100 великих тайн Земли

Волков Александр Викторович

Море

 

 

Что нас ждет в глубине темных вод?

Несколько лет назад бестселлером в Европе стал роман немецкого писателя Франка Шетцинга «Стая». К череде ужасов, подстерегающих нашу цивилизацию, добавился новый. Что, если против своеволия человека восстанет океан? И мириады животных, обитающих в его глубинах, сплотятся и попробуют отомстить нам за непрошеное вторжение? Фантастика? Бред? Или призрак подлинной беды, подстерегающей нас? Ведь глубины океана, например, – это еще и область обитания неведомых микробов, защититься от которых наш организм не готов. Мы только начинаем проникать в этот чуждый нам мир. И наши первые опыты вызывают тревогу. Так что нам ждать в этих темных водах, так пугающих нас, так зовущих нас?

Иногда статистика бывает сухой и скучной, как серый асфальт под ногами. Иногда разверзается пропастью. По ее цифрам скатываешься, как по склону громадной горы, не имея более возможности остановиться.

Около 70 % поверхности нашей планеты покрыто морями и океанами. Около 80 % этой территории приходится на области, глубина которых превышает 1000 метров. Это составляет примерно 318 миллионов квадратных километров. Общая площадь всех глубоководных участков морского дна, исследованных с помощью батискафов, до недавнего времени едва превышала 5 квадратных километров, то бишь 0,0000015 % от тех самых 318 миллионов.

Итак, поверхность Земли на две трети покрыта водой, но мы мало знаем, что творится в глубине океана. Конечно, человек не был бы самим собой, если бы не бросил вызов этому неведомому миру. Подводные лодки и роботы, батискафы и водолазы спешат изучать бескрайнее белое пятно на географических картах, стыдливо расцвеченное аквамарином. С присущей нам систематичностью мы исследуем флору и фауну океана – вплоть до мельчайших водорослей и бактерий – на территориях площадью почти в несколько сотен… квадратных метров. Счет открытий идет на тысячи! Чем не повод для гордости, если только не вспоминать, что общая площадь океана составляет 361 миллион квадратных километров? Что еще мы не знаем о нем, если долгое время даже не верили, что гигантские кальмары (кракены) существуют? Если лишь сравнительно недавно узнали, что кистеперые рыбы и впрямь плавают в глубине темных вод, будто для них время остановилось. А для кого еще остановилось время, словно придавленное столпом соленой воды?

В глубине океана обитает до десяти миллионов видов неизвестных животных

По оценке участников международного проекта «Перепись морской жизни», в глубине океана обитает до 10 миллионов видов неизвестных животных. «В глубоководной области океана, – говорится в отчете, подготовленном экспертами, – обитает больше видов животных, чем в любой другой части Океана». В среднем около 80 % видов животных, обнаруживаемых здесь, прежде были неизвестны науке. Но сколько еще их предстоит открыть! Пока мы едва разобрались с поверхностью океана. Человечество исследовало менее 5 % территории всех мировых морей, да и там, где исследовало, многие микроорганизмы, вероятно, остались незамеченными.

Еще одна цифра позволит почувствовать, насколько сложны задачи, которые стоят перед учеными. По оценке биологов, нам известно лишь 10—20 % всех видов живых организмов, населяющих планету. Вся остальная фауна до сих пор остается неведомой. Этих животных никто не описывал, их – в подавляющем большинстве – никто из людей даже не видел.

Скептики, конечно, поспешат задаться вопросом: как вообще ученые пришли к выводу о том, что чуть ли не на девять десятых биосферы нашей планеты остается для нас «тайной за семью печатями, за семью морями»? Как правило, проводя подобные расчеты, специалисты оценивают количество биомассы, которое необходимо для выработки кислорода, содержащегося в атмосфере. Получается, что пока биологи, подводя баланс жизни на нашей планете, неизменно «терпят колоссальные убытки». Дефицит известных нам живых организмов очень велик. Лучше любых рассуждений он убеждает в том, как плохо мы знаем жизнь океана.

Океан полон загадок. Пока что путешествия в его глубины труднее и непрестижнее полетов на околоземную орбиту. Мир океана, этот загадочный космос темных вод, все еще ждет своих исследователей. Открытие его станет, очевидно, одним из важнейших научных событий XXI века. Наступивший век так же изменит наши представления об океане, как XIX век – об Африке, белом пятне с цветастой каемочкой на географических картах екатерининских времен.

Так, лишь в 1995 году американские исследователи впервые опубликовали подробную карту дна всех морей мира, основываясь на сведениях, полученных от военных. Годами те измеряли со спутников силу гравитации Земли, чтобы повысить точность наведения межконтинентальных ракет. Результатом их работы стал атлас, в котором вычерчены детали подводного рельефа с точностью до 6 километров. Морское дно ведь меньше всего похоже на однообразную, унылую равнину. Оно изобилует ложбинами, ущельями, горными хребтами и вершинами, вздымающимися ввысь. Впрочем, даже после этой публикации поверхность Венеры и Марса оставалась гораздо лучше изученной нами, чем дно Мирового океана.

Итак, мы живем на планете, биосфера которой состоит в основном из воды, и почти ничего не знаем о ней. Мы тратим миллиарды на космические экспедиции и лишь изредка снаряжаем экспедиции в бездну, что плещется у наших ног. Мы заглядываем за тысячи световых лет от Земли, пытаясь понять происходящее там, но не видим ничего в нескольких километрах от себя – не хотим видеть ничего в глубине темных вод. Бездна космоса кажется нам все более понятной, бездна океана – как будто более бездонной. Там, куда не упадет ни луча света, царит адский мрак. Мы имеем о нем так же мало представления, как и об аде, знакомом нам лишь по «классическому бедекеру» Данте.

А ведь если представить себе жизнь в виде эволюционного древа, выросшего на дне океана, то над поверхностью воды будет виден лишь краешек кроны этого древа. На протяжении почти всей истории нашей планеты океан оставался обителью Жизни. Лишь в последние несколько сот миллионов лет Жизнь выбралась на сушу. Но и поныне большинство видов животных – это морские обитатели.

До недавнего времени считалось, что дно океана – пустыня, где не может быть жизни. Однако исследования 1990-х годов показали, что глубоководные области изобилуют жизнью. Миллионы червей буравят каждый квадратный километр илистых отложений. По подводным грядам ползают слепые рачки. Рядом рыбы-гадюки с длиннющими зубами подстерегают добычу. И прямо над ними, будто затонувшие корабли, покачиваются гигантские медузы, состоящие на 90 с лишним процентов из воды – это помогает им выдержать непомерное давление.

Каждая экспедиция приносит открытия. Да, на дне океана нет растительности – тем удивительнее здешняя фауна. Этих животных отличают необычные формы тела и исполинские размеры. Конечно, у них нет «разума» в нашем понимании этого слова, но, вынужденные жить в самых суровых условиях, они приспособились так хорошо ладить друг с другом, что кажутся порой частями одного огромного Тела. Из их фигурок, усеивающих дно океана, слагается, как мозаичная картина из сколков смальты, грандиозная фигура Духа Океана. Все эти мириады бактерий, медуз, червей и рачков общими усилиями преобразуют мертвенную пустыню, где поселились, в некое подобие цветущего сада. Может быть, и не так далек от истины современный фантаст, заявляя, что это сообщество животных, похоже, наделено «коллективным разумом»?

 

Секреты глубоководных желобов

Глубоководные желоба представляют собой одну из самых необычных и малоизученных экосистем нашей планеты. А ведь именно здесь геофизики могут наблюдать за тем, как участки океанического дна – старой земной коры – неторопливо исчезают в земных недрах. Именно здесь можно хоть краем глаза заглянуть в процессы, протекающие в мантии Земли, – увидеть, как та взаимодействует с океанической корой.

Для биологов эти желоба – естественная лаборатория эволюции. Неужели живые организмы могут населить подводные пропасти, чья глубина порой достигает 11 километров? Как удается рыбам, моллюскам, червям или бактериям выживать в условиях, выдержать которые могут, казалось бы, только громоздкие аппараты, созданные человеком? А ведь некоторые ученые полагают, что именно в этих безднах, противящихся всему живому, некогда зародилась жизнь! Неужели такое возможно?

Прошло более полувека с тех пор, как 23 января 1960 года на дно самой глубокой впадины Мирового океана, на глубину 10 910 метров, опустился батискаф «Триест», на борту которого находились швейцарский океанограф Жак Пикар и лейтенант ВМС США Дональд Уолш. Они пробыли на дне Марианского желоба 20 минут, не имея возможности даже взять пробы грунта. Им оставалось лишь наблюдать за тем, что происходит вокруг. Эта первая экспедиция была лишь мимолетным знакомством человека с этими таинственными уголками Земли. Их изучение только начинается.

Уже то, первое, погружение на дно Марианского желоба задало ученым загадку, не разрешенную и по сей день. Тогда, незадолго до того, как батискаф, увлекаемый свинцовым балластом, опустился на дно, Пикар разглядел в иллюминаторе рыбу. Странную, плоскую рыбу. У него не было с собой даже фотокамеры, а потому сенсационное открытие ничем не удалось подтвердить.

Известно около двух десятков глубоководных желобов в Атлантическом, Тихом и Индийском океанах

Дерзкое начинание Пикара и Уолша не нашло продолжателей. Интерес к исследованию глубоководных впадин быстро угас. Советские и американские ученые предпочли штурмовать космическую даль, нежели блуждать в непроглядных безднах океана.

Всего известно около двух десятков глубоководных желобов в Атлантическом, Тихом и Индийском океанах. Их глубина превышает 6000 метров. Шесть самых глубоких желобов – Марианский (11 034 метра), Японский (10 554 метра), Курило-Камчатский (10 542 метра) и Филиппинский (10 540 метров) желоба, а также желоба Тонга (10 882 метра) и Кермадек (10 047 метров) – располагаются в Тихом океане.

Эти желоба – словно шрамы от сабельных ударов, рассекших тело живой Земли. Их ширина составляет лишь несколько десятков километров, зато они тянутся порой на тысячи километров. Если мысленно пройтись по дну подобного желоба, это похоже на прогулку по Большому каньону, внезапно затопленному водой. По обе стороны тянутся почти отвесные стены, уходящие далеко ввысь. Как правило, самые глубокие области желоба лежат на 3—4 километра ниже прилегающих к нему участков дна.

Пустынное, мрачное ущелье, выстланное мощным слоем осадочных отложений. Мертвенная, холодная даль. Здесь, на дне самых глубоких впадин, температура воды обычно не превышает 3,6 °С. Последний штрих в этом описании – невыносимая тяжесть воды, готовой смять любое существо, оказавшееся в этом ледяном аду.

Как же возникли эти шрамы? И почему они находятся там, где находятся? Ответы на эти вопросы дает глобальная тектоника плит.

На дне океанов располагаются зоны субдукции – области, где старая океаническая кора, буквально встав на попа – развернувшись под углом, близким к 90°, погружается в глубь Земли, пододвигаясь под континентальную или океаническую плиту. В окрестности этих зон образуются не только громадные горные системы, например Анды, или многочисленные вулканы, но и разверзаются пропасти. Так, Марианский желоб возник в результате столкновения Филиппинской и Тихоокеанской плит.

По-прежнему многое из того, что мы знаем об этих загадочных безднах, открыто еще пионерами глубоководных исследований в 1950—1960-х годах. Мир морских глубин все еще остается неизученным. Сколько удивительных открытий нас еще может здесь ждать!

Вдоль восточного побережья Японии пролегает Японский желоб, протянувшийся на 1600 километров от Курильских островов на севере до островов Бонин на юге. Он является частью очень активного в геологическом отношении Тихоокеанского огненного кольца. Извержения вулканов и землетрясения – здесь «будничная катастрофа», иначе не скажешь. Этот желоб кажется многим геологам брошенной в пучину шкатулкой, в которой хранится ключ к событиям, извечно перетряхивающим жизнь людей, поселившихся на островах в этой части Тихого океана, в том числе в Японии.

Недавно американским и японским геологам удалось сделать сенсационное открытие, даже не добравшись ни до ключа, ни до самой шкатулки. Они обнаружили на глубине 5000 метров цепочку небольших – высотой до полусотни метров – вулканов (их и назвали Petit Spots, «маленькие точки»), которые располагались на гребне изогнувшегося участка океанической коры, уже уходящего в глубь Земли. Почему они здесь возникли?

Принято считать, что вулканы образуются по краям литосферных плит, но никак не там, где эти края плит погружаются в глубь Земли. Здесь нет и «горячих точек» – они располагаются посреди литосферных плит. Очевидно, речь здесь идет о совершенно особой форме вулканизма, не известной ранее ученым?

В конце концов, ученые нашли объяснение этому феномену. Источники лавы, питающие эти необычные вулканы, располагаются на небольшой глубине – в астеносфере. В этом слое, простирающемся на глубину до 350 километров, часть горных пород, как предполагается, уже расплавлена. (Для сравнения: лава, изливающаяся в «горячих точках», поднимается почти от границы, разделяющей мантию и земное ядро.)

Когда старая океаническая кора погружается в глубь Земли, она растрескивается, и расплавленные породы, содержащиеся в астеносфере, могут подняться сквозь эти трещины и излиться на дно океана. Так образуются «маленькие точки». Извержения длятся недолго, а потому высота этих вулканов невелика. У геологов сразу же возник вопрос: «А может быть, вулканы, называемые нами “горячими точками”, рождались именно как Petit Spots?»

Некоторые ученые полагают даже, что первые одноклеточные организмы возникли не в окрестностях гидротермальных источников – черных курильщиков, а в зонах субдукции. Ведь во время процессов, протекающих там, высвобождается водород, а это – прямо-таки лакомство для подобных микроорганизмов. Так что жизнь на Земле могла зародиться именно там, где литосферные плиты сталкиваются друг с другом.

Пока это лишь смелые догадки. Но может статься, что скоро они найдут подтверждение или будут опровергнуты. В последние годы вновь пробуждается интерес к глубоководным желобам – этим таинственным безднам, скрывающимся под безмятежной морской гладью. Одна из главных предпосылок к тому – технический прогресс. С появлением роботов стало возможным многое, что было недоступно для человека.

По оценке ученых, примерно 80 % всего морского дна находится в зоне досягаемости человека. Остальная же его часть может быть исследована и освоена нами лишь с помощью глубоководных роботов. Со временем подобные аппараты примутся изучать океаны и за пределами Земли – на спутниках планет-гигантов, Энцеладе и Европе, где под ледяным панцирем простираются обширные массы воды.

 

Станет ли дно мирового океана новым Клондайком?

В глубинах Мирового океана таятся удивительные сокровища. Океан сказочно богат полезными ископаемыми. Сейчас он поставляет нам нефть, газ, алмазы, а также строительные материалы, например песок и гравий. Впрочем, большая часть месторождений до сих пор не используется.

Перенесемся мысленно на дно океана. Иногда оно напоминает вязкое месиво, но чаще – ухабистое бездорожье, обветшавшую, вросшую в землю булыжную мостовую. Подобная «мостовая» без конца и без края тянется, например, на 4000 километров между Гавайскими островами и западным побережьем Мексики. Во все стороны, куда ни глянь, словно рассыпана и разровнена бессчетная груда камней, погрузившихся в мягкую грязь осадочных отложений. Эти камни, или, скорее, плотные лепешки размером с картофелину, состоят из гидроксидов железа и марганца с примесями таких металлов, как кобальт, медь, никель. Это и есть железомарганцевые конкреции, одно из тех несметных богатств, которыми «полны подводные эти хоромы»(А.К. Толстой).

Их залежи расположены преимущественно на глубине от 4 до 6 километров. Содержание марганца в конкрециях оценивается примерно в 25 %, железа – в 15 %, других металлов – от 0,2 до 1 %. Особенно много конкреций в центральной и восточной частях Тихого океана, а также близ побережья Аргентины и ЮАР, в Мексиканском заливе и южной части Индийского океана. Здесь на каждом квадратном метре содержится до 60 килограммов конкреций.

Природа трудилась над этим пейзажем многие миллионы лет. Ведь слои конкреций нарастают чрезвычайно медленно – по 3—5 миллиметров за миллион лет! – неизменно оставаясь при этом на поверхности морского дна. Все это время на них просыпаются дождем отмершие водоросли и рачки, опустевшие раковины и панцири. Этот биологический мусор содержит микроскопические количества ценных металлов. Пылинками они прилипают к комьям конкреций. Океан лелеет «лепешки большой руды», словно жемчужины. Где-то посредине каждого кома прячется то ли каменная крошка, то ли акулий зуб, на которых и кристаллизовались конкреции, эти кладези металлов, которые только нагнуться – метров так на пять тысяч! – и поднять, и пустить в промышленный оборот!

Первые попытки начать разработку этих месторождений относятся к 1970-м годам. Ведь нефтяной кризис 1973 года с необычайной остротой показал, насколько же зависимы страны Западной Европы, а также США, Япония и Канада от диктата нескольких государств – поставщиков сырья.

В феврале—мае 1978 года международный консорциум OMI (Ocean Management Inc.), объединивший ряд компаний из ФРГ, США, Канады и Японии, успешно провел испытания в центральной части Тихого океана. За эти месяцы с глубины в пять с лишним тысяч метров было поднято около 800 тонн конкреций. Однако развернуться во владениях «царя-государя водяного» в то время не удалось. Синусоида экономики миновала впадину кризиса и двинулась на подъем. Цены на металлы упали, и добывать их с морского дна стало нерентабельно.

Лишь когда цены снова начали ползти вверх – особенно в связи с растущими потребностями Индии, Китая и Бразилии, – стали вспоминаться давние прожекты. Грядет время новой экспансии в «царство Посейдона». Ведущие промышленные державы, как никогда прежде, настроены начать массовую добычу полезных ископаемых, оставленных – Природой, провидением, простой случайностью – на дне океана. Вот только как собрать «бросовый» урожай, брошенный в вечность?

Глубины морей и океанов таят несметные сокровища

У ученых немало вопросов. Где сосредоточены наибольшие запасы конкреций? Где содержание ценных металлов в них особенно высоко? Где было бы лучше всего начать промышленную добычу конкреций? И как вести разработку подводных месторождений, сводя к минимуму ущерб, наносимый окружающей среде?

Еще в 1970-х годах много говорилось о том, что промышленная добыча подводного сырья нанесет непоправимый вред экосистеме морского дна. С тех пор технологии несколько изменились. Тридцать лет назад при сборе конкреций громадные насосы поднимали на поверхность моря все, что удалось соскрести, – ил вперемешку с кусками руды. Любые отходы просто сбрасывались в воду. Облако взбаламученного ила, огромное, как нефтяное пятно, загрязняло все вокруг. Большая часть обитателей морского дна, прежде всего червей и мелких рачков, гибла.

Эта безоглядная удаль теперь не допустима. Все-таки поразительно, как мало принято документов, регулирующих освоение глубоководной части океана и защищающих этот удивительный мир! Мы, люди, еще мало что знаем о жизни в морской пучине. Но, к сожалению, мы успеваем разграбить и разорить неизвестные нам области планеты, прежде чем исследуем их.

Впредь значение Мирового океана будет все более возрастать. Запасы материковых месторождений полезных ископаемых постепенно сокращаются. Так, по расчетам экспертов из Геологической службы США, при нынешних темпах добычи марганца – а он незаменим при производстве стали – уже через 30—40 лет наступит марганцевый кризис. Промышленность начнет испытывать явную нехватку этого металла.

Впрочем, интерес промышленных компаний вызывает даже не столько марганец, сколько другие металлы, содержащиеся в конкрециях, – кобальт, никель и медь. Их там – около 3 %, но их рыночная стоимость значительно выше, чем марганца. К тому же имеющихся у нас месторождений хватит лишь на несколько десятилетий. Что будет потом?

Вот почему все более важное экономическое значение приобретает освоение богатств, которыми изобилует дно Мирового океана.«Будущее добывающей промышленности лежит на дне океана», – уверены многие специалисты. Близится время новой «золотой лихорадки». На этот раз обетованный Клондайк будет обретен не на Диком Западе, а еще дальше – там, где не сыщется и пяди суши. Пока этот Клондайк по большей части не принадлежит никому. Но споры о праве собственности, о праве владеть той или иной территорией потихоньку разгораются. Не ждет ли нас эпоха колониальных захватов теперь уже не континентов, а океанического дна?

Передел подводного мира уже начался. Созданный в середине 1990-х годов при ООН Международный орган по морскому дну – International Seabed Authority (ISA), – объединяющий более 150 государств мира, регулирует освоение ресурсов дна Мирового океана, объявленного «общим достоянием человечества», и выдает лицензии на разработку подводных месторождений. Исподволь идет «распродажа и колонизация» подводных просторов.

Американский эксперт Скотт Боргерсон со страниц журнала Spiegel прогнозирует «безумную гонку за полезными ископаемыми», запасы которых имеются на дне Мирового океана. Эта гонка может сопровождаться вооруженными конфликтами. Особенно острое соперничество, по его мнению, развернется в Тихом океане между Китаем, Вьетнамом, Филиппинами и Японией.

До сих пор бури сотрясали лишь водную гладь. Но вскоре всколыхнется и сонное царство – придет в движение дно океана, захваченное людьми. Там, где ревело море, будет грохотать техника. Рабочая суета охватит подводные долины и холмы. Машины соскребут слой ила и «камней». Мощные насосы выбросят добычу на поверхность моря. Бурильные автоматы вонзятся в грунт. Все достанется человеку. И ничего – царю водяному? Еще пара веков прогресса, и разоренному Посейдону придется лишь стоически заметить:

Что пользы мне в том, что сокровищ полны Подводные эти хоромы?

 

Черные курильщики были инкубатором жизни?

Черные курильщики были открыты всего четверть века назад – в 1977 году, во время экспедиции батискафа «Элвин», изучавшего морское дно в окрестностях островов Галапагос. Это открытие разом перечеркивало прежние представления о том, как выглядит дно океана.

Глубина 2500 метров. Температура воды 2 °C. Над многочисленными коническими холмами, напоминающими фабричные трубы, поднимаются клубы темного дыма. Из расселин вырываются струи горячей воды. Всюду царит необычное оживление. Колонии странных животных усеивают эти холмы.

Черный курильщик

Как же возникли подобные геологические образования? Часто ли они встречаются? И что за таинственные печи работают в недрах Земли? Как они устроены?

Теперь мы знаем, что речь идет о своего рода подводных гейзерах. Их можно встретить главным образом в окрестностях срединно-океанических хребтов – там, где из недр Земли изливается горячая магма и возникают новые участки морского дна. Ведь этот процесс протекает неравномерно, рывками, поэтому кора растрескивается. Сквозь трещины в глубь Земли просачивается морская вода, проникая в недра почти на полтора километра и смешиваясь с раскаленными горными породами или даже жидкой магмой. Находясь под огромным давлением, эта вода не выкипает мгновенно, а по-прежнему пребывает в жидком состоянии. В ней растворяются минеральные вещества и металлы. Потом, сквозь другие трещины и расселины, эта перегретая вода вновь изливается на поверхность, будучи разогрета до температуры свыше 400 °C. Самыми горячими известными нам источниками являются Two Boats и Sister Peaks, расположенные в Атлантическом океане, в районе срединного хребта, на глубине 3000 метров. Температура воды, изливающейся здесь, достигает 464 °C. При встрече с обычной морской водой эта перегретая вода мгновенно остывает. Растворенные в ней вещества выпадают в осадок. Со временем вокруг подобных расселин образуются громадные наросты – холмы, «трубы». Черную окраску им придают сульфиды меди, цинка и железа, вымываемые водой из подземных кладовых. С недавних пор известны и белые курильщики: здесь горячие источники выносят на поверхность барий, кальций и силикаты.

Черные курильщики очень широко распространены. Обычно они расположены большими группами – как гейзеры в Йеллоустонском парке. Высота холмов, нарастающих над этими гейзерами, составляет в среднем от 20 до 25 метров, но известны и холмы высотой около 60 метров. В последние десятилетия ученые обнаружили в разных районах Мирового океана сотни полей, где высятся многочисленные черные курильщики. Но, как предполагается, 99 % их пока еще не открыты.

Чем пристальнее ученые исследуют мир черных курильщиков, тем больше удивительных находок они делают. Похоже, эти причудливые образования играют куда более важную роль в жизни океана и всей нашей планеты, нежели считалось поначалу.

По оценке исследователей, треть всего тепла, получаемого Мировым океаном, дают черные курильщики. Они – естественные обогреватели морских просторов. Во многом от них зависит и химическое равновесие в глубинах морей. Геохимики подсчитали, что за 6—8 миллионов лет вся вода Мирового океана рано или поздно будет подвергнута геотермальному обогреву и обогащению ценными минеральными веществами. До сих пор полагали, что морская вода пополняется ими только за счет рек.

Долгое время ученые думали, что в глубинах океана царят холод и мрак. Там могут выжить лишь отдельные, экзотические виды животных. С открытием черных курильщиков наши представления о глубоководном мире разительно изменились. Перед глазами исследователей предстал причудливый калейдоскоп странных существ. Красочные черви самых разных размеров обвивали эти подводные холмы, крохотные рачки ползали по беловатой пыли, которая на самом деле была месивом из миллиардов мельчайших бактерий.

Открытие этих «оазисов жизни», расположенных на дне океана, стало не только полной неожиданностью; оно противоречило всем нашим прежним представлениям. До этого считалось, что жизнь не может существовать в кромешном мраке. Так, на суше в основе всех пищевых цепей пребывают растения, которые путем фотосинтеза преобразуют свет в органические вещества. Очевидно, то же самое должно происходить и в морях. В глубоководной части океана могут обитать только отдельные, самые примитивные формы животных, которые питаются веществами, проникающими сюда из верхних, хорошо освещенных слоев воды. Как же выживают эти странные сообщества, поселившиеся в окрестностях черных курильщиков?

Как выяснилось, основу пищевых цепей здесь составляют многочисленные серобактерии. В отличие от растений им не нужен солнечный свет. Для них источниками энергии являются любые соединения серы или же молекулярная сера.

Большинство обитателей этих экосистем не довольствуется простым поглощением бактерий; они заставляют их работать на себя – практикуют симбиоз. Серобактерии поселяются на раковинах моллюсков и в организмах червей. Здесь они находятся в безопасности, а их хозяева взамен получают сахара и другие энергетические соединения.

Биологи отмечают, что условия, царящие в окрестностях подводных гейзеров, напоминают те условия, что сложились на нашей планете около 4 миллиардов лет назад, когда зародилась жизнь. Может быть, это знаменательное событие произошло именно в окрестностях подводных гейзеров? И древнейшие организмы, появившиеся на Земле, напоминали те самые бактерии и архебактерии, что и сегодня можно встретить в глубине океана – близ черных курильщиков?

В то время Земля казалась планетой, менее всего приспособленной для жизни. Под мрачным небосводом, затянутым пеленой испарений, простирался бескрайний океан. Его глубина достигала 10 километров. Лишь отдельные островки вулканов возвышались над водой, по которой перекатывались громадные волны. Луна тогда была гораздо ближе к Земле, чем теперь, а потому сила ее притяжения порождала особенно высокие приливные волны. На нашу планету с пугающей частотой обрушивались метеориты, а космическое излучение, проникавшее к ее поверхности, было губительно для любых живых организмов, которые могли здесь возникнуть. Единственным уголком на Земле, где сложились нормальные условия для развития жизни, было в то время дно океана.

Так что черные курильщики вполне могли стать инкубаторами жизни. Они хранят еще и много других, не разгаданных пока тайн. Например, геологов удивляет, почему в одних районах срединно-океанических хребтов эти гидротермальные источники есть, в других – их нет. Непонятно и почему химический состав воды, выбрасываемой тем или иным источником, может полностью поменяться в течение нескольких дней.

Свои вопросы накопились и у биологов. Обычно подводные гейзеры сохраняют активность на протяжении двух десятилетий. Потом расселины, из которых изливалась горячая вода, окончательно забиваются минеральными веществами, выпадающими в осадок, и источник стихает. Пока еще ученые не могут уверенно сказать, что происходит с животными, населявшими этот необычный биотоп, – все ли они гибнут, или же кому-то из них удается переселиться к одному из соседних источников, – и как в таком случае они отыскивают к нему путь. Может быть, течение переносит туда отложенные ими яйца? И как только те окажутся в теплой воде, из них проклевываются личинки? А может быть, они и сами перебираются туда?

 

Метановые льды сулят безбедные времена?

Запасы энергоресурсов на нашей планете велики, даже если не принимать во внимание нефть или каменный уголь. Обширные месторождения гидрата метана, или метанового льда, покрывают морское дно, покоятся среди многолетней мерзлоты. Если удастся их освоить, то человечество будет обеспечено энергией на многие десятилетия, может быть, даже на столетия вперед, считают экономисты.

Метановый лед станет топливом завтрашнего дня, когда традиционные ресурсы начнут иссякать. Пока же в его промышленной добыче заинтересованы лишь отдельные страны, практически не располагающие нефтью или газом, например Япония. Но так ли доступен этот новый источник энергии? Не лопнет ли мечта о нем, как мыльный пузырь, как те метановые пузырьки, что непрестанно всплывают с морского дна, чтобы вмиг раствориться в воде или рассеяться в воздухе?

Споры об энергетике будущего продолжаются, а потому тем более важноизучить метановый лед, понять, как он образуется и какие проблемы могут возникнуть при разработке его запасов. По всему видно, что воспользоваться ничейными богатствами будет отнюдь не так просто.

Гидрат метан выглядит как обычный лед, запорошенный снегом. Он представляет собой соединение воды и метана, которое образуется лишь при температуре от 2 до 4 °С и давлении не менее 20 атмосфер. Вот почему его месторождения находятся либо в полярных областях, либо в глубинах океана. Нередко его называют горючим льдом, ведь, если поднести спичку к этому беловатому комку, он вспыхнет. Загорится газ, заключенный в водяном льде.

Если поднести спичку к комку метанового льда, он вспыхнет

Кристаллическая структура этого гидрата своеобразна. Молекулы метана втиснуты в «клетки», составленные из молекул воды. В «клетках» царит невероятная теснота. Подсчитано, что в одном кубическом метре гидрата метана содержится 0,8 кубометра воды и… 164 кубометра метана. При таянии льда весь метан, накопленный в его кристаллах, улетучивается в атмосферу.

Заинтересовались метановым льдом лишь в 1930-х годах, когда выяснилось, что при транспортировке газа в полярных областях трубы замерзают изнутри, в них образуется лед. В 1960-х годах этот необычный лед обнаружили в Сибири и Северной Америке при бурении в зонах многолетней мерзлоты. В 1970-х годах советские ученые отыскали гидрат метана на дне Черного моря, доказав, что подводные месторождения этого вещества, очевидно, широко распространены.

В естественных условиях гидрат метана образуется, прежде всего, на материковых склонах. Здесь много планктона, и при отмирании мельчайших организмов, его составляющих, огромное количество органических материалов оседает на дно океана. Бактерии разлагают органику, и в результате выделяется метан. При определенных давлениях и температурах он «вмерзает в воду». Так разрастаются пласты метанового льда. Они залегают, как правило, на глубине от 400 до 1000 метров – там, где вода очень холодна, а давление высоко. А вот в глубоководной части океана нет залежей гидратов, ведь там мало органики.

Итак, дно материковых склонов затянуто мощными пластами метанового льда. Порой их толщина превышает тысячу метров. Льдины забиваются в пустоты внутри породы, заполняют все полости между камнями. Даже рыхлые толщи песка насквозь проморожены пронизавшей их льдистой крупой.

Помимо морского дна, крупные месторождения гидрата метана встречаются в ледяных щитах Гренландии и Антарктиды, а также в районах многолетней мерзлоты на севере России и Америки, Здесь они залегают на глубине около полукилометра и ниже. Их мощность достигает нескольких сотен метров. В США оба наиболее исследованных месторождения расположены на суше, на побережье моря Бофорта, в районе залива Прадо-Бей. В холодном климате Аляски эти залежи сохраняют стабильность. Так что Аляску справедливо называют важнейшей энергетической сокровищницей США. Ее запасов хватит, чтобы сделать страну на многие десятилетия независимой от импорта энергоресурсов.

Очевидно, многие месторождения метанового льда до сих пор не обнаружены. Между тем они имеются не только в открытом океане, но и в Черном, Азовском и Средиземном морях, а также в Каспийском море (а вот Балтийское море мелковато для появления своего пояса метановых льдов).

Запасы гидратов кажутся почти безграничными. По заявлению Геологической службы США, «в газовых гидратах содержится вдвое больше углерода, чем во всех известных нам месторождениях ископаемых энергоносителей». По данным Международного совета ООН по изменению климата, опубликованным в 2009 году, общая энергоемкость месторождений гидрата метана составляет от 15 до 200 тысяч триллионов киловатт-часов. Для сравнения: уровень ежегодного потребления энергии на нашей планете оценивается примерно в 150 триллионов киловатт-часов. Метановые льды сулят безбедные времена?

…Но снова и снова слышатся голоса специалистов, считающих, что добыча метанового льда в промышленных масштабах недопустима, поскольку связана с проблемами, которые с трудом поддаются решению. Ведь в этих «айсбергах», придавленных толщей воды к материковым склонам, заключено громадное количество парникового газа – метана.

Гидрат метана очень неустойчив. Извлеченный на поверхность, он быстро тает, превращаясь в лужицу воды и струйку метана над ней. Так что при бесконтрольной добыче гидрата, да еще при нынешнем уровне технологий, значительная часть метана просто улетучится, что лишь усилит глобальное потепление. Метан, как парниковый газ, гораздо эффективнее углекислого газа, с выбросами которого в атмосферу безуспешно борются всеми конвенциями и конференциями. Он будет согревать не только дома и квартиры наших детей и внуков, но и всю планету. По подсчетам американского геолога Уильяма Диллона, за последние 100 лет вклад метана в повышение температуры оказался в 23 раза ощутимее, нежели углекислого газа.

Опасность состоит еще и в том, что при разработке верхних слоев месторождения весь ледник начинает таять. Метан самопроизвольно выделяется из лежащих ниже пластов. А ведь те цементируют рыхлые осадочные отложения, защищая материковые склоны от оползня. Когда «цемент» испаряется, весь склон рушится, как замок, возведенный из песка. Протяженность подобных оползней может достигать десятков километров. Потрясения в глубине моря отзовутся и на его поверхности, породят мощную волну – цунами.

Но даже если оставить месторождения метанового льда в покое и не осваивать их, они могут стать источником опасности в будущем, поскольку большие количества метана будут выделяться в атмосферу и при повышении температуры Мирового океана, и при таянии вечной мерзлоты. Чем сильнее прогревается морская вода, тем заметнее сокращается зона стабильности гидрата метана.

Нечто подобное уже было в истории нашей планеты около 55 миллионов лет назад, на рубеже палеоцена и эоцена. Тогда средняя температура на Земле была на 4—5° выше, чем теперь. Ученые полагают, что причиной этого глобального потеплению стало массовое таяние метанового льда. Как следствие, в атмосферу выделилось огромное количество метана – произошла так называемая «метановая отрыжка». За несколько десятков тысячелетий вымерли многие виды растений и животных, прежде всего фораминиферы, простейшие обитатели древних морей.

Экологи все чаще вспоминают историю с «метановой отрыжкой». А не придет ли все к этому через «каких-нибудь» несколько тысячелетий?

 

Секреты асфальтовых вулканов

Асфальтовые вулканы, которым в научной описи мира всего 10 лет от роду, считаются одной из самых необычных экосистем. Высятся эти горы на морском дне, на глубине около 3000 метров. Лишь роботам пока удавалось проникать сюда, к таинственным Black box океана, как иногда называют их географы, шутливо обыгрывая их цвет и загадочность.

Как же возникли эти вулканы? Где их можно встретить? Что вообще мы знаем об этих «черных ящиках», затерянных под водой? Как они были открыты?

Мексиканский залив, 1 ноября 2003 года. Ранний утренний час. Немецкое научно-исследовательское судно Sonne («Солнце») занимается поиском залежей гидрата метана в бухте Кампече, к северо-западу от полуострова Юкатан. Руководят экспедицией Герхард Борман из Бременского университета и Ян Макдональд из Техасского университета. Эта бухта привлекла их внимание потому, что на фотографиях, сделанных из космоса, тут были замечены пятна нефти. Идет картографирование неизвестного участка дна площадью 7000 квадратных километров. Здесь и обнаруживается целая горная система. Двадцать два больших холма. Они достигают в высоту от 450 до 800 метров.

Асфальтовый вулкан в Мексиканском заливе

Но куда внушительнее они выглядели бы для того, кто мог бы их осмотреть, проникнув на дно бухты (забудем о мраке, царящем на этой глубине). Перед ним, заслоняя подводный окоем, высились бы широченные горы-богатыри, составлявшие в поперечнике от 5 до 10 километров. Полого вздымались их склоны, немалая тяжесть чувствовалась в округлых вершинах. Самим исследователям эта подводная система показалась просторным полем дюн, только дюн очень высоких, будто на них наведено увеличительное стекло.

Конечно, подобные открытия будут продолжаться еще долго. Дно Мирового океана зияет белыми пятнами и ждет подробного нанесения на карту. Но все эти частные достижения будут лишь «тысяча первой правкой давно известного в общих чертах плана». Сенсацией та находка стала, лишь когда в эту горную страну спустился робот и увидел то, чего не должно было быть. Чего никогда еще не было.

…Первые кадры репортажа, переданного машиной, были скучны и утомительны для самих ученых. Пустынный подводный уголок выглядел безынтересно. Но скоро все изменилось. Свет прожектора выхватил черные образования на морском дне, покрытые сетью трещин и разломов. Некоторые напоминали застывшие потоки базальтовой лавы на Гавайских островах. И, словно над цветущим лугом, над этой каменистой грядой все было полно жизнью. Кружили стаи рыб, мельтешили рачки, показывались моллюски, вились трехметровые черви. Это был настоящий подводный оазис, привлекавший к себе все живое. Но что за странная порода покрывала морское дно? И чем питались животные, поселившиеся в этой глубоководной области, куда не проникал солнечный свет? Что составляло здесь основу пищевой цепи? Химический анализ проб грунта выявил здесь и гидрат метана, и нефть, чьи запасы на дне Мексиканского залива достаточно велики, и материал, который вообще не ожидали тут увидеть – асфальт. Холмы были подводными вулканами, которые выбрасывали вместо раскаленной лавы жидкий асфальт.

Ранее исследователям случалось обнаруживать небольшие участки морского дна, покрытые этим материалом. Но в бухте Кампече толщина асфальтового покрова достигала 4 метров. Вероятно, он образовался в результате серии следовавших друг за другом извержений. «Судя по структуре асфальтовых отложений, которые напоминают лаву, изливавшийся материал вначале был разогрет до высоких температур, а потом, стекая несколько сотен метров по склону, постепенно остывал и затвердевал», – писал Ян Макдональд на страницах журнала Science.

Почему же подобные вулканы появились в Мексиканском заливе?

Потому что здесь, как, может быть, нигде еще, соединилось несколько важных условий.

В юрском периоде здесь, на месте пересохшего моря, образовались пласты отложений, содержавшие соли, растворенные прежде в воде. Позднее эти пласты мощностью до тысячи метров были укрыты новыми слоями осадочных отложений и постепенно оказались на глубине от 8 до 15 километров. Прямо над ними простирались теперь воды Атлантического океана.

Плотность соли была меньше, чем окружавших ее слоев породы. Поэтому при громадных давлениях, царящих на этой глубине, пласты соли постепенно, за многие миллионы лет, выдавливались наверх. Образовались так называемые диапировые складки, принявшие здесь вид соляных столпов. Они стали остовами будущих вулканов.

Необходимая для них асфальтовая смесь тоже образуется при определенных условиях – при наличии на глубине нескольких тысяч метров, в толще донных отложений, колоний микроорганизмов, которые питаются нефтью, перерабатывая и разлагая ее. Нефти же в Мексиканском заливе много. Итак, все условия для возникновения асфальтового вулканизма налицо.

Каким же образом поток жидкого асфальта, произведенного колониями микробов, поднимается из недр земли на ее поверхность, преодолевая путь в тысячи метров? Что служит лифтом для асфальта? Что выталкивает его наверх?

Объяснение, очень неожиданное, было дано в 2005 году в статье, опубликованной на страницах журнала Eos (одним из авторов ее являлся Герхард Борман). В ней говорилось об особой «субстанции», которая движет потоком асфальта, – о «суперкритической воде». Речь идет о воде, которая находится под огромным давлением, в три сотни атмосфер и более, а потому разогревается до 400 °С, не закипая при этом и не испаряясь. Таким образом, она принимает форму, промежуточную между жидкой и газообразной, и по своим характеристикам разительно отличается от обычной воды. Она, например, растворяет нефтепродукты и асфальт, но перестает растворять соль, не смешивается с ней. В Мексиканском заливе, и именно в бухте Кампече, сложились подходящие условия для перехода воды в это необычное состояние.

Изливаясь из кратера вулкана, эта вода моментально стынет, избавляясь от своего груза. Вязкие асфальтовые потоки преодолевают сотни метров, стекая по склонам вулканического конуса, прежде чем затвердеют на холоде (температура воды на дне бухты составляет около 4 °С).

Асфальт на улицах наших городов – это символ чего-то враждебного самой природе и жизни. Трудно поверить, что мертвенные, асфальтированные площадки могут где-нибудь стать настоящими оазисами, дать приют самым разным животным. Но это случилось.

С чего же начинается пищевая цепь в этой экзотической экосистеме? Может быть, в основе жизни всего сообщества, поселившегося здесь, лежат процессы разложения метана и синтеза из него питательных веществ? Если метан действительно выделяется во время извержений вулканов, то он становится пищей для многочисленных специализированных бактерий, которые питаются только им. Сами бактерии или продукты их выделения, в свою очередь, служат пищей другим животным, которых поедают опять же третьи животные.

А что, если и природа асфальтового вулканизма совсем иная? Возможно, тут не играет никакой роли «суперкритическая вода», и мы имеем дело с холодными источниками, изливающими из кратера асфальтовую массу вместе со струями метана?

Тем временем асфальтовых вулканов становится все больше. Так, в 2010 году были открыты семь подобных вулканов у берегов Калифорнии. Исследования показали, что их бурные извержения начались около 44 тысяч лет назад и завершились около 31 тысячи лет назад.

 

Неведомые большие каньоны

Эти загадочные образования грандиознее Большого каньона, недоступнее высочайших горных вершин планеты и почти не исследованы учеными. Вот, например, самое глубокое и протяженное ущелье Европы – Назаре. Громадные стены скал окаймляют его, нависая над пролегающей далеко внизу долиной. По ней стремительно проносятся потоки воды, увлекая за собой камни и песок. Почему же это чудо природы не пользуется популярностью у туристов? Потому что оно располагается не посреди Пиренеев или Альп, а… в Атлантическом океане. Оно начинается у берегов Португалии и тянется на 210 километров, опускаясь в глубь океана на 4300 метров. И ведь, как ни уникален этот подводный каньон, это – всего лишь одно из многочисленных ущелий, прорезавших морское дно в окрестности Европы. И не только!

Такие же каньоны рассекают подводные окраины материков и в других частях света. Как они возникли? Может быть, это – устья рек, затопленные по окончании ледниковой эпохи? Или их происхождение как-то связано с движением континентальных плит? И какую роль эти ущелья играют в подводных экосистемах?

Удивительно, но эти величественные ущелья долгое время оставались не то что неисследованными – незамеченными. Лишь подводные роботы позволили, наконец, заглянуть в эти таинственные уголки Земли, лежащие всего в нескольких сотнях метров от поверхности моря.

Форма и расположение подводных каньонов очень разнятся

Вообще-то где еще, как не близ побережья, морское дно должно быть изучено так же подробно, как и трезубец Посейдона или обертона сирен? Однако сквозь неглубокий морской разлив с каждой экспедицией проступают все новые притаившиеся теснины, вдавленные в высокие каменные коробки. Эти ущелья как морщинки! Всякий раз, всматриваясь в лицо моря, с удивлением замечаешь новую полоску, прорезавшую его и пока укрытую толстым, тягучим слоем все гримирующей воды.

Так, в 2003 году очередной подводный каньон был найден у берегов Мавритании. Даже на самых надежных лоциях капитанов на этом месте все было откровенно ясно, словно картографическая съемка выполнялась в залитой водицей степи. Однако гидролокатор немецкого научно-исследовательского судна «Метеор» глядел будто не в воду, а сквозь землю, рисуя какой-то невиданный громадный канал. Больше всего он напоминал меандр – извилистое русло реки. Начинаясь у мыса Тимирис, в районе северной части мавританского побережья, это ущелье, изворачиваясь с гибкостью змеи, вползает в открытое море, погружаясь на глубину более 3000 метров. Длина этой потерянной прежде детали рельефа составила ни много ни мало две сотни километров. По признанию ученых, открывших его, этот каньон напоминает Рейн. Поначалу он узок, как река в своем верховье, но понемногу набирает силу, растекается, раздвигая оградившие его берега, делается широким и, не будь он бесполезно наполнен морской водой, можно было бы сказать, становится величавым и полноводным, как батюшка Рейн, матушка Волга. У подножия материкового склона его ширина достигает 3 километров, а высота берегов – 300 метров.

Рельеф этих неведомых каньонов в самом деле будит в памяти хорошо знакомые образы рек, канувших теперь на дно моря, как в Лету. Эти каньоны ветвятся, вбирая в себя узкие притоки. Теряют старые участки русла, которые, отделившись, выгибаются старицей. Или, подбираясь к материковому склону, они раскидываются целым веером расходящихся долин – устьем, набежавшим на древнюю часть моря. Каньон мыса Тимирис напоминает Рейн еще и своей длиной. К сентябрю 2012 года на карту было нанесено две сотни километров этой подводной формации. Но, как полагают ученые, она тянется еще на 5—6 сотен километров в сторону глубоководной части океана. Древняя река, унесенная морем, как ветром?

По признанию самих авторов открытия, трудно поверить в то, что на планете еще можно найти такие огромные, неизвестные объекты. Сказано точно не о подводных каньонах! Ведь даже о тех, что уже нанесены на карту, ученые ровным счетом ничего не знают, кроме их формы и длины. Они для нас – лишь имя в недавно составленном перечне. Их вид, их внешность мы представляем себе с трудом. Как же образовался этот причудливый рельеф?

Происхождение некоторых подводных каньонов было уяснено еще в 1930-х годах. Уже тогда знали, что в ледниковую эпоху уровень моря был на 100 с лишним метров ниже, чем теперь. С таянием ледников многие прибрежные равнины и, конечно же, устья рек оказались под водой. Географическая карта была перекроена на многие километры.

Как теперь понятно, часть подводных теснин и раздолов и впрямь были руслами рек, на которые в далекие времена надвинулось море и, переполнив их через край, еще долго приливало к ним воду. Там, где береговая линия обрезает устья Амазонки, Ганга или Конго, по другую ее сторону, словно отраженные в зеркале моря, еще далеко продолжаются русла этих великих рек.

Однако объяснять этим происхождение любых подводных ущелий все равно что мерить всех пациентов аршином одной болезни. Одни ущелья лежат вдалеке от береговых рек, другие продолжаются и на глубине в несколько тысяч метров – там, где в любые ледниковые эпохи оставалось море. Их форма, расположение очень разнятся. Что могло породить их?

Похоже, мощные потоки воды и грязи. Они возникали, когда морское течение, взвихрившись, взрывало слои осадочных отложений и уносило их с собой. С неистовой силой они обрушивались с континентальных склонов. Именно грязевые потоки, наряду с оползнями, чаще всего и формировали этот рельеф.

Особого разговора заслуживают некоторые подводные ущелья Средиземного моря. Около 5,6 миллиона лет назад движения континентальных плит привели к тому, что это море оказалось отрезано от Атлантического океана. Свежая вода перестала поступать в море, ну а количества воды, приносимого реками, впадавшими в него, было недостаточно, чтобы компенсировать потери от испарения морской воды. Уровень Средиземного моря все заметнее понижался. За несколько тысячелетий оно почти полностью пересохло.

Теперь Африку и Европу разделяла громадная пустынная впадина – этакое Мертвое море, разросшееся до сказочной величины. Лишь небольшие соленые озера оживляли эту унылую пустыню, отдельные области которой лежали на 5000 метров ниже уровня моря. Правда, по геологическим меркам эта «Великая сушь» длилась недолго. Прошло 270 тысяч лет, и «морская блокада» Европы окончилась. В районе скал Гибралтара воды Атлантического океана пробили себе дорогу и затопили мертвую впадину.

Об этой катастрофе в истории Средиземного моря напоминают не только соляные отложения, но и бывшие речные каньоны, во многих местах рассекшие его окраины. Ведь по мере того, как море, все хуже питаемое водой, отступало от своих берегов, русла рек, все так же продолжавших свой бег, становились длиннее. Реки пробивали себе путь по мягкому, податливому дну, и вот уже, бурля и клокоча, сбегали по материковому склону. Своей мощью эти потоки напоминали скорее грандиозные водопады, чем юркие, неудержимые горные речушки. За многие тысячелетия их русла глубоко врезались в простертое перед ними дно моря.

Геолог Жюльен Гаргани из Парижского университета определил, например, что устье Нила оказалось, в конце концов, на глубине 2400 метров ниже нынешнего уровня моря. Когда Гибралтарская перемычка была прорвана и море вернулось в свои берега, значительная часть русла Нила была затоплена, превратившись еще в один подводный каньон.

 

Бермудский треугольник: мифы и явь

Бермудский треугольник – это район Атлантического океана площадью около миллиона квадратных километров. Располагается он между Бермудскими островами, островом Пуэрто-Рико и южной оконечностью полуострова Флорида. Если соединить линиями все эти географические пункты, то мы и впрямь получим на карте треугольник, причем все его стороны равны примерно 1600 километрам.

Бермудский треугольник

Эта геометрическая фигура, прочерченная нами в волнах, охватывает примечательную область. Именно здесь из Мексиканского залива в Атлантический океан вырывается теплое морское течение – Гольфстрим. Сами же Бермудские острова располагаются в Саргассовом море – скоплении длинных бурых водорослей, переплетенных между собой.

Район Бермудского треугольника издавна пользуется недоброй славой у моряков. Неожиданные водовороты, мощные ураганы, гигантские волны-убийцы – и мертвенное Саргассово море. С этой областью Атлантического океана связано много страшных легенд. Здесь творится какая-то чертовщина: исчезают корабли и самолеты. По различным сведениям, начиная с 1840 года здесь бесследно пропали от 50 до 70 кораблей и около 40 самолетов. Было обнаружено и несколько судов, на которых не оказалось никого – ни пассажиров, ни членов экипажа.

Одна из самых загадочных историй произошла 5 декабря 1945 года. В этот безоблачный день пять американских бомбардировщиков, совершавших тренировочный полет над океаном близ Флориды, не вернулись на базу. На следующий день в том же районе исчез гидросамолет, посланный для поиска пропавших экипажей. Вскоре сомнений не оставалось: все 27 человек погибли. Но никаких следов аварии не удалось найти. Не были обнаружены и обломки самолетов.

Что же случилось тогда? Насколько правдивы все эти истории? Какими природными явлениями можно объяснить загадочные катастрофы?

За последние десятилетия ученые и энтузиасты предложили множество объяснений этим таинственным событиям. Особой популярностью пользовались всевозможные мистические сценарии.

Так, в 1950-х годах американский исследователь Чарльз Берлиц заявил, что на дне Бермудского треугольника покоится громадный солнечный кристалл, оставленный жителями Атлантиды. Он посылает ложные сигналы экипажам кораблей и самолетов, а порой и затягивает их в морскую пучину.

В 1979 году Юрий Егоров предположил, что вогнутая поверхность моря в районе Бермудского треугольника – а эту его особенность удалось установить с помощью спутниковых наблюдений – образует своего рода огромное параболическое зеркало. Оно фокусирует солнечные лучи, а потому любой самолет, оказавшийся в фокусе этого зеркала, испаряется.

Авторы другой, более серьезной гипотезы полагали, что все дело в подводных землетрясениях. Они порождают инфразвуковую волну, которая вызывает у людей невыносимые ощущения. Не выдержав этой муки, моряки прыгают в воду, а летчики направляют самолеты прямо в море.

Но, пожалуй, особого внимания заслуживает гипотеза британского геолога Бена Кленнела, высказанная им в 1988 году. Он предположил, что причиной большинства катастроф в Бермудском треугольнике становятся… метановые пузыри. Они образуются, когда метановый лед, устилающий морское дно, внезапно начинает таять, распадаясь на воду и газообразный метан.

В этом районе имеются громадные скопления гидрата метана. Известно, что при изменении давления и температуры из подобных месторождений начинает выделяться метан. В случае подводных оползней или землетрясений (а они в этой части Атлантического океана возможны, свидетельством чему является катастрофа 2010 года, жертвами которой стали многие жители Гаити) может единовременно выделяться большое количество метана.

В последние годы ученые не раз обнаруживали в разных частях Мирового океана метановые пузыри. Так, в 1999 году немецкие гидрографы заметили близ побережья штата Орегон, где имеются большие скопления метанового льда, газовые пузыри, достигавшие в поперечнике 125 метров. Они покачивались над склоном подводного хребта.

В конце концов, громадный пузырь, образовавшийся на дне моря, поднимается к поверхности и переворачивает корабли или же взрывается в воздухе, уничтожая пролетающий рядом самолет. Метан ведь легко воспламеняется, и, если он попадет в двигатель самолета, тот вспыхнет. Впрочем, это всего лишь рассуждение на тему «Что было бы, если бы…». Пока документально не подтверждено ни одного случая пожара на борту самолета, вызванного такой экзотической причиной, как выброс метана с морского дна.

Вот и в тот декабрьский день 1945 года, когда исчезла эскадрилья американских бомбардировщиков, никаких воздушных взрывов отмечено не было. Известно только (из сообщения командира группы), что над морем поднялся белый туман и летчики стали утрачивать ориентировку.

А может быть, они постепенно отравились метаном? Природный метан не имеет ни цвета, ни запаха. Надышавшись им, летчики теряют сознание, и тогда воздушное судно, оставшись без управления, начинает падать. Поверхность моря буквально кипит от пузырьков метана, а потому самолет не разбивается об нее, а мягко погружается в глубь воды – камнем идет ко дну. Никаких следов разрушения машины на поверхности моря нет. Она исчезает бесследно.

Сразу две опасности подстерегают корабли, оказавшиеся в зоне выброса метана. Из-за того, что поверхность моря усеяна пузырьками этого газа, образуется газоводяная смесь. Средняя плотность такой смеси значительно ниже плотности воды. Если хотя бы часть судна окажется над этой «легкой водой», то, как показывают расчеты, оно не удержится на плаву, начнет, так сказать, «проваливаться в воду», словно в открывшийся под ним люк. Все произойдет буквально в считаные секунды. Если за это время судно успеет зачерпнуть достаточно воды, то, наверное, потонет. Особенно опасно, если в метановые пузыри угодит либо нос судна, либо его корма. Впрочем, специалисты из Геологической службы США считают эту гипотезу маловероятной.

Другая опасность в том, что концентрация метана прямо над поверхностью воды оказывается очень высока, а потому экипажи кораблей и их пассажиры подвергаются гораздо большей опасности, чем летчики. Может быть, по этой причине в Бермудском треугольнике обнаруживали корабли, на которых не было ни единого человека?

Так что, уверены сторонники этой гипотезы, основной причиной катастроф судов, как и самолетов, в Бермудском треугольнике вполне могут быть периодические выбросы в атмосферу метана и сопутствующих ему токсичных газовых примесей и водорода.

Известно, что в тропической Африке есть «озера-убийцы». Со дна этих озер периодически выбрасываются большие количества газа, ядовитого для человека. Почему подобные события не могут происходить в некоторых районах Мирового океана, например в Бермудском треугольнике? Может быть, мы уже, к сожалению, слишком близки к разгадке его секрета?

Ученые отмечают, что последняя необъяснимая катастрофа в этом районе Атлантики произошла в марте 1973 года. Тогда бесследно исчезло судно «Анита», шедшее с грузом угля из Норфолка в Гамбург. Никто не зафиксировал сигнал «SOS»; похоже, он так и не был подан экипажем.

В таком случае, если гипотеза о метановых пузырях верна, сейчас на дне Бермудского треугольника идет накопление гидрата метана, а значит, в любой момент вновь может начаться бурное выделение метана. Не приведет ли это к новой беде?

 

Почему в океане возникают «зоны смерти»?

Мы относимся к Мировому океану как к мусорной свалке. Мы, казалось бы, безнаказанно сбрасываем туда любые промышленные отходы; думаем, что все это растворится в его бескрайних просторах. Тем неприятнее открытие, сделанное в последние десятилетия: океан загрязнен до такой степени, что в нем появляется все больше подводных пустынь – зон, не пригодных почти для всего живого.

Как отмечают многие эксперты, «главной угрозой для Мирового океана в XXI веке становится крайне низкое содержание кислорода в морской воде».

Даже под водой кислород – это жизненно важный элемент. Растворенный в воде кислород обычно приносят вглубь морские течения. Благодаря этой циркуляции его запасы в толще воды постоянно пополняются, что очень кстати, ведь множество животных, в том числе микроорганизмов, обитающих на большой глубине, потребляют кислород. Однако сейчас во многих районах Мирового океана этот механизм нарушается.

На эту проблему обратили внимание лишь четверть века назад, в 1986 году, когда рыбаки, добывавшие норвежских омаров в проливе Каттегат, разделяющем Данию и Швецию, внезапно остались без улова. Вскоре выяснилось, что содержание кислорода в водах пролива стало рекордно низким. Животные задохнулись. Возникла «зона смерти». Новейшие исследования показывают, что количество подобных зон в различных морях мира стремительно нарастает.

В докладе исследователей из ЮНЕП (программа ООН по окружающей среде), обнародованном в 2006 году, говорилось о 200 с лишним «зонах смерти». Два года спустя американский океанограф Роберт Диас и его шведский коллега Рутгер Розенберг насчитали 405 подобных зон. Общая их площадь составляла 245 тысяч квадратных километров. Это примерно равняется площади Великобритании.

Проштудировав несколько десятков научных статей, написанных за последние полвека и посвященных гипоксии – нехватке кислорода в морской воде, – Диас и Розенберг убедились, что все это время количество подобных зон каждое десятилетие удваивалось. На страницах журнала Science они писали: «Ни один другой параметр, характеризующий состояние прибрежных вод, не менялся за столь короткое время так угрожающе быстро, как количество кислорода, растворенного в морской воде».

Океан загрязнен до такой степени, что в нем появляется все больше подводных пустынь

Возможно, «зон смерти» значительно больше, ведь надо сделать поправку на то, что глубины моря не очень хорошо исследованы учеными. Треть подобных зон расположена у берегов США (особенно неблагоприятно положение близ места впадения Миссисипи в Мексиканский залив). Много их в морях, омывающих Европу. Эти области встречаются также в окрестности Японии и Китая, Новой Зеландии и Чили. Их обнаруживают даже в тех районах Мирового океана, которые традиционно важны для рыбного промысла, например близ юго-западного побережья Африки.

«Зоны смерти» возникают, когда содержание кислорода в воде опускается ниже критической отметки – 2 миллиграмма на литр. Порой они образуются только в летние месяцы и исчезают осенью, когда начинается сезон штормов и толща воды перемешивается, а потому к морскому дну притекает вода, насыщенная кислородом. Жизнь возвращается в морские глубины. Но следующей весной или летом эти зоны возникают вновь. Другие же – примерно 8 % всех «зон смерти» – существуют почти круглый год. Эти омертвевшие участки морей уже не могут ожить без помощи человека.

Ученые называют подобные зоны «экологическими бомбами замедленного действия». С каждым годом занимаемая ими площадь расширяется. Они угрожают не только многочисленным организмам, населяющим моря, но и обрекают на нищету десятки миллионов людей, живущих лишь ловлей рыбы и сбором морепродуктов.

Причиной быстрого распространения «зон смерти» стала, прежде всего, деятельность человека. Интенсивное ведение сельского хозяйства, использование огромного количества минеральных удобрений – вот что губит моря, омывающие Европу, Азию, Америку. Реки, впадающие в моря, приносят туда многие тонны фосфатов и нитратов, а также пищевые отходы и остатки сгоревшего ископаемого топлива. Как показывают исследования, проведенные сотрудниками Всемирного фонда дикой природы, примерно 80 % всей акватории у берегов США и 70 % акватории у побережья Европы чрезмерно загрязнены питательными веществами. В этой благодатной среде водоросли разрастаются, как на дрожжах. Биологическое равновесие нарушается. Остатки отмерших водорослей оседают на дно, где их разлагают бактерии, поглощая при этом кислород, содержащийся в воде, и выделяя ядовитый сероводород. Экосистема становится нежизнеспособна.

Биологи говорят о «порочном круге». Из-за нехватки кислорода растения и животные, обитающие в глубине моря, гибнут. Их останки накапливаются, и это лишь ухудшает положение дел. Проблема будет обостряться, поскольку объем удобрений, используемых в сельском хозяйстве, неуклонно растет. Как отмечают экологи, человечество ставит по недомыслию глобальный эксперимент – меняет природу Мирового океана.

Расширение «мертвых зон» связано и с климатическими изменениями, которые наблюдаются в последние десятилетия. Теплая вода хуже растворяет кислород, чем холодная. Стоит только повыситься температуре на поверхности моря, как эти зоны начинают разрастаться ввысь. Так явствует из результатов исследования, опубликованного в 2011 году на страницах журнала Science. По признанию ученых, это может иметь самые драматичные последствия. С дальнейшим повышением средней температуры на планете все большие области Мирового океана окажутся непригодны для всего живого.

Есть подобные зоны и в морях, омывающих нашу страну. В особенно бедственном положении оказалось сейчас Балтийское море. По оценке экспертов из Всемирного фонда дикой природы, ежегодно туда попадает свыше 1 миллиона тонн азота и около 35 тысяч тонн фосфора. За последние 100 лет содержание фосфора в водах Балтийского моря возросло в 8 раз, а азота – в 4 раза.

Раньше Балтийское море было кристально чистым. Теперь полотнища водорослей, которые покрывают его каждым летом, – словно флаг, говорящий о капитуляции. Так, в 2010 году площадь такого полотнища достигла 377 тысяч квадратных километров (для сравнения: общая площадь Балтийского моря составляет 419 тысяч квадратных километров).

Водоросли – это знак грядущей катастрофы. Балтийское море превратилось в сточную канаву. В 2011 году Шведский институт гидрологии и метеорологии обнародовал цифры: почти 25 % дна Балтийского моря уже сейчас страдает от нехватки кислорода. Примерно 15 % морского дна – это «зоны смерти» (в летние месяцы, когда положение становится особенно тяжелым, их площадь достигает порой 90 тысяч квадратных километров). Там нет больше жизни. Как отмечают экологи, «большинство жителей стран, лежащих на побережье моря, как и туристы, приезжающие сюда, не догадываются, что смерть уже подкрадывается к Балтийскому морю».

Можно ли спасти пострадавшие области? Да, их можно оживить. Так произошло в том же проливе Каттегат после исчезновения омаров. Правительство Дании приняло специальную программу, ограничившую сброс в воду веществ, которые вызывают разрастание фитопланктона. У побережья американского штата Коннектикут удалось значительно сократить площадь «зоны смерти», раскинувшейся на сотни квадратных километров, улучшив систему очистки сточных вод. Вопрос только в том, является ли этот эффект необратимым? Станут ли моря такими, какими были столетия назад?

 

Почему возрастает кислотность океана?

Тревожные изменения происходят не только в отдельных областях океана. Глобальное потепление грозит решительно изменить его облик. Ведь его кислотность неуклонно нарастает. Это может иметь плачевные последствия. Многие ученые уверены в том, что это связано напрямую с содержанием углекислого газа в атмосфере. Этот показатель с начала индустриальной эпохи возрос в 1,38 раза (с 0,028 до 0,0387 %). За последние 25 миллионов лет в атмосфере нашей планеты не наблюдалось столь высокого содержания СO2! А к 2100 году, по некоторым прогнозам, этот показатель увеличится до 0,08 %.

Леса и океаны поглощают значительную часть углекислого газа, выделяемого в атмосферу. Примерно треть его позднее растворяется в морской воде (повсеместная вырубка лесов ведет к тому, что эта доля растет). Это, считают исследователи, сдерживает потепление на нашей планете, но в то же время в результате определенной химической реакции, протекающей в воде, «погребенный» в пучине океана парниковый газ превращается в угольную кислоту. Впрочем, она неустойчива; ее молекулы распадаются на положительно и отрицательно заряженные ионы, в том числе ионы водорода. Как следствие, водородный показатель (рН) морской воды – именно он характеризует кислотность – постепенно меняется. Если в доиндустриальную эпоху он равнялся на глубине до 50 метров примерно 8,2, то теперь составляет в среднем 8,08 (чем меньше этот показатель, тем выше кислотность раствора). Конечно, какая-то «одна десятая доля» настраивает на спокойный лад. Но впечатление обманчиво.

Леса и океаны поглощают значительную часть углекислого газа, выделяемого в атмосферу

Многие морские животные, например моллюски, коралловые полипы, морские ежи, морские звезды, обладают панцирем или скелетом, состоящим из карбоната кальция, который образуется за счет соединения ионов кальция и карбоната. Однако чем выше кислотность морской воды, тем меньше там свободных ионов карбоната. Формирование панцирей и раковин замедляется, они становятся все тоньше; их обладатели – все мельче. Животные, прежде укрывавшиеся за известковой броней, как за каменной стеной, вынуждены будут прилагать огромные усилия для самозащиты, для поддержания нормальной работы организма. Это отнимает энергию – ту самую энергию, которой станет недоставать для их развития, роста и размножения. Со временем придется говорить о вырождении этих видов. Постепенно они начнут проигрывать конкурентную борьбу другим видам – тем, кто не пострадает от изменения кислотности Мирового океана.

Среди первых неминуемых жертв начавшихся изменений окажутся моллюски, чьи раковины содержат арагонит – легко растворимый минерал класса карбонатов. Эти моллюски распространены в высоких широтах – в полярных морях Арктики и Антарктики, а также в северной части Тихого океана. Но именно в холодных морях, при низкой температуре, углекислый газ растворяется в воде особенно интенсивно.

Если выбросы углекислого газа не будут сокращены, то уже к 2016 году кислотность воды в отдельных областях Северного Ледовитого океана достигнет такой степени, что вода начнет разъедать арагонит. Через 50—60 лет эта беда постигнет уже три четверти полярных морей. Но именно в этих морях важнейшим элементом пищевой цепи являются те самые моллюски. Ими питаются рыбы, тюлени, киты. Если численность моллюсков начнет стремительно сокращаться, вскоре это отразится и на популяциях других животных, лишившихся привычных источников пищи.

Мальки рыб особенно чувствительны к изменениям водородного показателя воды. Так, во время экспериментов у мальков трески, которых помещали в воду с повышенной кислотностью, выявились многочисленные повреждения внутренних органов. Очевидно, в таком возрасте их организм очень быстро реагирует на все, что происходит в окружающей среде. Массовая же гибель мальков неминуемо скажется на численности промысловых рыб.

Многие исследователи отмечают, что пока еще непонятно, в каких пределах изменения водородного показателя следует считать терпимыми (то есть животные могут приспособиться к ним), а в каких – нет. Чаще всего называется величина 0,2, но, по распространенным прогнозам, уже к 2040 году водородный показатель морской воды понизится именно на эту величину, а к 2100 году уменьшится до 7,8. Такая тенденция заслуживает лишь одного определения – «катастрофическая».

Большинство морских животных за всю историю своих видов не сталкивались с подобными условиями. Анализируя состав донных отложений, ученые определили, например, что 7,5 миллиона лет назад водородный показатель морской воды составлял 8,2 ± 0,2 и лишь 21 миллион лет назад был значительно ниже – 7,4 ± 0,2. Организмы многих современных животных не приспособлены к подобной «химии океана».

Плохи перспективы, например, у коралловых полипов, чьи известковые скелеты содержат все тот же легкорастворимый арагонит. В тропических морях уже сейчас наблюдается их массовая гибель. Впрочем, она обусловлена тем, что средняя температура океана повышается, а кораллы очень чувствительны к малейшему изменению температуры. Теперь к этому добавилась еще одна неприятность: меняется кислотность морской воды – а это отражается на состоянии известкового скелета, которым наделены полипы. Если выбросы углекислого газа в атмосферу так и не удастся сократить, то в 2050 году степень кислотности Мирового океана изменится настолько, что в таких условиях они не будут больше расти.

Тропические рифы оказались в ловушке. В той части океана, где сейчас распространены кораллы, средняя температура морской водыпродолжает понемногу повышаться, и это приводит к их массовой гибели. Переселиться же в умеренные широты они не могут; здешние воды чересчур бедны карбонатами, необходимыми им для строительства известковых скелетов.

Подытоживая исследования, проводившиеся в последнее десятилетие, можно сказать, что в угрожающем положении оказалась почти треть всех видов кораллов. В частности, из 704 видов каменных кораллов, обследованных учеными, 231 вид находится либо на грани вымирания, либо под угрозой вымирания. Для сравнения: в начале 1990-х годов менее 5 % видов кораллов испытывали подобные трудности.

Если когда-нибудь коралловые рифы исчезнут, это обернется катастрофой не только для туристической отрасли, но и для прибрежных экосистем, ведь рифы защищают берега материков и острова от морских волн, а еще являются местом обитания многочисленных рыб и других животных. Если вымрут кораллы, то такая же участь ждет растения и животных, населяющих сейчас рифы. Это пойдет на пользу лишь конкурирующим видам, менее специализированным, менее чувствительным к происходящим изменениям, – прежде всего медузам.

…В одном из самых мрачных прогнозов, опубликованном в 2003 году на страницах Nature, говорится, что через несколько столетий, к тому времени, когда будет израсходована большая часть известных на сегодня запасов ископаемого топлива, в атмосферу выделится такое количество углекислого газа, что водородный показатель Мирового океана достигнет самой низкой отметки за последние 300 миллионов лет (исключая отдельные катастрофы). Для человечества подобное развитие событий станет практически необратимым. По расчетам, пройдут многие десятки тысячелетий, прежде чем водородный показатель естественным путем вернется к тому уровню, который был отмечен в канун индустриальной эпохи. Неужели худший прогноз, как всегда, сбудется?

 

Может ли остановиться Гольфстрим?

Долгое время глубины океана считались сонным царством, чей покой не рассеивает даже коловращение солнечных лучей, не замечаемое там. Однако мнение это ошибочно. Там все исполнено бурления и клокотания; там струятся громадные водопады, там зарождаются мощные токи воды; оттуда, вырываясь наверх, они разносятся по всем уголкам Мирового океана, приводя его гладь в движение, которое не прекратится, пока не расстроен этот механизм.

От его нормальной работы зависит жизнь на Земле. Его перебои, его стопорение отзовутся смутой в другом океане – воздушном. Вслед за молчанием заглохшего движителя настанет череда самых драматических изменений климата. Погода на Земле будет напоминать корабль с поломавшимся мотором, который в час бури швыряет во все стороны по воле волн.

Пока же мы живем по инерции последних тысячелетий, и всё идет своим чередом. Наш океан можно уподобить бассейну: холодная, тяжелая вода опускается вниз; более теплая перетекает по поверхности. Так распространяются течения. Они – эти великие «уравнители» – смягчают перепады температуры на планете: они приносят тепло в северные широты и прохладу в тропики.

Океан можно уподобить бассейну: холодная, тяжелая вода опускается вниз, а более теплая перетекает по поверхности

Главный движитель этой вереницы морских потоков расположен в Северной Атлантике. Именно здесь находится самый крупный подводный водопад. Он больше всех наземных водопадов, вместе взятых. Итак, неподалеку от Гренландии, близ полярного круга, на площади около 10 тысяч квадратных километров, неимоверные массы воды срываются вниз, на двухкилометровую глубину. Каждую секунду этот водопад переносит миллионы кубометров воды. На фоне этой бескрайней водной стены, летящей, чтобы разбиться брызгами, даже Ниагарский водопад кажется ручейком, перелившимся через камушек.

Сюда, к этому уступу, вправленному в океан, словно шкив, несет свои воды Гольфстрим. Именно подводный водопад позволяет морскому течению бесперебойно кружить – оно напоминает ременную передачу в станке.

Гольфстрим и сам можно сравнить с огромной машиной, которая перевозит в сотни раз больше воды, чем несет ее Амазонка, самая большая река в мире. Его мощность превышает миллиард мегаватт – это мощность 200 тысяч атомных электростанций, вместе взятых.

Гольфстрим берет начало в Мексиканском заливе. Тропические ветры гонят воды на север; они текут вдоль берегов США, обогревая их. Постепенно часть теплой воды испаряется. Оставшаяся вода становится все соленее и холоднее. Плотность ее растет. Наконец, на широте Лабрадорской котловины, лежащей южнее Гренландии, вода в этой «морской реке» становится так тяжела, что Гольфстрим проваливается в глубь океана.

После этой перемены от Гольфстрима остается лишь название. Воды, которые он нес, затонули. Теперь они перекатываются по дну Атлантического океана, поворачивают на юг и струятся к экватору. Оттуда они попадают в Индийский океан и достигают Антарктиды. Здесь, в море Уэдделла, неподалеку от Южного полюса, скрыт еще один движитель, правящий бегом морских рек, – еще один шкив этой «планетарной передачи воды».

На поверхности моря Уэдделла часть воды замерзает, поэтому содержание соли, а значит, и плотность морской воды растет. Поток снова проваливается в глубь океана, где сталкивается с циркумполярным течением, огибающим Антарктиду. Оно увлекает поток за собой, а потом, как из пращи, разбрасывает в стороны: одну «горсть воды» в Атлантический океан, другую – в Индийский, третью – в Тихий. Бутылка, брошенная пять веков назад неудачливым плавателем где-то близ Игольного мыса, все так же стремится назад, отмеряя жизнь океана, как по огромным водяным часам.

Всё возвращается на круги своя, и всё начинается вновь. Так, сотни и тысячи лет воды кружат по Мировому океану, остывая, нагреваясь, всплывая, низвергаясь. Будто и в самом деле с неумолимым постоянством кружит ременная передача или – это сравнение более употребительно у ученых – работает огромный конвейер, который перевозит все те же массы воды из Северного полушария в Южное, из одного океана в другой.

Итак, Гольфстрим – это видимая часть машины, чьи детали и узлы изваяны из воды и рельефа и, надежнее гаек и болтов, скреплены ветром. Эта махина выдержит большие перегрузки, хотя может сломаться и она. В прошлом такое случалось не раз. Только перебоями в работе этой «машины» можно объяснить, почему в последнем ледниковом периоде наблюдались такие резкие перемены климата, когда в течение нескольких лет среднегодовая температура могла измениться почти на десяток градусов. Об этом свидетельствуют пробы льда, взятые в Гренландии.

Пока в моделях, представленных учеными, Гольфстрим исправно течет на север. Однако в XXI веке его мощь уменьшится, по разным прогнозам, на 10—50 %. Это вызвало бы похолодание в Европе, также заметно обогреваемой теплым морским течением, если бы… не началось глобальное потепление. Плюс сливается с минусом, а Гольфстрим все так же мчит свои воды на север, чтобы близ Гренландии каскадом обрушиться вниз. Всё так и будет, убеждено большинство географов. В ближайшие века Европу ждет лишь потепление.

Однако мировой климат – это очень хрупкая система. В былые эпохи его равновесие не раз нарушалось. Последний раз это случилось 12 тысяч лет назад. Тогда в Северную Атлантику вылилось целое «море» пресной воды, скопившейся после таяния ледников на территории Канады. Это событие так изменило плотность морской воды, что та перестала тонуть. Великий водопад остановился. Он исчез, как закон природы, писанный вилами по воде.

Гольфстрим остыл, «замерз», – и вслед за тем холод сковал все Северное полушарие. Великое оледенение на какое-то время вернулось. Что, если такая катастрофа вновь повторится? Какие причины могут заставить события развиваться по худшему сценарию?

Их несколько. Воды Атлантики становятся теплее с повышением средней температуры на планете. Их плотность снижается. Напор Гольфстрима слабеет. Водопад ленивее вращает «маховое колесо машины климата».

Повышенное испарение воды – а оно тоже наблюдается – лишь усиливает этот эффект. В США и Канаде, например, чаще идут дожди и снегопады. Выпадает больше осадков. По этой же причине во многих странах мира участились наводнения. Сток речных вод растет; все больше пресной воды попадает, в частности, в Атлантику. Плотность снижается… Слабеет… Водопад ленивее…

В море Лабрадор приплывает все больше айсбергов. За последние 30 лет их число возросло почти в три раза. Они дрейфуют по морю и постепенно тают, разбавляя морскую воду пресной. Навигацию титанических гор льда описывает тот же сценарий: снижается, слабеет, ленивее.

Однако приведенные факты вовсе не заставляют ученых говорить: «Всё так и будет. В ближайшие века Европу ждет лишь похолодание».

Причин неуверенного ответа – тоже несколько. Так, чем сильнее испаряются воды Мирового океана, тем больше образуется облаков. Они закрывают небо, не пропуская солнечные лучи. Вслед за повышением температуры наступает такое же ее понижение. Климат остается прежним.

Различные компьютерные модели, скорее, показывают, что похолодание и потепление лежат сейчас на двух чашах весов, пребывающих в равновесии, но каждый новый факт нарушает эту шаткую стабильность.

Нам остается лишь радоваться, что «скоро сказка сказывается, но дела в морях медленно делаются». Время резких перемен может настать лет через сто, не раньше, – но это не повод, чтобы пренебречь исследованиями и прогнозами.

 

Когда приходит Эль-Ниньо?

«Эль-Ниньо», «малыш» – вот так уже второе столетие ученые вслед за перуанскими рыбаками называют этот природный феномен, который повторяется раз в несколько лет.

Берега Южной Америки омывает холодное Перуанское течение. Обычно пассаты – ветры, дующие в западном направлении, – удерживают гигантские массы теплой воды в западной части Тихого океана. Температура воды там может быть на 10° выше, чем в его восточной части. Там скапливается так много воды, что уровень ее оказывается метра на полтора выше, чем на востоке. Но рано или поздно пассаты ослабевают, и тогда приходит Эль-Ниньо.

В течение примерно трех месяцев теплую воду нагоняет от берегов Азии к Южной Америке. Она не перемешивается с холодной, насыщенной питательными веществами водой в глубинных слоях океана. Поэтому начинается массовая гибель планктона. Тогда у побережья исчезает рыба, и на несколько недель – а случается это обычно перед Рождеством – рыбаки остаются без дел, сидят дома, чинят лодки и снасти. Ах, если бы действие Эль-Ниньо ограничивалось сумятицей в рыбных косяках! Нет, вслед за тем всё повсюду – от Южной Америки до Европы – идет вдруг наперекосяк.

В тот год, когда приходит «малыш», у берегов Америки прогревается не только вода, но и нижние слои атмосферы. Воздушные массы насыщаются водяными парами. Ливневые дожди выпадают там, где на протяжении многих месяцев не проливалось ни капли влаги. Страны, лежащие на западном побережье Южной Америки, страдают от наводнений и оползней. Зато в бассейне реки Амазонка устанавливается засушливая погода.

Капризам перуанского «малыша» вскоре весь мир по плечу. Три четверти земного шара оказываются во власти заигравшегося «дитяти». Жители Флориды и других юго-восточных штатов США, привыкшие к мягким зимам, в тот год страдают от холодов и снегопадов. Мексиканский залив штормит. В Индонезии и Австралии вслед за засухой начинаются лесные пожары.

Порой целые экосистемы преображаются с приходом Эль-Ниньо. Так, в 1982—1983 годах после сильных ливней прибрежные районы Эквадора и Перу превратились в цветущий сад. Однако через несколько месяцев Эль-Ниньо ушел, и сюда вернулась пустыня.

Вообще же «малыш» редко творит добро. Его забавы – урожай, сгнивший на корню, или поля, выжженные солнцем, сгоревшие леса или померзшие посевы. У западного побережья Америки наблюдается массовая гибель рыбы. Для многих людей в странах третьего мира наступают голодные времена. А еще – пора эпидемий. Именно в эти месяцы жители тропических стран особенно страдают от малярии и холеры.

Влияние течения Эль-Ниньо на климат

По мнению многих историков, именно последствия Эль-Ниньо – недород, голод, смуты – привели к гибели культуры мочика и некоторых других культур древнего Перу и Колумбии. Возможно, около 1200 лет назад этот несносный «малыш» погубил и самую развитую цивилизацию Древней Америки – культуру майя. Как показали исследования немецкого геолога Геральда Хауга, в VIII – IX веках в стране майя наступила длительная засуха.

Европа не часто страдает от причуд перуанского «баловника». Хотя знаменитый «генерал Мороз» был на самом деле «латиноамериканским полковником». Именно влиянием Эль-Ниньо ученые объясняют аномальные морозы, установившиеся в Европе и СССР зимой 1941—1942 годов. Продолжаются и споры о том, не стал ли Эль-Ниньо причиной очень холодной, снежной зимы, выдавшейся в Европе в 2009—2010 годах.

Но так когда же приходит Эль-Ниньо?

Этот природный феномен имеет долгую историю. Анализ годовых колец столетних деревьев, срубленных в бассейне Амазонки, исследование столбиков льда (кернов), извлеченных из гималайских ледников, или же осмотр колоний кораллов в различных районах Тихого океана многое может порассказать о проделках «малыша».

И все же этот феномен не перестает удивлять ученых. Это времена года повторяются с календарной точностью. А вот Эль-Ниньо то чересчур медлит, то неприлично спешит. Если и сравнивать его с механизмом, то с обезумевшими часами. Его приход трудно предсказать, а значит, причины его наступления окончательно неясны ученым, остаются загадкой для них.

Первую часть этой загадки еще в 1920-х годах решил британский метеоролог Гилберт Уокер. Он обратил внимание на то, что иногда индийские муссоны сопровождаются необычайно сильными засухами в Австралии и Индонезии и очень мягкими зимами на западе Канаде. Случайность? Или что-то скрывается за этим?

Вскоре он установил, что воздушные массы над Тихим океаном словно раскачиваются на одних громадных качелях. Если над его восточной частью располагается область высокого давления, то над западной частью – область низкого давления и наоборот. Однако раз в несколько лет что-то стопорит эти качели, и тогда нарушается размеренное чередование муссонов, а в ряде тихоокеанских стран наступает засуха. Он назвал это явление «южной осцилляцией». Однако выводы, сделанные Уокером, были скептически встречены его коллегами.

Лишь 40 лет спустя норвежский геофизик, профессор Калифорнийского университета Якоб Бьеркнес подтвердил связь между «южной осцилляцией» и феноменом Эль-Ниньо. Всякий раз, когда «качели давления» над Тихим океаном стопорятся, наступает Эль-Ниньо. Очевидно, то и другое явление – части какого-то глобального природного цикла.

С этого времени стало ясно, что имеется сложная взаимосвязь между движением воздушных масс над Тихим океаном, размещением здесь областей высокого и низкого давления, а также температурой воды в различных частях океана. Можно сказать, что Мировой океан и воздушный океан непрерывно взаимодействуют, то ослабляя, то усиливая любые процессы, происходящие в воздухе или воде. Шаткое равновесие, установившееся между ними, нарушается в канун прихода Эль-Ниньо, и тогда громадные массы разогретой воды, словно лавина, устремляются из западной части Тихого океана в восточную. Проходит несколько месяцев, прежде чем следы этого внезапного потрясения рассеиваются.

Но что же порождает эскападу бурных событий? Что выводит целый океан из его тихого равновесия? Все это из-за того, что ослабевают пассаты? Или они становятся слабее потому, что западная часть Тихого океана чересчур прогревается? Что было раньше, курица или яйцо? Океан воздушный или водяной?

Из результатов одних исследований явствует, что все начинается с обильных снегопадов над Азией или с изменения муссонных ветров. Другие ученые обращают внимание на характер морских течений в тропической части Тихого океана, полагая, что они-то и задают всему тон. А может быть, механизм Эль-Ниньо настолько сложен, что у него сразу несколько спусковых крючков? Или же причина всего является такой маловажной, что подтверждает хлесткую формулу теории хаоса: «Взмах бабочки в Китае вызывает ураган на Багамах»?

Вот почему на протяжении многих лет ученые с таким постоянством ошибались, предсказывая приход Эль-Ниньо. Но даже если мы будем знать – а точность прогнозов сейчас заметно повысилась, – когда вернется «малыш», все равно не в наших силах предотвратить его появление и защитить планету от его капризов. Мы можем разве что подготовиться к ним, как к неизбежной «зиме» природы.

В последние годы, кстати, замечено, что теперь во время Эль-Ниньо теплая вода не подходит непосредственно к берегам Перу. С чем это связано? Имеем ли мы дело с последствиями глобального потепления? Или же с неким естественным природным циклом? Пока ответа на эти вопросы нет.

 

Могут ли взбунтоваться муссоны?

Это – один из самых грандиозных климатических феноменов на нашей планете и уж, несомненно, самый дождливый. «Разверзлись хляби небесные» – это едва ли не о нем, о муссоне. Точнее, об океаническом муссоне. Когда он приходит в летние месяцы, небо над Индией, Таиландом, Бангладеш покрывается черными тучами. Бесконечной завесой опускается дождь.

Но область распространения муссонов не ограничивается странами Южной Азии. Муссонные дожди определяют ритм жизни также в Восточной Африке и Северной Австралии. В общей сложности, почти 60 % населения нашей планеты живет, приноравливаясь к неумолимому чередованию сезонов дождей и засушливых сезонов и переживая то наводнение, то засуху. Ежегодно муссоны обрекают на смерть тысячи человек – и миллионам людей даруют жизнь. Без них не было бы урожаев, а без урожаев не было бы ни денег, ни пищи.

По признанию ученых, муссоны изучены хуже, чем другой погодный феномен – Эль-Ниньо, наблюдаемый в Тихоокеанском регионе. Как же устроена эта система климата, которая определяет образ жизни людей, населяющих побережье Индийского океана? А как муссоны реагируют на глобальное потепление? Не изменятся ли области их распространения? И не захватят ли они со временем еще и Европу, как предсказывают американские географы? А может быть, этот механизм, древний, как сам океан, внезапно утратит прежнюю безупречность работы? И не муссоны ли стирали следы древних цивилизаций так же неумолимо, как дождь смывает песчаные замки?

Историки обратили внимание на то, что периоды, когда ослабевали летние муссоны, приносящие дождь, неизменно совпадали с крестьянскими войнами – этими голодными бунтами – в средневековом Китае. Возможно, именно длительная засуха, вызванная смещением зоны обильных осадков, приносимых муссонами, привела 4000 лет назад к гибели индской цивилизации – культуры Мохенджо-Даро и Хараппы.

Вот такой он всегда, муссон. Где-то потоки воды сносят с лица земли целые деревни, где-то возвращают к жизни омертвевшие пажити. За три месяца, пока идут дожди, вызванные муссоном, в тех же странах Южной Азии выпадает от 70 до 80 % годовой нормы осадков. Откуда же приходят муссоны? И почему они повторяются с такой регулярностью?

Движитель климата – воздушные массы, перетекающие оттуда, где давление выше, туда, где оно ниже. В тропических странах Азии в зимние месяцы над материком формируется область высокого давления. Сухой и холодной воздух устремляется тогда в сторону океана. В летние месяцы, наоборот, над материком образуется область низкого давления, а потому воздушные массы перемещаются в сторону суши, принося обильные осадки.

Муссоны приносят много бед и разрушений

Проливные дожди в Индии, наводнения в Бангладеш, тайфуны во Вьетнаме… Но идет ли речь о региональных событиях или о чем-то большем? Ведь Индийский океан – одно из звеньев в мировой системе океанов. С одной стороны он граничит с Тихим океаном, и связь феномена Эль-Ниньо с муссонами доказана. С другой стороны он примыкает к Атлантическому океану. А влияет ли Гольфстрим на чередование муссонов? Могут ли обильные снегопады в Европе вызвать засуху в Азии?

В самом деле, удалось установить связь между колебаниями температуры в Северной Атлантике и характером муссонов в Азии. Американские исследователи Дэвид Андерсон и Джонатан Оверпек, а также их индийский коллега Анил Гупта, взяв образцы отложений со дна Аравийского моря, изучили, как менялись муссоны за последние 10 тысяч лет. Чем больше в пробах содержалось раковин определенных микроорганизмов, входящих в состав планктона, тем интенсивнее были муссоны. Ведь популяция этих организмов разрастается в то время, когда сильные муссонные ветры нагоняют воду к африканскому побережью, а к поверхности Аравийского моря пробивается холодное течение, насыщенное питательными веществами.

Анализ отложений показал, что наиболее интенсивными муссоны были в Средние века, с 800 по 1300 год, когда Европа переживала период потепления – «климатический оптимум».

Когда же наступил «малый ледниковый период», продлившийся примерно пять веков, с 1300 по 1800 год, Европу занесло снегами, а муссоны заметно ослабли.

Причиной «малого ледникового периода» в Европе, как предполагают ученые, стало то, что уменьшилось количество тепла, получаемого нашей планетой от Солнца (эта величина периодически меняется). Поэтому ли поутихли муссоны в Азии? Или всему виной был Гольфстрим, поумеривший свой размеренный ход? Ученые продолжают спорить об этом.

Любопытен и анализ отложений оксида железа в Северной Атлантике. Подобные отложения считаются индикатором ледниковых эпох. Но, как выяснилось, всякий раз, когда они возникали, что-то ломалось в механизме климата в далекой Азии – муссоны становились значительно слабее. Ученые выявили семь подобных периодов за последние 80 тысяч лет.

Возможно, полагает японский исследователь Такеси Накагава, в далеком прошлом муссоны служили своего рода барьером, который защитил Азию от ледниковых эпох, смягчая похолодание. Так, анализ образцов почвы показал, что 12 тысяч лет назад, когда остановился Гольфстрим и средняя температура в Европе понизилась на 10°, в Японии изменения климата – вероятно, благодаря муссону – были не такими резкими. Температура стала ниже лишь на 5°.

Итак, когда в Европе становится тепло, муссон приносит обильные дожди в Южную Азию, и, наоборот, когда воцаряются холода, Азия страдает от длительных засух. За последние 40 лет муссоны заметно усилились, ведь, как полагают многие ученые, мы живем сейчас в период глобального потепления.

По мнению климатологов, последствия муссонов в Азии в ближайшие десятилетия будут проявляться особенно остро. Ведь этот феномен обусловлен перепадом температуры между воздушными массами над океаном и континентом, а потому муссоны особенно чувствительны к глобальному потеплению. Например, температура морской воды растет, а, следовательно, все больше воды испаряется. Влажность воздуха повышается, и осадков выпадает все больше. Простая формула. Может быть, слишком простая?

Так, несколько лет назад немецкая исследовательница Кирстен Цикфельд с таким же успехом доказала, что глобальное потепление приведет к тому, что чередование муссонов в Азии прекратится. Вот ход ее рассуждений. С повышением температуры все чаще происходят лесные пожары. В воздух попадает огромное количество пепла и копоти. Небо над Индией будет все больше затянуто облаками. В их тени земля понемногу охлаждается. Кроме того, в Индии продолжают вырубать леса. Если посмотреть на страну из космоса, то обширные темные участки, занимаемые лесом, сменяются светлыми пятнами – пустошами. Раньше эти участки поглощали солнечный свет, теперь отражают его. Индийский субконтинент остывает. Перепад температуры между сушей и Индийским океаном уменьшается, а значит, муссоны ослабевают. По расчетам Цикфельд, когда средняя температура на планете достигнет определенного значения, муссоны прекратятся.

Так что же принесет глобальное потепление странам Южной Азии? Участятся ли здесь наводнения или засухи? Пока, надо признать, из-за недостатка наших знаний о природе муссонов точный прогноз невозможен. В любом случае Индия, страна с населением более миллиарда человек, проиграет от глобального потепления. Местные крестьяне привыкли, что с наступлением летних месяцев небо дарует им благословенный дождь. Но вот всё загадочным образом начинает меняться…

 

XXI век: перезагрузка Северного Ледовитого океана

Каждое лето ученые ожидают очередных сообщений из Арктики о рекордном таянии льда. Арктика находится на передовой глобального потепления. Пожалуй, ни в одном другом уголке планеты оно не проявляется так заметно, как в северных широтах. Если за последние 100 лет средняя температура на Земле выросла на 0,74 °С, то в Арктике этот показатель вдвое выше. К концу XXI века, по прогнозам Международного совета ООН по изменению климата (IPCC),среднее повышение температуры в этом регионе составит от 4 до 7°. Чем обернется потепление для полярных областей Северного полушария? Чего здесь больше для нас, плюсов или минусов?

Итак, арктические льды постепенно тают, открывая и «модернизируя» недоступный прежде океан. По оценке ученых, уже лет через десять почти весь Северный Ледовитый океан к концу лета будет свободен ото льда, а лет через двадцать—тридцать в эту пору его не будет даже на Северном полюсе. Еще не так давно до 90 % океана было покрыто многолетними льдами – теперь лишь 17 %. Очевидно, механизм восстановления многолетних льдов нарушен.

Северный Ледовитый океан кажется нам чем-то незначительным, далеким, «задворками Земли», к которым неинтересно и приглядываться. Но он в пять раз больше Средиземного моря. Площадь, занимаемая им, – 14,7 миллиона квадратных километров – сравнима с территорией России, которую он омывает или, точнее, «омораживает». Теперь это белое пятно на карте мира начинает переливаться всеми красками, которые обычно принимает изменчивая, как Протей, вода.

Для многих обитателей полярного региона эта тенденция сулит худшие времена – например, для белых медведей. Биологи опасаются, что крупнейшие хищники нашей планеты, и так уже ставшие редкими – их численность оценивается в 25—30 тысяч особей, – вымрут, поскольку привычная область их обитания исчезнет.

Для людей же появление старого «нового» океана, пусть и в летний сезон, открывает очень заманчивые перспективы. Там, где бескрайним щитом простиралась вода мертвая, замерзшая, будет плескаться вода живая. Вместо белого безмолвия нас ждет оживленный грохот кораблей. Изменятся торговые пути, станут доступны «кладовые» полезных ископаемых. Начнется процветание региона, который тысячелетиями был отрезан от главной сцены театра, где вершились судьбы человечества. Региона, который, как пресловутый «чемодан без ручки», сохраняли владевшие им Россия, Канада. Теперь нам воздастся сторицей за это упорство. Эта бросовая земля и вода могут стать одной из опор нашей экономики.

Таяние арктических льдов

Большинство специалистов сходится в том, что одно из главных преимуществ, которое дает таяние Арктики, – это открытие Северного морского пути, водного пути, связывающего Россию и ЕС – с Восточной Азией. Этот транзитный маршрут, огибающий северные области нашей страны, столетиями манил энтузиастов. Эти шесть с половиной тысяч километров – кратчайшая линия, соединяющая два важнейших региона планеты.

Потепление, наблюдающееся в Арктике, приведет к тому, что Северный морской путь будет свободен ото льда более четырех месяцев в году. По оценке Федерального агентства морского и речного транспорта России, ежегодный объем перевозок по этому маршруту к 2020 году достигнет 50 миллионов тонн, то есть возрастет примерно в 25 раз. Возможности, открывающиеся перед нами, чрезвычайно велики.

Речь идет, прежде всего, о транзите в Европу товаров массового производства, изготовленных в Китае, Корее, Японии. Пока грузовые суда, направляющиеся из Азии в Европу, вынуждены совершать длительное путешествие, минуя Индийский океан, Красное море и Суэцкий канал. Северный морской путь значительно короче. Если сейчас грузовое судно выйдет, например, из корейского порта Ульсан в Роттердам, ему предстоит пройти 11 тысяч морских миль. Если же оно совершит плавание вдоль берегов России, то длина пути окажется на 3000 морских миль меньше, что составляет примерно 5500 километров. Экономия времени, топлива и в конечном счете денег очевидна.

Впрочем, эксперты предостерегают от эйфории. Пройдет несколько десятилетий, прежде чем Северный морской путь будет свободен ото льда на протяжении многих недель. Пока же дорога открывается лишь на короткое время, и плыть приходится в сопровождении ледоколов. Так что коммерческое использование Северного морского пути, а именно регулярная доставка по нему крупных партий товаров в течение длительного времени, – вопрос отнюдь не ближайшего будущего. Кроме того, вдоль морского пути предстоит оборудовать системы электронной навигации и современные радиолокационные установки, а также терминалы для перегрузки нефти и сжиженного природного газа.

И все же, как бы ни велики были хлопоты, потепление на Крайнем Севере очень выгодно для России. Оно даст новый импульс развития городам, из которых десятилетия назад, кажется, ушла жизнь. Возьмем, например, Мурманск. В 1980-х годах это был процветающий портовый город с населением численностью 400 тысяч человек. Время реформ обернулось упадком. В 90-х годах население Мурманска сокращалось в среднем на 10 тысяч человек в год. Однако в ушедшем десятилетии отношение к нему изменилось, как и вообще к полярным областям России.

Освоение Крайнего Севера становится все более насущной экономической задачей для нашей страны. Этот регион изобилует полезными ископаемыми. Огромные месторождения нефти и природного газа залегают на дне Северного Ледовитого океана или вдоль его побережья.

По оценке Геологической службы США, объем не открытых пока запасов арктической нефти – 90 миллиардов баррелей. Это – 13 % всей нефти, которую еще предстоит открыть (занятно, конечно, как можно с такой точностью подсчитывать не найденные пока месторождения!). Еще значительнее запасы природного газа. Они составляют, по оценке экспертов, 50 миллиардов кубометров. В пересчете на нефть можно сказать, что запасы газа в три раза превышают объем нефтяных месторождений.

Большая часть предполагаемых месторождений лежит на материковом шельфе, то есть сравнительно близко от побережья той или иной страны. В то же время в окрестностях Северного полюса, за обладание которым развернулась целая «полярная война», нефти и газа практически нет. Если прогнозы ученых верны, то любой конфликт между странами, лежащими на побережье Северного Ледовитого океана, бессмыслен. С геологической точки зрения все они – страны-победительницы.

…Крайний Север просыпается от долгого сна. Современная экономика открывает едва ли не последние возможности своего экстенсивного развития – захватывает просторы Арктики. Перед «странами-победительницами» Природы брезжат радужные перспективы. Новые транспортные пути. Новые сферы хозяйственной деятельности. Новые запасы углеводородного сырья. В проигрыше остаются, прежде всего, экологи, которые давно предупреждают нас о том, что в погоне за прибылью мы готовы уничтожить уникальный природный мир, существовавший миллионы лет. Мы так хозяйничаем в кладовой природы, что она скоропостижно меняется на наших глазах. Капля нефти все перевешивает. На другой чаше весов – и целого мира мало!