Тайны открытий XX века

Волков Александр Викторович

3.6. БОТАНИКА ТРЕБУЕТ ТОЧНОСТИ

 

 

Исследования последних лет показывают, что царство флоры от царства фауны вовсе не отделяет непроходимая пропасть. Во многом растения близки животным, разве что не вольны двигаться.

«Здесь темный дуб и ясень изумрудный, а там лазури тающая нежность…»

«Как серебристый дремлет лист, как тень черна прибрежных ив…»

«Как здесь свежо под липою густою, полдневный зной сюда не проникал, и тысячи висящих надо мною качаются душистых опахал…»

В садах и лесах бродила муза русской поэзии. Из листьев и цветов сплетала день ото дня венки. Памятником ей все еще шелестят добрые старые соловьиные сады. «Цветущих лет цветущее наследство!» (А.А. Фет)

Те же сады и леса столетиями кустились в «Системах природы» и «Философиях ботаники». Те же в них колосились луга и поля.

Долгое время ботаника была прикладной наукой. Занятия ею сводились к описанию и классификации растений, к изучению их полезных свойств. Козалось, потомки Линнея недалеко от него ушли. Деревья, цветы, папоротники…

Их считали и перечисляли, словно коллекцию неживых предметов. Или — другое поле деятельности ботаников — опытная делянка селекционеров, на которой вырастали все новые сорта ржи или пшеницы. Лишь в последние десятилетия положение в ботанической науке начало меняться. Все больше исследователей стали обращать внимание на физиологию растений и даже их поведение. Методы точных наук стали практическим средством изучения внутренней жизни растений. Оказалось, что царство флоры от царства фауны вовсе не отделяет непроходимая пропасть. Во многом растения близки животным, разве что не вольны двигаться. Впрочем, некоторые растения даже наделены достаточно мощным «мышечным аппаратом».

Один из старинных ботанических трактатов

 

Генетика растений

В лесах и полях еще много тайн, недоступных глазу. Разгадать их можно, лишь изучая растения на клеточном и генетическом уровне, чем все больше занимаются ботаники, предпочитая приятному пейзажу окуляр микроскопа. Вот некоторые вести из лабораторий, где ботаника-натуралиста теперь встретишь чаще, чем на природе.

Фрагмент из старинного ботанического трактата

В 2003 году большой интерес вызвала работа Энрико Коэна из британского John Innes Centre. Он создал компьютерную модель, показывающую развитие различных частей растения. На ее примере видно, как тесно связаны друг с другом клетки растения. Как только одни клетки начинают расти быстрее других, клеточный конгломерат поворачивается. Процесс его роста определяется тремя основными параметрами: скоростью, то есть временем, что проходит между двумя делениями клеток; анизотропией — наличием оси, вдоль которой преимущественно развивается растение; а также углом, под которым располагаются клетки в момент своего деления относительно воображаемой оси координат. От соотношения этих параметров зависит, в какую сторону вытягивается клеточная структура.

Вот, например, асимметричные цветки львиного зева. Раньше считалось, что асимметрия возникает, когда у какой-либо структуры растения есть одна определенная зона роста. В ней и происходит бурное деление клеток. Однако модель Коэна показывает, что делятся все клетки этой структуры. Только некий химический сигнал — его, по-видимому, подают гормоны или медиаторы, — заставляет новые клетки расположиться асимметрично. Растение обретает свою форму.

Кстати, у животных направление роста клеток тоже указывают химические сигналы. Свидетельством тому — опыты с мухой дрозофилой.

Немецкий ботаник Мартин Хюльскамп показал, как «переговариваются» клетки растения в процессе его роста. Его работа была посвящена образованию волосков на листьях Arabidopsis thaliana. Подобный процесс предполагает четкую координацию клеточных циклов. Достигается она за счет разных транскрибирующих факторов, которые руководят считыванием генов. Одни из таких факторов проявляют себя как активаторы, а другие как ингибиторы — они «тормозят» данный процесс. Как только активаторов становится слишком много, тут же растет число ингибиторов и наоборот. Благодаря этим постоянным колебаниям различные части растения формируются согласованно.

Как интересно! Геном человека, протеом человека, «найден ген лености», «найден ген добродушия»… В последние десятилетия ученые только и перетряхивали наше родовое достояние — набор генов — в поисках причин и следствий «человеческого, слишком человеческого». Homo sapiens стал фигурой более прозрачной, чем прежде, но так и не объяснен до конца. Успехи генетиков, особенно поначалу, привлекали пристальное внимание публики. Ботаники, изучающие генетику растений, не избалованы вниманием, но это не умаляет их достижений. Результаты они получают любопытные.

Вот грядка капусты на даче: кочанчики, тянущиеся в ряд. Чем не научная тайна? Род Brassica, капуста, включает 35 видов. Одни из них опыляют себя сами, а другие — перекрестноопыляемые. Почему так? Как оказалось, мешают процессу самоопыления два гена. Первый отвечает за формирование белковых молекул, расположенных на поверхности завязи, а второй — за синтез коротких пептидов в оболочке зерен пыльцы. Имеется много вариантов той и другой молекулы. Реагируют друг с другом они только в том случае, если принадлежат одному и тому же растению. Продукт их реакции препятствует оплодотворению семяпочки. Самоопыления не происходит. Однако в результате мутации одна из этих двух молекул может измениться. Тогда между ними не произойдет никакой реакции. Растение само опылит себя. Итак, процесс самоопыления обусловлен дефектом одного из двух генов.

В опытах Джун Нашралла из Корнеллского университета дефектный ген заменялся обычным. Растение вновь становилось способным к перекрестному опылению. Как известно, этот вид опыления имеет преимущество перед самоопылением; он приводит к новым комбинациям признаков у дочернего организма. Значит, принцип опыления растения можно изменить; нужно лишь подкорректировать один из генов.

Растения, как и мы, люди, могут приобретать иммунитет. Например, если часть растения, пораженная вредителем, отомрет, а само оно выживет, то, встретив других вредителей, будет активнее сопротивляться им. Крис Л амб из John Innes Centre определил, какая именно белковая молекула отвечает за приобретенный иммунитет. По всей видимости, та самая, что отвечает за перенос жиров и жиросодержаших веществ в тканях растений. Лямб полагает, что этот же белок прицепляет к себе сигнальную молекулу и доставляет ее в отдаленные части растения. Ее сигнал вызывает иммунную реакцию.

Немецкая исследовательница Доротея Бартельс отыскала ген, который помогает растениям переносить жажду. Начиналось все с наблюдения за Craterostigma plantagineum из Южной Африки. В дни засухи это растение может потерять до 95 процентов воды и впадает в спячку; его обмен веществ сокращается почти до нуля. Все дело в определенном гене. По его команде синтезируется альдегид-дегидрогеназа. Она нейтрализует ядовитые вещества, возникающие в тканях растения, когда то страдает из-за жажды. Возможно, подобным геном удастся «оснастить» новые сорта сои, кукурузы и пшеницы, чтобы выращивать зерновые и бобовые в засушливых районах планеты.

Эта работа очень своевременна. По прогнозу, через 20 лет уже около трети населения Земли будет проживать в пустынных и полупустынных районах. В основном это — жители «третьего» мира, которые кормятся дарами своих полей. Для спасения их от голода крайне важно вывести новые, устойчивые к засухе сорта растений.

 

Поведение растений

Еще одна область исследований — «поведение растений». Первым стал осмыслять его Чарлз Дарвин. Его внимание привлекла венерина мухоловка. Она произрастает в США, в торфяниках Северной и Южной Каролины. Дарвин назвал ее «самым удивительным растением на свете». У нее круглые, мясистые листья, разделенные на две половинки; их запах приманивает насекомых. По краям они усеяны длинными зубцами, неуловимо напоминающими зубы акулы. Правда, мухоловка не перекусывает ими свои жертвы. Она ловит их, захлопывая листья, как половинки капкана. Зубцы сходятся, и насекомое попадает в клетку. Это случается всякий раз, как только муха коснется одного из чувствительных волосков, имеющихся на каждом листе. Теперь, сколько бы ни дергалась цокотуха, пробуя вырваться из капкана, ей это не удастся. Зубцы лишь крепче сожмутся. Наконец из желез, расположенных на поверхности листа, выделится пищеварительный сок. Насекомое погибнет. Спустя 5 — 12 дней ловушка приоткроется, и растение выбросит несъеденные остатки животного.

Венерина мухоловка реагирует на появление жертвы очень быстро. Стоит дотронуться до волоска, и через 0,3 секунды ловушка захлопнется. Если бы растение медлило, добыча ускользала бы от него. Дарвин сделал вывод, что молниеносное движение листьев обладает «всеми признаками животного рефлекса», но у него не было нужных приборов, чтобы объяснить свои наблюдения «на языке науки». Тогда он обратился к одному из самых знаменитых физиологов викторианской эпохи: Джону Бердону-Сандерсону. На протяжении пятнадцати лет тот исследовал венерины мухоловки. Сомнений не оставалось: в ткани растений возникают электрические импульсы. Однако опыты Бердона-Сандерсона, как и выводы Дарвина, были надолго забыты.

Лишь в конце XX века ученые вспомнили о них. Опыты, проведенные в последние годы, показывают, что электрические импульсы заменяют растениям нервные рефлексы. Вместо нервной системы, присущей животным и человеку, растения обладают особой «электрической системой», позволяющей им реагировать на внешние раздражители.

Вот еще одно приметное растение — мимоза стыдливая. Она реагирует на любые раздражители. Все смущает ее: прикосновение человека, грохот проезжающего поезда, топот коров. Даже ветер и дождь заставляют листья мимозы смыкаться. Ее поведение давно занимало ученых. Поколения ботаников пытались понять, где прячутся «глаза и мозг» мимозы. Постепенно выяснилось, что листья растения движутся благодаря особым «суставам». Одни из них соединяют части перистого листа, другие скрепляют его черешок с веткой. Эти суставы состоят из так называемой «моторной ткани», выстланной клетками с очень тонкими стенками. Вот что происходит, когда кто-то касается листа.

Из клеток тут же выделяются отрицательно заряженные ионы хлора, зато ионы калия с положительным зарядом просачиваются внутрь клеток. Осмотический потенциал клеток падает. Вода начинает вытекать из них, и потому внутриклеточное давление снижается. Вот итог этой цепочки перемещений и перепадов: лист складывается. Но где же «нервные волокна», управляющие этим процессом? Как передаются сигналы?

Ученые долго искали потайную систему «нервов». В конце концов выяснилось, что электрическое возбуждение передается вдоль волокон, обычно питающих листья водой и минеральными веществами. Снаружи эти волокна облицованы мириадами отмерших клеток. Точно так же любой электропровод оплетен толстым изолирующим слоем. Если бы не этот слой мертвых клеток, электрический импульс беспрепятственно передавался бы во все стороны, к другим тканям растения. А так получился вполне приличный кабель!

Любопытно, что у растений, инфицированных вирусом, как и у человека, слегка повышается температура. Так, исследователи из Гентского университета обнаружили, что на участках листьев табака, пораженных вирусом табачной мозаики, температура повышалась на 0,3—0,4°. Этот рост температуры наблюдался за несколько часов до видимых симптомов поражения. Подобное открытие поможет ускорить селекцию растений, устойчивых к действию вирусов.

Есть у растений и свои «мышцы». Известно, что листья и цветки часто поворачиваются к Солнцу, жадно впитывая свет. Не дремлют листья и ночью, исподволь меняя свое положение. Каждое утро растение встречает Солнце, помахивая под ветром листвой, обращенной на восток.

Даже хлоропласты — крохотные органоиды, спрятанные в клетках растений и занятые фотосинтезом, — постоянно пребывают в движении, улавливая, откуда падают солнечные лучи. Когда свет очень слаб, хлоропласты, чтобы не «расплескать»

эти жалкие крохи, располагаются под прямым утлом к падающим лучам. При ярком освещении они прячутся по боковым стенкам клеток, ведь света и так вдоволь. А что ими движет — не световые же лучи их отталкивают? Роль мышц в растительном мире играют актиновые волокна. Они способны сокращаться и этим своим талантом пользуются изо дня в день.

Впрочем, мышцы и суставы растений все же слабы, чтобы защитить их от зверья. Миллионы лет две армии — флоры и фауны — ведут нескончаемую битву. Оружие одних — губы, зубы, желудки и языки, слизывающие, схватывающие, сметающие, съедающие все на пути. Надежда других обращена к шипам, колючкам, стрекалам, ядам, заготовленным для обороны. Оружие одних — сила. Надежда других — хитрость.

 

Систематика растений

В царстве флоры ждут не только генетиков и этологов. Ботаникам старой формации тоже есть чем заняться. Мы ведь до сих пор точно не знаем численность растений на нашей планете. В 2002 году журнал «Plant Talk» сообщил удивительную новость, которая, впрочем, осталась незамеченной: на Земле насчитывается примерно 422 тысячи цветковых растений, что на треть больше, чем считалось прежде. К такому выводу пришел ботаник Дэвид Бромуэлл. Сперва он посчитал все виды растений, которые встречаются в нескольких районах планеты. К этой сумме приплюсовал эндемичные виды растений, то есть те, что произрастают в отдельных, четко ограниченных географических регионах, например, на островах или в горных долинах.

«До сих пор все подсчеты растений велись ненадежными методами, — полагает Бромуэлл. — Оказывается, их царство больше, чем мы думали. Теперь важно классифицировать все виды растений, пока не поздно». Многие растения гибнут, потому что человек и в царстве флоры, как и в царстве фауны, ведет себя словно опасный хищник. Сейчас в Красную книгу включены 31 тысяча видов исчезающих растений. По оценке Бромуэлла, положение еще страшнее: почти 100 тысяч видов растений находятся под угрозой вымирания.

В тропических лесах Перу, Боливии и Эквадора деревьям угрожает неожиданная напасть — лианы. Количество их за последние 20 лет почти удвоилось. Естественное равновесие лесной экосистемы нарушено. Лианы обвивают стволы деревьев и буквально душат их, мешая им расти и выпускать новые побеги.

Лес вообще — исчезающая экосистема. По прогнозу Всемирного института ресурсов, в ближайшие 10 — 20 лет будет вырублено до сорока процентов лесов на нашей планете. Леса вырубают, чтобы проложить новые дороги или расширить добычу полезных ископаемых, но прежде всего их рубят на продажу. Все на продажу!

Особенно тревожно положение в России. Три четверти лесных массивов в нашей стране подвергаются хищнической, часто необоснованной вырубке. Кто из нас в последние годы, отправившись в поход куда-нибудь в глухомань, в леса Карелии или средней полосы, не набредал на обширные пустоши, где черт ногу сломит от рытвин, сучьев, бревен, лежащих на каждом шагу? Что за мамай здесь прошел? Лес заготавливали. Темнеет брошенный, мертвый лес под дождем. Мрачнеет любой очарованный странник, будто на разгромленном кладбище побывал.

Тем же тупиковым путем идут на других континентах. Никто не контролирует вырубку лесов в Индонезии и Центральной Африке. В Амазонии леса сведены уже на территории, примерно равной по площади Сицилии. В Северной Америке более 90 процентов уцелевших лесов находятся в Канаде и на Аляске. Куда подался бы куперовский Натаниэль Бумпо, восклицавший: «Отпустите меня в леса, на холмы, где я привык дышать чистым воздухом»? Теперь леса сводятся до положения островков посреди человеческого моря.

Как плохо мы знаем растения! Как плохо мы относимся к ним!