для форсунки имеет двугорбый характер» (автор имел в виду наличие двух максимумов).
Нам, начинающим, повезло на начальников и научных руководителей. Генрих Наумович Абрамович, сам ненамного старше нас, был тогда уже видным исследователем и автором известных работ по теории свободной струи. Много позже на одном из его юбилеев кто-то сострил: «50 лет в струю», вкладывая в эти слова два подтекста. Один говорил о преданности делу — по ассоциации с книгой генерала Игнатьева «50 лет в строю», другой — об умении юбиляра находить нужные, актуальные задачи. Г. Н. Абрамович — один из создателей советской школы аэрогидромеханики. «Генрих», как мы его звали, живой, привлекательный, руководил ненавязчиво, требуя от нас лишь инициативы и самостоятельности. Генрих Наумович просто и наглядно объяснял суть сложных аэродинамических явлений. «Мы здесь рассудим по-нашему, по-плотницки»,— говорил он, поясняя образование ударной волны в сверхзвуковом течении. Его книга «Прикладная газовая динамика» стала настольной для поколений студентов и инженеров.
В то время он разрабатывал теорию центробежной форсунки, давно и широко применявшейся в технике, но пока не подвластной инженерному расчету. А без форсунки нет ракеты, дождевального агрегата, реактивного самолета, котельной установки и еще многого.
Есть в инженерной практике человечества счастливые находки, «вечные» устройства, решающие задачу простейшим и рациональнейшим образом: колесо, болт с гайкой. Таково и сопло Лаваля — канал в виде раструба на выходе реактивного двигателя, где газ разгоняется до сверхзвуковой скорости. В силу привычки мы не удивляемся античной красоте простых и умных геометрических форм. Кстати, древние греки могли бы получить сверхзвуковую струю воздуха, надув бурдюк, выдерживающий давление около двух атмосфер, и подобрав эмпирически сопло — раструб с определенной площадью горловины, меньшей площади выхода.
Центробежная форсунка — младшая сестра в уникальном семействе устройств, которые скупыми средствами, компактно и внешне просто решают сложную техническую задачу. Как пустить жидкость широко расходящимся конусом мелких капель, чтобы полнее насытить некий объем? Проще всего подать ее тангенциально, то есть по касательной к окружности внутрь отрезка цилиндрической трубы, один конец которой закрыт, другой — сужен до малого отверстия (рис. 7). Получится камера закручивания, в ней жидкость пойдет по винтовым линиям. На выходе они «расплетутся», образовав факел, или конус распыливания. У самого корня это не совсем конус, а поверхность более сложной формы: однополостной гиперболоид (рис. 8).
Течение в камере закручивания не сплошное, а полое, и мы уже видели через стеклянное дно форсунки столбик воздушного вихря. Поэтому струя на выходе из соплового отверстия превращается в кольцевую пелену, ограниченную двумя поверхностями гиперболоида толщиной несколько десятых миллиметра. При очень малых давлениях подачи (порядка десятой доли атмосферы), то есть малых скоростях истечения, капиллярные силы еще конкурируют с гидродинамическими и замыкают пелену в полую эллипсообразную форму, что соответствует так называемому режиму пузыря (рис. 9). Поверхностное натяжение силится вернуть жидкости каплеобразную форму шара — минимум поверхности при заданном объеме (известный принцип минимума поверхностной энергии для равновесной формы жидкости).
С ростом давления подачи пузырь размыкается, и течение становится обычным конусом распыливания, жидкая пелена постепенно укорачивается, сохраняя небольшой венчик у самого корня факела. В тонкой пелене секрет высокой дисперсности, мелкости капель.
Почему же во вращающейся жидкости появляется полость, воздушный вихрь, и что вообще там происходит? Центробежная форсунка — хороший повод приглядеться ближе к жидким и газовым потокам, кратко познакомиться с азбукой гидродинамики идеальной (без трения) несжимаемой жидкости. Нам станут тогда понятней события, происходящие в мире капель и струй.
Следить за пространственной картиной изменчивых жидких (и газообразных) сред удобно с помощью линий тока, проведенных касательно к скоростям в различных точках жидкости. Узор таких линий является как бы мгновенной фотографией всего происходящего на большом интервале потока. Этот метод часто более информативен, чем попытка следить за перемещением отдельных жидких частиц. Движение потока может быть установившимся, когда его картина в любом месте не меняется со временем, и неустановившимся, когда она изменчива.
Установившееся движение — это, например, река с постоянным течением, омывающая одну и ту же линию берегов, или течение в трубе при постоянном угле открытия крана. Неустановившееся — это море со сменой приливов и отливов, штилем и волнами или переменное истечение струйки из шприца под действием все ускоряющегося поршня. Оказывается, в установившемся движении линии тока совпадают с траекториями частиц.
Вращательное движение, или циркуляция, в жидкости может происходить не обязательно по кругу, а по любому контуру и имеет обобщенный характер. Оно — основа многих важных явлений, в том числе подъемной силы крыла. Проведем любой замкнутый контур в поле линий тока. Можно построить проекции скоростей частиц жидкости на касательные к контуру в каждой его точке — линия окажется оперенной стрелочками. Сумма (или, точнее, интеграл по контуру) произведений таких проекций на длины малых отрезков дуг по всем точкам называется циркуляцией по контуру; она имеет знак «+» или «—» в зависимости от направления вращения: по ходу или против хода часовой стрелки. В жидкости все частицы могут не вращаться в привычном смысле, а циркуляция будет существовать. Вращение здесь приобретает более общий кинематический смысл. Выделим в потоке элементарный «жидкий кубик» и проследим за его движением. Оно может складываться только из трёх составляющих: поступательного (перемещение параллельно себе), вращательного (поворота как твердого тела), деформационного, когда грани углов наклоняются одинаково, так что биссектрисы сохраняют свое положение. Поток, где отсутствует вращение, а «кубик» только перемещается и деформируется, называется безвихревым, или потенциальным. Если присутствуют все три движения — поток вихревой, а вихревое течение всегда несет в себе циркуляцию. В гидродинамике существует теорема У. Томсона: циркуляция в идеальной жидкости остается всегда постоянной; если ее в начале движения не было, она никогда и не появится, но, возникнув, сохраняется неизменной. В дальнейшем мы еще вспомним об этой теореме.
Выделим элементарную струйку жидкости, или «трубку тока». Ее поверхность образована траекториями жидких частиц. Струйку берут тонкой, почти одномерной, так что параметры изменяются лишь вдоль ее течения, а поперек они постоянны. Течет она в общем потоке, вместе с ним сужаясь, расширяясь, вращаясь, и меняет свои параметры: площадь поперечного сечения f , скорость w , давление Р. Ходом многих явлений в мире гидродинамики, включая и малую струйку тока в ее изменчивом течении, управляют основные законы сохранения, которые диктуют постоянство трех главных физических параметров: расхода вещества, вращения, энергии (о четвертом законе — законе сохранения импульсов, или количества движения, речь будет несколько позже).
Тут иной читатель, пусть еще не очень много знающий в нашей науке, но желающий полной ясности, пытливый, внимательный, дотошный (автор особенно расположен к такому), скажет: «Ну хорошо, мы договорились в самом начале, что жидкость условно принимается идеальной, то есть без трения, а почему ее назвали несжимаемой, ведь она течет, сужается, изгибается, принимает форму канала, камеры закручивания форсунки?» Здесь необходима точность определений: не следует смешивать любую деформацию со сжатием. Представьте себе опять-таки некий жидкий кубик в потоке. Поток непременно вытянет его в длинный столбик, то есть изменит его форму, но объем останется прежним. Это и есть несжимаемость, свойственная практически всем жидкостям при не очень больших давлениях (не выше сотен атмосфер). В газе эффект сжимаемости (изменение объема «кубика») начинает сказываться, лишь когда скорость потока приближается к звуковой. При меньших скоростях удельный вес и плотность в различных точках потока остаются близкими к постоянным.
Первый закон — закон сохранения расхода: количество жидкости, прошедшей через площадь f в секунду, то есть массовый расход, остается постоянным по всей трубке потока:
Уравнение (1) является гидродинамической формой закона сохранения вещества.
Частицы жидкости или газа ведут себя куда разумнее людской толпы, они не замедляются, не толкутся в узких проходах, а, наоборот, если канал сужается (f падает), жидкость протекает быстрее, при расширении тракта (f возрастает) скорость ее падает.
Второй закон — закон неизменности момента количества движения: произведение скорости вращения и на радиус r сохраняется постоянным от одной струйки жидкости к другой. Применительно к форсунке это условие запишется так:
где v вх — скорость жидкости на входе в форсунку (начальная скорость закрутки), R — радиус камеры закручивания.
Вращающаяся жидкость — это «антикарусель»: чем меньше радиус вращения, тем больше скорость.
Третий закон — это закон сохранения энергии единицы объема жидкости (уравнение Бернулли): в установившемся движении идеальной жидкости сумма потенциальной энергии единицы объема, то есть давления и кинетической энергии, обусловленной скоростью, сохраняется постоянной вдоль всей струйки тока, в нашем случае — от исходного давления Р 0 в резервуаре (баллоне) до выхода из канала. Уравнение Бернулли, связывающее параметры струйки, текущей сквозь форсунку, в различных поперечных сечениях имеет вид:
Здесь суммарная кинетическая энергия жидкости в сложном движении через сопло форсунки (где она идет по винтовым линиям) складывается из энергии поступательного движения со скоростью до и вращательного — со скоростью и.
Удельная кинетическая энергия рv 2 /2 по аналогии с первым слагаемым Р называется скоростным или динамическим напором Р g — эта энергия может перейти в давление. Если текущую жидкость остановить ладонью, то вы почувствуете суммарное давление Р+Р g , которое называется полным напором (с точностью до потерь на трение; эта сумма равна давлению в баллоне).
В медицине, например, используется полный напор струи для безыгольной инъекции вакцины. Специальный импульсный шприц подает кратковременную струю высокого давления. Это «жидкая игла» безболезненно прокалывает, точнее даже, пробивает кожу.
А вот новинка хирургии — «выстрел клеем»: специальный биологический клей вводят из пневмопистолета струей в зону операционного разреза. Механизм действия этого целебного пистолета таков. Клей, поданный под большим динамическим напором Р g в межклеточное пространство живых тканей, сдавливает сосуды, останавливая кровотечение. Оставшийся на поверхности разреза клей образует корочку, способствующую заживлению. В обоих устройствах потенциальная энергия начального давления переходит сначала в кинетическую энергию, а потом, при ударе о поверхность, снова в давление.
Из уравнения Бернулли видно, что давление и скорость — «антагонисты»: если вдоль потока v растет, то Р падает, и наоборот — с замедлением потока повышается давление. На этом явлении основан, в частности, самый простой и экономичный распылитель — парикмахерский пульверизатор, дающий широкий факел с очень тонким распыливанием при малом расходе парфюмерии, что вполне устраивает и парикмахера, и клиента. Т-образная трубочка с перекладиной наверху опущена во флакон с жидкостью. Воздух из резиновой груши под давлением поступает в трубку, где его скорость (согласно закону сохранения расхода) резко возрастает: ведь трубочка намного уже, чем груша. Следовательно, давление, согласно уравнению Бернулли, упадет, и возникшее в перекладине разрежение по вертикальной трубочке будет засасывать жидкость вверх. Там быстрый поток воздуха погонит ее к выходу на другом конце перекладины, распыливая на капельки.
Уравнение Бернулли позволяет просто получить приближенные формулы для скорости истечения и расхода жидкости из отверстия распылителя в атмосферу. Запишем уравнение сохранения энергии (3) между начальным сечением в баллоне, где давление равно Р о , а скорость течения жидкости почти нулевая (баллон очень широк сравнительно с отверстием), и сечением выхода в атмосферу с давлением Р а :
Для форсуночных и капельных нужд нам хватило трех уравнений сохранения, но мы упоминали еще о четвертом. Оно знаменательно, в частности, тем, что приводит к формуле для реактивной тяги двигателя, лежащей в основе всей ракетной техники. Вспомним простой и общеизвестный пример. Вы стоите в неподвижной лодке на озере и бросаете тяжелый камень с кормы — лодка двинулась в противоположную сторону. Объяснение дает закон сохранения количества движения (или импульса), из которого вытекает важное следствие: положение центра тяжести (или центра масс) системы под действием внутренних сил остается неизменным. До броска центр тяжести лодки со всем содержимым покоился в некоторой точке. Когда мы выброси» ли камень, часть массы системы ушла назад, распределение масс изменилось, но центр тяжести «не имеет права» перемещаться. Чтобы сохранилось его прежнее положение в пространстве, лодка должна ‘была двинуться вперед. То же и с ракетой: до запуска она была неподвижной, но когда массы газа стали вытекать из сопел, ракета, подчиняясь общему закону, полетела в противоположную сторону. Мощные струи газа будут вытекать из ракеты, сама она унесется далеко в космос, а центр тяжести системы «газы—ракета» останется по- прежнему в своей исходной точке, на земле. Закон количества движения гласит: импульс сил — произведение сил на время их действия — равен изменению количества движения всех тел в системе.
Если этот закон применить к ракете, получим формулу тяги:
P = Gw c (7)
Здесь Р — тяга двигателя; в правой части уравнения — количество движения газов, вылетающих из сопла (G — массовый расход газов, w с — их скорость на срезе сопла).
Формула (7) показывает: конструктор имеет два ресурса для увеличения тяги — расход G и скорость w с вытекающего вещества. Но топливо и так составляет львиную долю массы всей ракеты, выше определенного запаса его не возьмешь. Вот почему поток газов в сопле (где тепловая энергия переходит в кинетическую) разгоняют до огромных скоростей, в несколько раз превышающих скорость звука.
Четыре основных уравнения сохранения только в первом приближении — в идеальном случае установившегося течения невязкой, несжимаемой жидкости — заменяют более общие законы движения жидких сред и взаимодействия их с твердыми телами. Эти сложные дифференциальные уравнения содержат время и координаты перемещающихся частиц и способны дать более полную картину трехмерного мира жидкостей и газов с учетом всех действующих сил. В них входят физические константы среды: вязкость, плотность и другие, найденные из опыта. В них (совместно с граничными условиями) заложена вся информация о течении — они могут ответить на вопрос: куда и в какое время придет любая частица жидкости, предсказать все явления и факты. Многочисленные опыты и практика подтвердили их право называться фундаментальными законами природы. Однако решение этих уравнений является очень сложным делом и не всегда возможно, даже при современных ЭВМ.
Гидромеханика, как и другие естественные науки, веками поднималась к вершинам познания «в связке альпинистов»: опыт — теория. Первый шаг делает опыт, это наблюдение, установленный факт (еще не полностью понятый), использование в практике каких-то явлений. Опыт ставит задачи, подтягивает за собой теорию. Она делает следующий шаг: как правило, бросок выше поставленного рубежа, к математическим обобщениям. Теория многое объяснила, но теперь возникли новые задачи для опыта, в которых теория выступает уже заказчиком: нужно проверить в эксперименте решения ее уравнений, правильность гипотез. Снова включается опыт — уже на следующей ступени, вооруженный новой приборной техникой. Так, выполняя заказ времени, известный американский физик А. Майкельсон (1852— 1931) ставит в 1881 году свой знаменитый опыт по измерению скорости света. Он использует для этого точные дифракционные решетки Роуленда. И вот результат: гибнет старая гипотеза эфира, рождается теория относительности — «связка» преодолевает величайший барьер в истории науки.
Так попеременно вырубая ступени в упорной породе, обгоняя и подтягивая друг друга, непрерывно движутся в единой связке опыт и теория. Общие дифференциальные уравнения гидромеханики — одна из самых высоких вершин этого восхождения: с нее далеко видно.
Катаклизмы внутри форсунки
Теперь со знанием дела, слегка подкованные по части гидродинамики, обратимся снова к форсунке: интересно, как там работает связка «опыт—теория»? Вблизи горизонтальной оси форсунки, где радиус r мал, скорость вращения жидкости и велика, это диктуется уравнением (2). Велика и кинетическая энергия — слагаемое в законе Бернулли pu 2 /2 . Следовательно, другое слагаемое— давление Р — мало. Двигаясь все ближе к оси, при r -> 0 получаем — согласно уравнениям (2) и (3) — нечто странное: и -> ∞ , Р -> —∞.
Это называется особой точкой решения. Математика начинает «чудить», приводит к противоречию с физикой, к невозможному результату: бесконечная скорость, бесконечное, да еще отрицательное давление.
Но часто математический парадокс как бы подает сигнал: здесь не разрыв со здравым смыслом, а разрыв в самой картине явления — ищите резкого изменения формы течения. А происходит вот что: когда давление у самой оси упадет ниже уровня давления среды, воздух из атмосферы засосётся внутрь форсунки через сопловое отверстие и образуется полость — воздушный вихрь радиуса r m , подобие воронки в ванне при сливе воды. Математическое зеркало, даже искривляясь, как бы продолжает своей кривизной отражать реальность.
Теория центробежной форсунки создавалась у нас на глазах, и многие помнят, как возникла неожиданная, трудность: число уравнений в задаче оказалось меньше числа неизвестных — радиус вихря r m стал «лишним», для него не хватило одного уравнения. Проблема зашла в тупик, поскольку было неясно, как вычислить главную величину — расход жидкости. В уравнении
Тогда Г. Н. Абрамович решил: посмотрим структуру неизвестного, и построил зависимость расхода от радиуса r m или, что равносильно, от коэффициента φ c (при постоянном давлении подачи). Обнаружилась характерная особенность: при малых r m (толстое колечко) сечение выхода хорошо заполнено жидкостью, зато осевая скорость потока мала и их произведение (расход) мало; при больших r m (тонкое колечко) выходное сечение заполнено плохо, и, хотя скорость велика, расход опять мал. На кривой при каком-то промежуточном значении r m обнаружился четкий максимум: природа как бы сама обращала внимание исследователя на одну особенную точку графика. Интуиция исследователя подсказала Генриху Наумовичу смелый «принцип максимума расхода», отбирающий одно-единственное в целом мире решение; из всех возможных вихрей форсунка избирает такой, что расход жидкости получается наибольшим. Этот принцип позволил замкнуть теорию — интуиция заменила недостающее уравнение.
Опыт подтвердил красивую гипотезу в определенном диапазоне режимов. Был достигнут существенный прогресс. В дальнейшем теория уточнялась и развивалась советскими учеными Л. А. Клячко, В. И. Скобелкиным, В. Б. Тихоновым и другими. Она нашла самое широкое применение в инженерной практике, поскольку позволяет просто вычислять расход жидкости и угол распыливания. Массовый расход в соответствии с уравнением (5) запишется так:
характеристика форсунки, r и п — соответственно радиус и число каналов камеры закручивания.
Геометрическая характеристика оказалась фактором подобия: самые разные форсунки, имеющие одинаковую комбинацию основных размеров А , имеют одинаковые коэффициенты расхода μ и углы распыливания. Теперь общая картина течения в форсунке выглядит так. Поток, попадая из широкой камеры закручивания в узкое сопло, ускоряется — работает уравнение сохранения расхода. Убыстряется и вращение, как у фигуриста, мгновенно сложившего на груди до этого раскинутые руки (уравнение сохранения момента количества движения). Давление жидкости, вышедшей в открытое пространство, должно упасть до атмосферного, центробежное давление — исчезнуть. Но энергия не исчезает. По уравнению Бернулли потенциальная энергия переходит в кинетическую, то есть возрастает скорость истекающей пелены, и она на самом выходе утоньшается. Итак, остроумная догадка о максимуме расхода разрешила трудности и дала законченную теорию явления.
Однако возникает вопрос: как же получилось, что не хватило уравнений и строгую логику пришлось заменить гипотезой? Победителей не судят, но если бы предположение ученого не оправдалось? Быть может, какой-то фактор выпал из рассмотрения, какие-то связи не были учтены? Вопрос законный, серьезный. Для ответа мобилизуем все ту же испытанную связку «опыт—теория». Вглядимся внимательней в явление, вернувшись опять к форсунке. Но теперь приделаем к ней, продолжая выходной канал, длинную прозрачную трубку — сопло из плексигласа. Раньше мы видели поток всегда с тыла или на выходе, сейчас можем взглянуть сбоку. Действительно, в профильной проекции обнаружилось нечто новое: у самого входа в сопло из камеры виднеется крутая ступенька (иногда не одна) — резкое падение толщины жидкого колечка; внезапный рост радиуса вихря r m (рис. 10). Сразу появляется информация к размышлению: что за скачок? Где такое бывает? Поищем аналогии — путь в науке очень полезный. Картотека памяти выдает необычный, запомнившийся образ: ведь это гидравлический прыжок, и возникает он действительно в потоках, сходных с нашим.
Гидравлики подробно изучают течение в открытом русле водослива (например, оросительный канал).
Жидкость там течет под действием силы тяжести — аналог потока с центробежным давлением в форсунке (оно тоже зависит от массы). Интересное это явление — гидравлический прыжок. Плавно ускоряясь, течет под уклон вода в канале по совершенно гладкому дну, уровень меняется медленно, равномерно. Но вот, разогнавшись до какой-то предельной скорости, поток скачком меняет свою высоту, прыгает иногда почти отвесной стенкой, образуя один или несколько горбов-порогов. Потом на уменьшенном уклоне течение снова идет плавно, но уже на другом уровне. Гидравлический прыжок возникает как раз в сечении, где скорость потока w достигает скорости с распространения поверхностных так называемых тяжелых волн *.
* Предположение о равенстве скорости течения жидкости в сопле форсунки скорости распространения тяжелых (центробежных) волн впервые было высказано И. И. Новиковым.
Из теории волнового движения известна простая формула определения скорости распространения волн: c = √ gh, здесь g — ускорение под действием силы тяжести, h — высота уровня жидкости.
Перенесем на форсунку это уравнение прыжка. Теперь система уравнений замыкается без каких-либо дополнительных гипотез, поскольку появилось новое соотношение, определяющее радиус вихря, а именно равенство w и с:
Вот оно, потерянное уравнение. Вместе со старыми уравнениями вся система приводит к принципу максимума расхода — теперь он уже не гипотеза, а следствие теории течения в форсунке.
В чем физический смысл условия w = c ? Скорость тяжелых волн с — это скорость передачи импульсов в разгоняющемся потоке. Они передают информацию сверху вниз по течению с помощью бегущей волны жидкости малой амплитуды: «Поток ускоряется, издали меняйте форму течения, постепенно подстраивайте уровень жидкости на всем протяжении пути». Пока сигналы проходят по трассе, движение идет плавно, уровень меняется постепенно. Но вот жидкость к некоторому сечению разогналась до скорости волн — информация уже не опережает потока жидкости, а движется параллельно с потоком, не оставляя времени для перестройки. Потому тесно, «задние напирают на передних», возникает так называемый кризис течения. И вот поток «взбунтовался», встает отвесной стеной, резким уступом, нарушив монотонность процесса. Произошел, естественно, и прыжок скорости, поскольку резко изменилось проходное сечение. Потом, на ином уровне подъема, жидкость успокаивается, и снова течение становится плавным. Значит, в крутящемся потоке нашей форсунки есть критическое сечение, где скорость равна критической, и это сечение в самом начале сопла. Дальше вниз по потоку, что ни делай, расход, формирующийся в истоке, уже не увеличишь, поток перед критическим сечением не перестроишь — туда просто не дойдут никакие импульсы-сигналы.
Итак, догадка Г. Н. Абрамовича о существовании максимума расхода подтвердилась экспериментом, эксперимент помог найти аналогию между гидравлическим прыжком жидкости в открытом русле и режимом максимального расхода в форсунке с центробежным давлением.
Но, если мы взялись докапываться до самой сути, можно поставить новый вопрос: «А где же всеобщность исходных фундаментальных уравнений, о которых говорилось раньше? Они ведь должны предсказать все явления, все опытные факты. Нельзя ли из самих исходных уравнений вывести гидравлический прыжок?»
Чтобы ответить на этот вопрос, вновь приходится возвратиться к истории этой проблемы, начиная с того периода, когда практика настойчиво потянула нашу связку «опыт—теория» на новый уровень.
Обычные виды топлива обладают заметной вязкостью. Новые (для того времени) реактивные двигатели космических ракет и больших авиалайнеров, где число и разнообразие форсунок все возрастали, требовали более точных расчетов. Конструкция самой форсунки усложнялась, она обрастала различными клапанами, изготовлялась по все более высокому классу точности и становилась довольно дорогой деталью. Теория форсунки на основе идеальной жидкости сделала свое важное дело, но теперь уже не всегда давала нужную точность.
Исследователи приняли эстафету дальнейшего движения от теории идеальной жидкости к теории вязкой жидкости применительно к процессам в форсунке. Инженер Л. А. Клячко проводил испытания центробежной форсунки на топливах разной вязкости. Сначала в форсунку подавалось маловязкое топливо — бензин, затем более вязкое — керосин. Первые же опыты, к его удивлению, показали парадоксальный результат: для керосина коэффициент расхода оказался больше, чем для бензина. Клячко сказал готовившему эксперимент механику:
— Быть этого не может: вязкость больше, а расход возрос. Что-то здесь не так! Вы, наверное, плохо уплотнили форсунку, и керосин где-то подтекал.
— Форсунка собрана правильно, герметичность я гарантирую,— с достоинством ответил опытный механик.
Повторный эксперимент (правильность сборки форсунки теперь проверяли вместе придирчивый инженер и задетый за живое механик) дал все тот же результат: на керосине коэффициент расхода больше, чем на бензине. Провели опыт с еще более вязким топливом — соляровым маслом. Коэффициент расхода опять возрос.
После мучительных раздумий инженер нашел разгадку парадоксального явления. Действительно, под влиянием трения уменьшается закрутка потока в камере. И тем сильнее, чем больше вязкость топлива. Момент количества движения уже не сохраняется, как в идеальной жидкости. Та же скорость вращения на границе воздушного вихря достигается теперь при уменьшенном моменте количества движения, то есть на меньшем радиусе r. Короче, трение, слегка «съедая» вращение, приводит к лучшему заполнению сечения сопла, «накручивая» более толстое жидкое кольцо. Кроме того, оказалось, что трение перераспределяет энергию потока: большая доля идет на определяющее расход поступательное движение со скоростью w, меньшая остается вращению. Поэтому с ростом вязкости жидкости коэффициент расхода центробежной форсунки возрастает. Согласно новой теории, расход получали больше, а угол распыливания меньше, чем по старой теории. Но опыт и расчет теперь согласовывались значительно лучше.
Форсунка вдобавок ко всем другим своим полезным качествам оказалась еще простым и универсальным наглядным пособием: кажется, нет такого закона гидродинамики, который нельзя было бы на ней продемонстрировать.
Теперь, когда учет вязкости реальной жидкости рисует картину, более близкую к фактической, мы можем вернуться к нашему вопросу. Критическое сечение в сопле форсунки и в нем бесконечно крутой гидравлический прыжок действительно получаются из уточненной теории, однако полностью до реальной картины она «не дотягивает». На самом деле явление гидравлического прыжка развивается не в одном сечении, а на некотором конечном интервале, так что отвесного прыжка жидкости, бесконечной крутизны нет нигде. Причина нового, более тонкого расхождения теории с реальностью состоит в том, что эффект вязкости хотя и отражен теперь, но далеко не полно — только через изменение момента количества движения, в то время как структура поля скоростей не учитывалась. Гидравлический же прыжок обычно сопровождается резким изменением всей картины потока, отрывом пограничного слоя от стенки, возникновением обратных токов и завихрений и принадлежит к классу сложнейших явлений скачкообразной смены одного режима устойчивого течения качественно другим. Среди других гидромеханических эффектов и этот, конечно, выражается в символах общих уравнений вязкой жидкости (уравнений Навье—Стокса), но вывести его из уравнения пока не удается из-за математических трудностей и неполной ясности относительно влияния на процесс граничных условий.
Наше повествование коротко и упрощенно отразило ход исследования одной из проблем прикладной гидромеханики, связанной с принципом максимума расхода. В теории форсунки существуют и другие подходы, но изложенная методика нашла наибольшее признание в литературе по авиационной, ракетно-космической технике, теплоэнергетике и т. д.
Знания, которые изложены в учебниках, всегда выглядят гладкими, логичными, обоснованными. Реальный же путь живой, развивающейся науки изобилует зигзагами, интуитивными догадками, нестрогими результатами, поскольку интуиция — часто единственный способ перенестись через разрыв, не имеющий пока логического мостика. Даже в наилогичнейшей из всех наук — математике — теоремы обычно сначала высказываются, часто угадываются, а потом доказываются, порой долго, порой очень долго, а возможно, не доказываются никогда, как, например, теорема Ферма.
Рассказ об одной из проблем прикладной гидромеханики хочу завершить эпизодом, в котором проявилась поразившая тогда нас интуиция профессора Абрамовича, создателя теории центробежной форсунки. Задача выбора формы реактивного сопла — одна из основных в прикладной газодинамике. Наука знает много примеров, когда простота конструктивного воплощения идеи требует очень сложной теории для своей реализации. Сейчас задача решается с помощью ЭВМ — борьба идет за малые доли процента реактивной тяги, зависящей от контура стенок сопла. Оно изготовляется на высокоточных станках с программным управлением. В ту давнюю, «домашинную» эру приближенный расчет был длительным и трудоемким.
Однажды конструктор развесил чертежи разрабатывавшейся тогда серии сопел. Вошел профессор Абрамович. Он бегло осмотрел чертежи, а затем, к нашему недоумению, стал пристально вглядываться в верхний угол одного из чертежей, хотя там ничего не было. Выбрав хорошо отточенный карандаш, он быстрым и плавным движением нарисовал, не отрывая грифеля от бумаги, лаконично красивую линию контура, потом молча поставил подпись и дату. Всю серию сопел изготовили, эксперименты показали: его экземпляр был одним из лучших. Потому что много сопел на бумаге и в железе прошло через его руки, много их было рассчитано, испытано. Концентрированный опыт отложился в интуиции, и в нужный момент она повела острие его карандаша.
Еще один работник ЦАГИ производил на нас, молодых, большое впечатление — Георгий Иванович Петров,теперь академик, крупный ученый в области газодинамики и реактивной техники. Он тогда занимался исследованием устойчивости течения жидкой струи, продолжением идей предыдущей его работы по распаду вихревых слоев. Он любил обсуждать научные вопросы, шагая по коридору или заглядывая мимоходом в комнату. У Георгия Ивановича была манера вести несерьезный по форме разговор о серьезных и содержательных вещах. Он мог вдруг прервать беседу смехом, окинув всех сияющим взглядом, как бы приглашая порадоваться и подивиться вместе с ним неожиданному повороту мысли или красивому математическому решению. Мнения его были порой категоричными:
— Халтура в гидродинамике пошла от скороспелых гипотез, надо искать решения в строгой постановке. Вот Тейлор в задаче о вращении газа ничего не побоялся, лихо расправился с определителем бесконечного порядка— и совпадение с опытом. Метод Галеркина — мощный, но применять его надо с головой... Н. попробовал и нарвался...
Слушать его было нелегко, он пропускал слова, заглатывал концы фраз — дескать, незачем договаривать, и так все ясно. Но слушать эту звуковую «скоропись» было интересно, его изложение «дышало голой сутью»* После такой беседы тянуло поработать, додумать, разобраться в том, что слышал, углубить мысль, дойти до истинной природы явления. От него я впервые узнал о внутренней связи между явлениями распада жидкой струи и возникновением хаотического турбулентного течения из упорядоченного ламинарного.
Общительность Георгия Ивановича, простота в отношениях располагала поделиться с ним житейскими передрягами, посоветоваться, рассказать о кинофильме. Петров-академик ничуть не утратил своих молодых качеств времен ЦАГИ. Но при всем том требовательность его к уровню научных исследований была очень высока. В критике он становился резким, язвительным, был нетерпимым до ярости к легковесным работам.
— Еще один такой технический отчет, и я променяю этого кандидата наук на два рабочих стола,— говорил он, саркастически улыбаясь (столов тогда действительно не хватало, хотя и кандидатов наук было тоже не так много, как теперь).
Круг научных интересов Георгия Ивановича отличался широтой, его теоретическая работа по распаду струи была одной из первых в отечественной литературе, а в последующие годы он внес серьезный вклад в прикладную газодинамику, теорию электрической плазмы, проблемы Тунгусского метеорита... Обладая большой человеческой притягательностью, он возглавил и много лет успешно руководил коллективом замечательных, квалифицированных и способных научных работников.
Рождение капли
После бесед с Георгием Ивановичем Петровым и чтения классических работ Рэлея у меня возник острый интерес к проблеме распада жидких струй. «Вот мы охотимся за каплей. А как она возникает? Не вылетают же капли из форсунки как дробь из ружья».
В самом деле, как происходит это «обыкновенное чудо», которое, впрочем, никого не волнует, кроме нескольких гидромехаников, исследующих проблемы устойчивости движения. Почему вообще струя распадается на капли? Текла бы себе до ближайшего препятствия, расползаясь по поверхности тонкой пленкой. Впервые на вопрос этот в 1878 году ответил с позиций математической физики знаменитый английский ученый Рэлей (1842—1919). Он положил начало целому направлению в гидродинамике, которое сейчас, с появлением реактивной техники, переживает второе рождение.
Работа Рэлея базируется на том факте, что струя всегда испытывает возмущения, вызванные вибрациями, отклонениями стенок от правильных геометрических форм, их шероховатостью и т. п. Если возмущения эти начнут увеличиваться, впадины волн — углубляться, гребни — расти, струя оказывается неустойчивой относительно малых колебаний, а волна становится будущей каплей; иными словами, волна должна отделиться от струи в виде частицы с диаметром, примерно равным длине волны (рис. 9). Решение Рэлея показало, что струя неустойчива и что амплитуды коротких и длинных волн растут с разной скоростью в зависимости от их длины. Но есть самая «легкая на подъем» так называемая оптимальная длина волны λ опт , имеющая максимум роста среди всех других. Она примерно равна 4,5 диаметра струи. Рэлей принял естественную гипотезу, что диаметр капли определяется величиной именно этой волны. Опыты хорошо подтвердили теорию. Правда, результат Рэлея касался частного случая — неподвижного цилиндра невязкой жидкости; в реальности этому соответствует медленное течение из чуть приоткрытого крана. Искровые фотографии круглой струи показали, что с ростом скорости истечения все усложняется, изменяется форма колебаний от симметричных к антисимметричным (см. рис. 9). Длина неустойчивых волн, а с ней и размеры капель уменьшаются; из массы волн начинает резко вырываться уже не одна, а две или несколько. И вот самое существенное: вместо одинаковых капель возникает их целый спектр разных размеров.
Мне захотелось внимательней присмотреться к распаду пелены центробежной форсунки, пользуясь ее большими масштабами и задав малые скорости истечения. К этому времени нас, занимавшихся реактивной тематикой, перевели из ЦАГИ в другой институт. Круг проблем и объем работы возросли, коллектив расширился, строились новые установки и стенды.
Руководителем одной из больших научных лабораторий стал видный ленинградский профессор из Политехнического института А. А. Гухман, специалист по термодинамике.
Александр Адольфович Гухман читал лекции в Московском авиационном институте. Их стали посещать и некоторые наши сотрудники. Многие чувствовали потребность глубже вникнуть в классические науки, не полностью понятые когда-то на вечерних факультетах, без отрыва от производства. Мы все время пользовались формулами технической термодинамики, но иные считали ее скучноватой, формальной.
Обычно инженер, научный работник в прикладной области имеет дело с конструкцией, ему нужно представить конкретную модель происходящего там явления, а еще лучше нарисовать ее на бумаге. Он хочет ощутить силовое взаимодействие потоков и тел. А тут какие-то общие начала термодинамики, невидимый каркас, в который вроде все вписывается и о который все время стукаешься.
Термодинамика изучает общие свойства, не зависящие от характера внутренних взаимодействий, и отвлекается от конкретной игры сил. Шла молва, что лекции Гухмана — образец глубины и красоты. Поэт термодинамики? Иные недоумевали, но, прослушав его раз, уже не пропускали ни одной лекции до конца курса. «В семье наук,— говорил Гухман,— классическая термодинамика как старая властная тетка: во все вмешивается, ее недолюбливают, но она всегда права. Почему же наряду с необходимым уважением ей часто отказывают в должной любви? Чего ей не хватает — логики, стройности, строгости? Нет, все эти атрибуты эстетики познания налицо. Отсутствует другое — доступный физический смысл некоторых ее понятий и особенно ключевого— энтропии. Будучи наукой структурно-описательной, классическая термодинамика не связывает понятия с механизмом явления».
Он говорил образно, передавая слушателям ощущение строгой красоты своих построений. Мы начинали понимать, как в природе все виды энергии — механическая, электрическая, лучистая — самопроизвольно стремятся перейти в тепло. Оно — всеобщая «сберкасса», охотно принимает вклады. Но выясняется — тут коварство: это «сберкасса наоборот», с отрицательным процентом. Попробуйте вернуть вклад, то есть с помощью машины превратить тепло обратно в работу — вам выдадут лишь часть, удержав значительную долю: в природе идет непрерывное обесценение энергии. Энтропия есть мера этого процесса.
Лектор все время шел к обобщениям, он развивал единый подход к системе, когда она близко подходит к состоянию равновесия или только начинает выходить из него. Он выстраивал законченные сооружения, созданные по строгому плану. Он мне всегда казался потомственным петербургским интеллигентом, впитавшим лучшие черты прежней культуры, педагогом высокого класса.
В свете теперешних представлений теории информации энтропия приобретает еще более общий и ощутимый смысл. Она оказывается мерой хаоса (в том числе и молекулярного), беспорядка, бесструктурности системы, Скажем, помехи, искажения текста при передаче сигналов могут тоже оцениваться с помощью энтропии. Но к восприятию новых идей надо идти от хорошо понятых классических, которые нам так глубоко излагал Александр Адольфович Гухман.
* * *
В то утро я спешил в институт с желанием скорее приступить к наблюдениям. Уже в проходной я услышал оживленные разговоры — упоминалась, как ни странно, наша «царь-форсунка». А случилось вот что. Накануне ее демонстрировали группе научных работников. Руководивший опытом инженер Клячко подсоединил форсунку прямо к пожарному гидранту. Крепление оказалось неплотным, мощная струя воды брызнула из зазора, и форсунка стала угрожающе поворачиваться в сторону зрителей. Клячко «героически» бросился к стыковочному узлу и тут же был промочен до нитки. А форсунка с неумолимостью Немезиды продолжала поворачиваться в прежнем направлении и накрыла опешивших наблюдателей огромной розеткой из воды. Теперь усмирять «царь-форсунку» выпало мне. Начиная эксперимент, я установил минимальное давление: менее десятой доли атмосферы, когда появляется так называемый режим пузыря. Постепенно подняв давление жидкости чуть выше и убедившись, что крепления надежные, я подошел вплотную к корню факела. Передо мною у соплового отверстия блестела «рюмочка» жидкого гиперболоида (см. рис. 8).
(Этот гиперболоид мне представлялся отрезком башни Шухова в миниатюре — знаменитой тогда в Москве радиобашни станции «Коминтерн». Талантливый изобретатель В. Г. Шухов получил криволинейный контур ажурной конструкции из прямых балок — снова мудрость простых форм.)
Здесь, у корня факела, кривые очертания «рюмочки» возникали из прямолинейных линий тока, по ним шел вектор скорости V вырвавшихся струй — результирующая касательной и и осевой w скоростей в сопле форсунки. Линии ясно различались на жидкой поверхности, прочерченные бугорками шероховатости стенок форсунки. Далее виднелась туманно-зыбкая непонятная область, из которой широко разлетался веер струй. Если часто моргать глазами («каждый сам себе стробоскоп»), в струях удавалось различить вереницы капель.
Однако для серьезных наблюдений глаз был, конечно, бессилен, требовалась искровая фотография. Только она могла сделать невидимое видимым. Дальнейшие эксперименты с применением этого метода показали «водную феерию» распада во всем великолепии (рис. 11).
Рис. 11. Распад пелены центробежной форсунки
На поверхности пелены, вытекающей из сопла форсунки, начинают развиваться волны возмущений. Физика та же, что и в случае цилиндрической струи, только проявляется в более сложных формах.
Не сразу мне удалось разобраться в путаном кружеве распада. Сначала факел распыливания представлялся каким-то струйным «веником». Потом, наоборот, в глаза полезли кольцевые структуры. Картина складывалась постепенно из просмотра многих серий фотографий. Наконец я увидел: на пелене развиваются две группы волн (рис. 12). Гребни первой, идущей по движению струи, видны на контуре ее границы. Они опоясывают поток, стремясь превратить пелену в кольца, нанизанные на ось форсунки. Вторая группа идет по окружности пелены (перпендикулярно первой) и старается разделить жидкость на веер струй, расходящихся из центра сопла.
Эти волны видны на фотографии у корня факела («ребристая структура»). В зоне распада («туманнозыбкая» область, которую я силился разглядеть невооруженным глазом) обнаруживаются кольца или волнистые круговые нити. Это отделившийся гребень кольцевой волны антисимметричного возмущения. Нить рвется на фрагменты, превращающиеся в капли,— результат развития возмущений на каждом отдельном кольце.
Рис. 12. Факел распыливания центробежной форсунки: а — рисунок по фотографии, сделанной при большой экспозиции, б — схема распада пелены (образование волн)
При более высоких давлениях жидкости — в десятки атмосфер — с поверхности срываются в виде роя капель гребни мельчайших волн, прежде чем кольцо длинноволновых колебаний полностью сформируется. Это здесь при больших скоростях жидкости возникают мелкомасштабные волны возмущений.
Я долго любовался искровыми фотографиями, которые раскладывал пасьянсом на своем столе. А как объяснить все это теоретически? Провести точное математическое решение для такого сложного течения не представлялось возможным. «Смело упрощайте задачу,— вспомнил я совет старших, более опытных исследователей,— обрубайте боковые ветви, только не зарубите сам ствол...»
«Волны возмущений начинаются сразу на рюмочке гиперболоида, а он близок к цилиндру,— рассуждал я.— Если полый цилиндр развернуть, получится плоская пелена; с плоским течением уже можно справиться». Использовав метод малых возмущений из работ Рэлея и Г. И. Петрова, я нашел решение. Течение оказалось неустойчивым, определилась оптимальная волна λ опт — слой должен был распадаться на фрагменты с характерным размером волны.
Доклад на эту тему я делал в один из холодных дней послевоенной зимы, стоя у доски в огромных подшитых валенках; мел не слушался замерзших пальцев. В нетопленом конференц-зале носились «дышки», но аудитория была многочисленной. И вскоре все согрелись от тесноты и горячей дискуссии. Выступали инженеры из разных конструкторских бюро.
— Помогите определить спектр распыливания наших форсунок. У нас уже накопился большой опыт по отработке камер, теперь необходимо сопоставить их параметры с параметрами спектра.
Стало ясно, что необходимое инженерам количественное решение задачи о спектре математике пока не дается, нужно скорей научиться измерять каплю.
Прошли многие годы, прошелестели многие сотни страниц научных работ теоретиков в попытке решить задачу спектра, но «воз и ныне там». А требование практиков мы через некоторое время удовлетворили — пришел на помощь эксперимент.
Перипетии судьбы
Итак, распад струй, разрыв непрерывности, который представлялся на первый взгляд мгновенным скачком, при внимательном исследовании оказался сложным многоступенчатым процессом. Но вот из катастрофы распада родилась капля. Как она ведет себя и движется дальше? Какова форма летящей капли?
Обычно следует ответ, что капля, двигаясь, вытянется под действием воздуха вдоль траектории, станет обтекаемой. Действительно, каплеобразная форма — символ хорошо обтекаемого тела и стремительного полета. Память подсовывает и образ из другого, соседнего, ряда — капля, висящая на пипетке или кончике пера. Но ответ этот — классический пример ложного хода интуиции. Если взглянуть на искровые фотографии движущихся капель, можно заметить, что они в самом деле деформированы встречным потоком, но многие, особенно крупные, капли странным образом вытянуты не вдоль, а поперек линии полета. Капля становится не более, а менее обтекаемой. Рис. 13 объясняет этот кажущийся парадокс.
На схеме показано распределение нормальных давлений (перпендикулярных поверхности обтекаемого шара): значками « + » и «—» обозначены соответственно зоны повышенного и пониженного давления (сравнительно с атмосферным и статическим давлением внутри жидкости). Лобовые силы плющат каплю, другие вытягивают ее с боков и у «кормы». Получается (вместо обтекаемой сигары) дискообразное тело.
Капля, срывающаяся с пипетки или водопроводного крана, действительно имеет поначалу «каплеобразную форму» — тяжелая жидкость в «мешке» растягивающейся капиллярной пленки, в первый момент скорость падения мала, и аэродинамические силы не оказывают влияния. Но может все-таки случиться, что летящая капля вытянется вдоль движения. Это произойдет, если силы трения, касательные к жидкой поверхности, превзойдут нормальные давления, например, для медленно движущейся вязкой капли или капли, «ползущей» в вязкой среде. Вопрос о форме капли в потоке совсем не прост — ему посвящены многие работы и тонкие эксперименты. Выяснилось, что капля не сохраняет постоянной формы — она «дышит», находится в состоянии колебаний. Мы видели: на поверхности движущейся капли силы в разных точках различны, значит, должны возникнуть внутренние токи жидкости от большего к меньшему давлению. Опыт с мелким порошком внутри жидкости показывает, что в капле возникают вихревые токи.
«Это все, может, и интересно,— скажет иной прагматически настроенный читатель,— но зачем нужны такие подробности?»
Нужны. Все для тех же камер сгорания, где приходится рассчитывать траектории капель. Траектории эти зависят от аэродинамических сил, от формы капли. Формулы механики полета любого тела, будь то самолет или капля, содержат аэродинамический коэффициент сопротивления — С х , который отражает силу сопротивления среды, направленную против скорости движения тела. Он различен для тел разной формы. А где С х , там и С у — коэффициент подъемной силы, действующей по нормали к скорости: в аэродинамике эти коэффициенты «ходят парами». Оба они определяют взаимодействие воздуха и, например, летящего самолета. А может ли у капли быть С у ? Иными словами, может ли горизонтально летящая капля вдруг пойти вверх? Может, если деформация ее относительно продольной оси несимметрична и в результате действующие на нее силы снизу и сверху окажутся неодинаковыми. Изредка на фотографиях наблюдалась траектория такой капли; какие-то причины вызывали несимметричную деформацию, и падающая в потоке капля вдруг взмывала вверх.
Вообще же скоростная фотография, не оправдавшая надежд как метод измерения капель, позволила понять механизмы каплеобразования, разглядеть много интересного. Вот произошел рэлеевский распад медленной струйки: падающие капли причудливо колеблются, поверхность принимает очертания сопряженных овалов и многоугольников — накладываются друг на друга колебания разных мод, то есть форм и амплитуд. За каждой каплей неизменным спутником следует маленький шарик Плато *. Если жидкость вязкая, например масло, колебания быстро затухают.
* См. МЭК — Шарик Ж. Плато.
Своеобразен многократно описанный процесс соударения капли с поверхностью жидкости. Здесь самое интересное — сохранение «индивидуальности» капли, казалось бы, полностью исчезнувшей при ударе.