Эволюция для всех, или Путь кентавра

Гангнус Александр Александрович

Часть первая. ЖИЗНЬ ТАЙНАЯ

 

 

ГЛАВА ПЕРВАЯ

О зарождении жизни и о том, почему такое могло случиться лишь однажды

 

«ВСЕ ЖИВОЕ — ИЗ ЯЙЦА!»

Ты вышел ранней весной на берег пруда. Квакают и поют лягушки — этот концерт означает, что лягушки мечут икру. Можно подойти, взять пышный, как пена, комок прозрачно-сероватой икры, поглядеть на черные точки — зародыши головастиков (не зашевелились уже?) и быстро опустить икру обратно в воду, пока она не высохла, пока не прервалась по твоей вине новая жизнь.

Все просто и ясно? А ведь всего несколько веков назад очень многие умные люди и даже специалисты-зоологи думали, что лягушки, утри, крокодилы, черви заводятся просто из грязи и ила. Это называлось самозарождением. Вот что говорил, например, один из героев драмы Шекспира «Антоний и Клеопатра» (место действия — Африка): «Здешние земноводные рождаются из ила благодаря действию Солнца, как, например, крокодилы».

А один видный врач XVII века предлагает в своем солидном трактате каждому провести несложный опыт: «Возьмите кувшин, набейте туда грязного, желательно потного белья, засыпьте сверху пшеницей, подождите три недельки… А на двадцать первый день приходите любоваться выдающимся результатом вашего опыта — соединение нижнего белья и пшеницы породило… мышей, причем обоих полов и уже вполне взрослых!»

Список подобных несуразных, на наш нынешний взгляд, «опытов» и «наблюдений» может занять очень много места. Наверное, не надо и объяснять, в чем была главная ошибка этих «опытов». Впрочем, объясню: опыты не были чистыми, кувшин, например, не догадывались… закрыть!

Самое важное для нас другое: наивные сказки о самозарождении живого из неживого не вызывали сомнений потому, что никакого понятия об эволюции, долгом развитии животных и растений тогда вообще не было. А воспринимать как репортажи с места событий поэтичные сказания и священные тексты о том, как боги или Бог творили всех тварей по паре, уже не получалось. Выход, казалось, был только один — признать самозарождение, поверить в него и подогнать под эту веру наблюдения и опыты, тем более что техника опытов была тогда еще очень несовершенной, примитивной.

Но шло время, наука развивалась, и появились сомнения в столь легком самозарождении. Великий английский врач и физиолог XVII века Вильям Гарвей, тщательно изучив великое множество зародышей разных животных, провозгласил совершенно новый принцип биологии: «Все живое — из яйца!»

Конечно, это правило нельзя назвать настоящим законом: из яйца, в обычном смысле этого слова, выводятся только многоклеточные животные. Растения, а также еще неизвестные в те времена одноклеточные микроскопические существа размножаются иначе. Но для того времени даже такой неполный закон был очень важен.

Великий врач XVII века Ф. Реди решил довести до конца опыт, который поневоле ставили тысячи людей и который веками поддерживал поверье о самозарождении живых тварей. Все знали, что если оставить на воздухе мясо, то в нем очень просто заводятся черви. Реди положил мясо змеи в открытый сосуд и стал ждать. Через несколько дней в портящемся мясе стали копошиться червячки, пожирая его. На этом раньше все опыты заканчивались, но Реди догадался не спешить… И вот…

«…Когда все мясо было съедено, черви начали энергично искать выход, но я закрыл все отверстия. На девятнадцатый день того же месяца некоторые червячки совсем перестали двигаться, как если бы они уснули, начали сморщиваться и постепенно принимать форму, напоминающую яйцо… Я отложил эти шары отдельно в стеклянные сосуды, тщательно прикрыл их бумагой, и к концу восьмого дня из каждого шара вышла муха…»

Значит, черви в мясе, которых видели миллионы людей, были всего лишь личинками мух! Конечно, можно было удовлетвориться этим открытием, гипотеза самозарождения как будто не очень страдала. Ну, не черви, личинки, но в мясе-то они появляются сами по себе…

Глядя на вылетающих из сосуда мух, Реди задумался. Да, можно и так объяснить явление, и это всех ученых, привыкших к идее самозарождения, вполне устроит. Но мухи… они же летают и очень любят садиться на мясо. Реди вспомнил и известное к этому времени высказывание Гарвея. Что, если мухи откладывают в мясо яйца, только такие мелкие, что глаз их не видит?

И вот ставится опыт, который и сейчас ученые считают образцом настоящего, чистого научного эксперимента.

Реди берет два кусочка свежего мяса, один из них заворачивает в плотную ткань и кладет в банку, прикрытую сверху точно такой же туго натянутой тканью.

Другой кусок мяса он положил незавернутым в открытую банку. Через некоторое время оба куска мяса стали портиться, гнить, но в завернутом куске мяса личинки мух не завелись, а в незавернутом — завелись! При этом на поверхности ткани, прикрывающей первую банку, Реди разглядел точки — мушиные яйца, из которых так и не смогли вывестись личинки.

Так было совершено одно из величайших открытий… Ты скажешь, трудно поверить, ведь все так просто, ребенок мог это сделать. Да, мог. Но для этого надо было сначала усомниться в своем знании и даже в знании авторитетов — крупных ученых.

А на это способен далеко не всякий.

 

ВСЕ ЖИВОЕ — ИЗ ЖИВОГО

Ну, а дальше?

Была ли сразу забыта и сдана в архив теория самозарождения жизни?

Нет! Очень скоро после открытия Реди, в конце XVII века, был изобретен микроскоп, и перед учеными открылся неведомый и необъятный мир «микрозверьков», размножающихся без яйца: инфузорий и микробов. Микроорганизмы кишели всюду, куда ни обращался вооруженный новым прибором глаз исследователя. И снова замелькали в научных изданиях описания «достоверных опытов», во время которых микроорганизмы появлялись «сами по себе» в самых разных сиропах, бульонах и настоях. Снова разгорелись споры сторонников и противников учения о самозарождении живого из неживого.

В середине XVIII века опубликовал результаты своих опытов знаменитый натуралист и священник Дж. Нидхем. Опыты как будто говорили: вскоре после кипячения (убивающего микроорганизмы) в любом питательном растворе, даже плотно прикрытом пробкой, неизбежно появляются микробы.

В ответ итальянский натуралист Л. Спалланцани повторил опыт Нидхема, но закупорил колбу с настоем не после кипячения (как это делал Нидхем), а до него. И микроорганизмов не появилось! Нидхем упрекнул Спалланцани в «пытке», которую тот учинил над несчастным раствором слишком долгим кипячением. Кипячение лишает раствор ростовой силы, говорил Нидхем. В таинственную ростовую, или производящую, или жизненную, силу верили многие ученые. Она-то и должна была, по мнению Нидхема, сформировать из неживой материи новых микробов.

В начале прошлого века немецкий натуралист Лоренц Окен, исправив Гарвея, провозгласил новое правило биологической науки: «Все живое — из живого!» Но далеко не все признали истинность нового правила, с Океном спорили, его даже высмеивали.

Отголоски этого спора прозвучали в XIX веке. Главными лицами в том споре были талантливый французский биолог Пуше и его знаменитый соотечественник Луи Пастер. Свойства микробов, способы их размножения были изучены еще плохо, и это позволяло Пуше придумывать такие доводы, которые оспаривали чистоту опытов Пастера. Но Пастер решил довести дело до конца. В каждом следующем из своих блестяще поставленных опытов он учитывал все возражения. И убедил, наконец, последних из своих противников; научный мир признал принцип «все живое — из живого».

Между прочим, на стороне Пуше против Пастера очень резко выступил знаменитый русский критик, публицист, демократ и материалист Писарев. Писарев не был биологом, но очень хорошо знал состояние этой науки, что же заставило его выступить за идею самозарождения?

Да, в общем, как будто верная философская, «материалистическая» идея. Если жизнь не сотворена по воле Бога, значит, она должна была иметь начало, и, следовательно, самозарождение из неживого обязательно было.

И после этого Писарев и очень многие ученые, верившие в самозарождение, делали вывод: значит, жизнь может самозарождаться и сейчас, на наших глазах.

Но именно этот вывод опыты Пастера окончательно разбивали. Снова становилась сомнительной вся идея рождения живого из неживого, и Писареву казалось, что прокладывается новый путь для старой идеи божественного творения.

Конечно, мысль о новом возвращении к идее божественного творения уже мало кого из ученых вдохновляла — ведь она делала ненужной науку. От ученых требовали хоть какого-нибудь ответа на вопрос: откуда на Земле появилась жизнь? И они нашли такой ответ, обойдясь и без самозарождения, и без акта творения! Вселенная, ее материя, ее атомы — вечны. А раз так, почему не могут быть вечными в этой Вселенной жизнь и «атомы живого» — микроорганизмы, споры-зародыши которых переносятся каким-то способом с планеты на планету и везде дают начало новой, впрочем, тогда уж не совсем новой, а бесконечно старой жизни Вселенной?

И вот появилась теория панспермии — живых пылинок, переносимых давлением солнечного света в головах и хвостах комет от планеты к планете, от звезды к звезде. Эту теорию поддерживали знаменитые физики Гельмгольц, Кельвин, Сванте Аррениус, а из российских ученых, например, Вернадский.

Сванте Аррениус особенно страстно выступал за теорию панспермии. Были проведены опыты, доказывающие большую устойчивость спор — зародышей бактерий, водорослей и грибов — к холоду и вакууму межпланетного пространства.

 

ВСЕ ТРУДИЛИСЬ ХОРОШО

Гипотеза панспермии жива по сей день. Хотя теперь она выглядит не совсем так, как в начале XX века. Прежде всего оказалось, что жизнь не могла быть вечной. В последнее время астрономы, геологи и физики установили, что и окрестности нашего Солнца, и весь видимый с Земли космос незадолго до рождения планеты были очень горячими. Такими горячими, что никакая прежняя жизнь, если она была, не выдержала бы — погибла.

Жизнь не могла быть вечной и потому, что, как оказалось, не вечны даже атомы. Когда была открыта радиоактивность некоторых химических элементов, ученые сразу попытались использовать распад атомов этих элементов, идущий со строго постоянной скоростью, как своего рода часы. И вот оказалось, что со дня синтеза самых долгоживущих элементов прошло около десяти миллиардов лет — химические элементы рождались вместе с горячей Вселенной. Значит, если не на Земле, то в космосе жизнь не могла когда-то не появиться хотя бы один раз впервые.

В 1910 году физик Поль Беккерель обратил внимание сторонников теории космических зародышей на то, что споры-путешественницы должны выдерживать не только холод, не только вакуум, а еще и различные опасные излучения Солнца и других звезд. Он поставил опыты. Выяснилось, что самые живучие в вакууме и холоде споры не выдерживают, гибнут, если облучать их невидимыми волнами той части спектра радуги, что находится дальше фиолетового конца. Короткие ультрафиолетовые лучи убивали живые пылинки!

Нынешние сторонники гипотезы панспермии указывают, что зародыши живого могут переноситься и сохраняться в глубине космических обломков, под защитой от излучения. Американский астрофизик Ф. Хойл считает, что космическая жизнь может сохраняться, транспортироваться и даже частично развиваться на… кометах, этих поистине загадочных телах, играющих роль своеобразных посредников, связующего звена между миром планетной системы и большим космосом, межзвездными просторами. Подлетая к звезде, комета разогревается, из ее «головы» начинают с большой скоростью течь струи газа, в котором ученые действительно обнаруживают множество органических веществ. У кометы вырастает «хвост», которым она то и дело задевает атмосферы планет. Чуждая жизнь вторгается при этом на планеты, пускает «ростки» при благоприятных условиях, ростки новой жизни, а вернее, новые ростки жизни старой. Фред Хойл считает, что недаром древние так боялись комет, считая их предвестниками всяческих несчастий. В некоторых случаях после пролета кометы мимо Земли действительно могли начаться необычайно сильные эпидемии, вызванные какой-нибудь формой микроорганизмов, долго эволюционировавших в космосе, а потому незнакомых, особо опасных для иммунных, защитных систем земных существ. В метеоритах (а многие из них — это осколки комет) уже в эпоху электронных микроскопов находят окаменевшие структуры, похожие на самые первые живые организмы Земли типа бактерий. И их там много, это целые фоссилизованные, то есть окаменевшие, колонии, прикрытые общей оболочкой, как бы окаменевшей слизью. Мой старый знакомый, палеонтолог А. Ю. Розанов считает, что это цианобактерии (для палеоботаника они носят название сине-зеленых водорослей) — те самые, с которых началась жизнь на Земле, и даже называет их по их латинским наименованиям. Когда-то цианобактерии, сине-зеленые, были одной из первых «империй» в мире живого, главной формой жизни на Земле, это они начали более трех миллиардов лет назад с помощью фотосинтеза вырабатывать кислород. Сегодня их более высокоорганизованные потомки, настоящие водоросли и кораллы, вытеснили отовсюду, но не уничтожили совсем. Их покрытые слизью колонии можно встретить в необычных, редких условиях — например, в сверхсоленом озере Сиваш в Крыму или в горячих бассейнах в кальдере вулкана Узон.

В общем, и сейчас в вопросе о том, как в космосе распространена жизнь, есть три мнения. Первое: жизнь есть на многих планетах, у многих звезд, и всюду эта жизнь однотипна, ибо она из одного корня. Такого мнения, кроме Ф. Хойла, придерживается выдающийся английский физик Ф. Крик, разгадавший тайну строения молекулы ДНК, этой основы наследственности.

Другое мнение — жизнь распространена широко, но повсюду она зародилась самостоятельно. И сходство между биосферами разных обитаемых планет, если оно есть, может объясняться только общими закономерностями, управляющими самозарождением и развитием живых организмов.

И наконец, есть такая точка зрения: жизнь могла зародиться лишь однажды, настолько это маловероятное, почти чудесное событие. И наша Земля оказывается единственной, уникальной планетой в целой Вселенной! Тогда жизнь на Земле — это великое чудо, которому буквально нет цены и которое нужно обязательно сберечь. К такому мнению в последние годы жизни пришел, например, видный российский астрофизик И. С. Шкловский, раньше стоявший на второй точке зрения.

Да, по многим важным вопросам ученым не всегда удается прийти к единому мнению. Хорошо это или плохо? Наверное, хорошо. Даже «сражаясь», будучи совершенно несогласными в основных вещах, ученые все-таки делают одно общее дело — они познают для всего человечества мир. Они могут ошибаться, но сами их ошибки неизбежны, это ступени для вечного подъема к истине. Без них не было бы великих догадок и открытий. Для нас, потомков, эти ошибки очень важны, они учат нас жить и работать не меньше, чем высокие достижения. Они нас учат сомневаться, не быть слишком самоуверенными и самодовольными.

Об этом говорил еще Вильям Гарвей, умевший спорить, но умевший и уважать научного противника: «Ни хвалить, ни порицать: все трудились хорошо».

Мне кажется, правы те ученые, которые считают, что жизнь готова возникнуть и закономерно возникает везде, где для этого найдутся подходящие условия. Но не может не захватить и гипотеза Ф. Крика и Ф. Хойла о странствующих зародышах жизни, тем более что в последние годы астрономы открывают в межзвездных просторах огромные облака довольно сложных органических соединений, а в метеоритах уже почти всеми признаны и окаменевшие микроорганизмы, и сложные органические вещества, которые могут быть, конечно, и необходимой ступенькой, «полуфабрикатом» новой жизни, но и остатками прежней космической жизни. Да и мнение И. С. Шкловского об особой уникальности земной жизни, о том, что каждое живое существо — это необычайное чудо, которое надо стараться сохранить, не может не найти в нас, жителях XXI века, обладающих экологическим сознанием, самого живого отклика.

 

ЖИЗНЬ НЕИЗБЕЖНА?

И вообще, споры в науке не решаются большинством голосов. Лет восемьдесят назад правило «живое из живого» было настолько всеми признано, что казалось несовместимым с самой мыслью о происхождении жизни из неживых веществ.

И тогда появился человек, который не побоялся усомниться в том, что казалось всем несомненным.

Правило «живое из живого» не могло иметь силы во времена, когда живого не было!

Тогда действовало другое правило, по которому в растворах древних океанов, морей и озер обязательно должны были накапливаться, взаимодействовать и все более усложняться разные соединения углерода — главного элемента жизни.

Рано или поздно среди этих соединений неизбежно должны были появиться и такие сложные, от коих до нынешних веществ, веществ, из которых мы «сделаны» и благодаря которым мы живы, останется только маленький шаг.

Учение о добиологической, химической эволюции в нашей стране развивал российский ученый Александр Иванович Опарин. Четверть века назад один из его последователей, тогдашний студент американец С. Миллер, провел знаменитый, хотя и необычайно простой опыт.

В запаянную колбу налита вода. Над водой не воздух, а несколько газов, которых много в нынешней атмосфере планеты Юпитер и, как думают некоторые геологи, много было в древней атмосфере Земли. Через стеклянные стенки пропущены проволочки, на которые подается электрический ток. Время от времени между проволочками проскакивает искра. Гроза!

Прямо на глазах вода в колбе желтела и бурела, наполняясь какими-то смолистыми веществами. Когда колбу вскрыли и сделали химический анализ, оказалось, что смолистые комочки — это сложные химические вещества, знакомые биохимикам как важные составные части тканей тел животных и растений, вещества, которые, как прежде думали, могут производиться только живой клеткой.

Открытие С. Миллера прогремело на весь биохимический мир, но вскоре, как это всегда в науке бывает, раздались голоса критиков. Некоторые говорили, что газы, взятые Миллером для опыта, не те. Что на Земле сначала были не водород, метан и аммиак, как на теперешнем Юпитере, а углекислый газ и азот, как и в атмосфере Венеры. Что гроз на молодой Земле могло и не быть и т. д.

Ученые снова взялись за опыты. И тут произошло самое удивительное. Газы в колбе заменили — и получили тот же результат, те же вещества, необходимые для химической эволюции. Вместо электрической искры попробовали другие источники энергии — ультрафиолетовые лучи, сильные удары (как будто падают метеориты), радиоактивность, просто нагревание. И каждый раз, то быстрее, то медленнее, в растворе появлялись все те же вещества. Получалось, что путей, ведущих к началу жизни, много. И что, как бы ни обернулись события на молодой Земле, химическая эволюция не могла не начаться. Как уже было сказано, может быть, она началась еще до рождения Земли — в космосе. Вещества из колбы Миллера находят в метеоритах и в межзвездных облаках… Как писал в начале XIX века дед великого Чарльза Дарвина поэт и ученый Эразм Дарвин:

Так без отца и матери, одни Возникли произвольно в эти дни Живого праха первые комочки.

 

В ОГНЕННОЙ КОЛЫБЕЛИ

…Вулкан ревел, но вдруг этот рев стал глуше. Из черной тучи-джинна, быстро закрывающей небо, пошел густой пепел. Туча сверкала молниями, треск разрядов пытался перекричать рев вулкана. И тут в раскаленном тумане появились люди. Они не бежали от тучи, они шли в самую мглу — в комбинезонах, шлемах и масках. Вот один из них присел и стал быстро черпать из воронки еще горячий пепел, ссыпая его в стеклянный цилиндр…

Евгений Константинович Мархинин, вулканолог, мой старый знакомый, отложил в сторону фотографии.

— Ну и?. — нетерпеливо спросил я.

— Там были все эти соединения. — Он кивнул головой на рисунок, рассказывающий об опытах Миллера. — Мы подсчитали: во время того извержения вулкана Тятя этих веществ было выброшено около ста тысяч тонн. И аминокислоты там тоже были.

Поясню: аминокислоты (а их находили и в метеоритах, и в колбах с «древней атмосферой Земли») — это те вещества, из которых, как цепь из звеньев, состоит молекула основного вещества жизни-белка.

Я опять посмотрел на фотографии извержения вулкана Тятя в 1973 году. Обугленные деревья, пустыня из пепла.

Все-таки удивительно это. Для раскрытия тайны происхождения жизни ученый исследует метеориты или, рискуя собственной жизнью, идет туда, где гибнет все живое. Но ведь это еще не жизнь была. Преджизнь, химическая эволюция… А каждый химик, даже любитель, знает: для сложных химических реакций нужна энергия. Нужны вещества — катализаторы, ускорители реакций. Всего этого в избытке при вулканическом извержении. Основа жизни — углерод. А соединений углерода много в вулканических газах.

Работа Мархинина как бы продолжала опыты американского ученого профессора Сиднея Фокса. Смесь искусственно созданных в колбе аминокислот Фокс запек, как пирог, в печи на поверхности… вулканической лавы. И аминокислоты начали соединяться между собой, образуя цепочки длинных молекул-полимеров, очень похожих на белки. Не так ли все это происходило на молодой Земле, покрытой рычащими, пылающими вулканами и окутанной вулканическими газами вместо воздуха? В огненной колыбели подрастало то, что в дальнейшем должно было стать жизнью.

А что дальше? Допустим, в какой-то момент на Земле среди вулканов появились первые океаны, вода. В одном из опытов профессор Фокс бросил янтарный комочек полученного им похожего на белок полимера в горячую воду, размешал палочкой, остудил, посмотрел в микроскоп. Он увидел, что искусственный «белок» собрался в капельки, внешне похожие на какие-то простые существа типа одноклеточных водорослей или бактерий. Они, конечно, не были живыми, эти капельки, но они вели себя иногда почти как живые. Если в воду капали кислотой или, наоборот, разбавляли ее, капельки реагировали — то росли, то съеживались. Как живые клетки, капельки окружали себя тонкой пленкой — двойной мембраной, через которую химические вещества идут уже не как попало, а с толком. Капелька удаляет одни вещества и собирает из раствора другие, нужные ей для роста, как бы «питаясь». Капельки могут соединяться или делиться — очень похоже на то, как это делают живые клетки. Это было еще не живое существо, а «предживое вещество», модель организма, но она хорошо работала, эта модель, и о многом рассказала. А получена была в химической лаборатории очень несложным способом!

Между прочим, когда профессор Фокс получил свой полимер, похожий на белок, он обнаружил, что бактерии — а их множество в каждом наперстке нынешнего воздуха Земли — не стали «раздумывать», белок это или не белок, а принялись деловито пожирать его, как настоящий. Так же отнеслись к этому веществу и лабораторные крысы. Это значит, что вещества преджизни, появляясь на свет сейчас, в наше время, долго не залежатся. Их моментально съедят.

На молодой же Земле эти вещества никто не ел — некому было, — они накапливались, и это накопление было совершенно необходимо для массы сложных химических реакций, ведущих к первой жизни. Но когда появилась жизнь, появились и прожорливые едоки — скопления веществ преджизни исчезли. Это значит, что жизнь, возникнув однажды, уже больше ни разу возникнуть не может: начинает действовать закон «живое из живого».

Впрочем, если правы те палеонтологи, которые настаивают, что нашли в метеоритах (возраст которых около 4,4 миллиарда лет) и в самых древних породах Земли одни и те же сине-зеленые водоросли, цианобактерии, то вопрос сразу оборачивается другой стороной. В горячих бассейнах на склонах вулканов цианобактерии — первые и часто единственные обитатели, там же они и окаменевают быстро, в течение часов, чтобы без изменений храниться миллиарды лет. Тогда исследования Фокса и Мархинина рассказывают не о том, как зарождалась жизнь на Земле, а о том, как она зарождалась, делала первые шаги в космосе, на вулканах какой-то иной планеты, может быть, в иной, не Солнечной системе. Осколки той планеты и стали метеоритами. А те уже и разнесли зародыши жизни по Вселенной.

 

КЛЕТКА: НАДО ДЕЛИТЬСЯ

Вот дом, который построила ДНК… Да-да, представь себе дом. Ну… кирпичный дом. Это может быть сложный дом — с колоннами, выступами, карнизами, с красивыми стрельчатыми окнами. И вся эта сложность, все это многообразие составлено из простых глиняных кирпичей, только уложенных в разном порядке.

Иногда с кирпичом сравнивают живую клетку. Из клеток состоим мы с тобой, тела всех животных и растений. И под микроскопом при небольшом увеличении живая ткань немного напоминает кирпичную кладку — ряды клеток образуют и кожу, и стенки внутренних органов, и мышцы, и нервную ткань, и мозг.

Теперь представим себе, что в гости к строителям как-то раз является волшебник. И говорит: зачем вы ставите подъемные краны, строительные леса, кладете кирпич к кирпичу? Вот как надо! И волшебник берет кирпич, сажает его в землю, как семечко, поливает из волшебной своей лейки, и вот из кирпича-семечка растет дом. Этаж за этажом, сами собой из стенок вырастают лестничные клетки, лифтовые шахты, застекляются окна, появляется крыша, а на ней — телевизионная коллективная антенна.

Вот из таких чудо-кирпичей состоит и живое существо. Хороший ботаник-экспериментатор из любой клетки растения, а не только из семечка или почки сможет вырастить целое растение.

Выходит, в клетке есть что-то, какая-то запись, наследственный зачаток организма в целом. К тому же многие животные и растения Земли от рождения до смерти состоят из одной клетки. Похоже на то, что и наши с тобой далекие предки состояли всего из одной клетки, были одноклеточными организмами. Вот почему ученые, изучающие происхождение жизни, считают своей задачей проследить все этапы первичной химической эволюции до образования клетки. Когда появились клетки — это была уже не преджизнь, а жизнь, и она стала развиваться уже по иным законам.

Было время, когда ученые считали клетку чем-то очень простым — комочком слизи, и все. Сейчас известно, что клетка — это целый завод, вырабатывающий по определенной программе нужные вещества, нужные не только самой этой клетке, но и другим клеткам: между клетками-заводами есть разделение труда.

Обязанностей у клеток множество, но мы будем говорить только о двух: о производстве белков и об обязанности самовоспроизводства — клетки делятся. Это деление у одноклеточных существ оказывается и размножением. У многоклеточных животных и растений деление клеток обеспечивает рост отдельных тканей и органов всего организма в целом.

И вот в этих-то двух самых важных производственных клеточных процессах важнейшую роль, оказывается, играют белки и нуклеиновые кислоты.

Разных белков в организме множество, тысячи, это длиннющие нитевидные молекулы, и все они составлены из двадцати одних и тех же бусинок-аминокислот.

Отличаются молекулы разных белков друг от друга только одним — порядком следования бусинок-аминокислот в нитях белковых молекул. Этот порядок следования у настоящего белка определен очень строго, никаких перестановок не допускается, а если перестановка происходит, то получается уже другой белок, в данное время и в данном месте обычно ненужный или даже вредный. Жизнь клетки и организма в целом — это миллионы различных химических реакций, и одна из главных обязанностей белков — ускорение этих химических реакций. Каждый белок (белки-ускорители называют ферментами) в сотни тысяч раз ускоряет какую-то одну нужную в определенный момент и определенном месте реакцию, тут не должно быть никакой путаницы, и поэтому каждая белковая молекула должна быть построена так, как нужно, а не иначе, ведь именно от строения белка зависит, как отнесутся к нему молекулы веществ, вступающих в реакцию.

Вот почему белок — это не просто смесь аминокислот, а своего рода текст, в котором чаще всего нельзя изменить ни буквы.

Есть такая наследственная болезнь — серповидно-клеточная анемия. Это тяжелая болезнь, и она, наверное, давно бы исчезла с лица Земли вместе с теми, кто поражен ею (ведь люди с такой наследственностью раньше умирают и оставляют меньше потомков, чем здоровые), если бы не одно обстоятельство. Больные этой анемией никогда не болеют малярией. Возбудитель малярии питается красными кровяными шариками человека, а у больных анемией не шарики, а серпы, и возбудители их не усваивают! И вот в тропической Африке, где издавна свирепствовала малярия, болеть анемией оказалось в какой-то мере выгодно… Ученые только недавно обнаружили первопричину этой наследственной болезни. Оказалось, что в огромной молекуле белка, входящего в состав кровяных шариков, одна — всего одна! — из 600 бусинок-аминокислот заменена неправильной. Из-за этого вся клетка эритроцита уже «не держит» круглой формы, сворачивается в серп. И вот тяжелейшая болезнь. Трудно составить текст из 600 букв, в котором всего одна замененная буква так искажала бы весь смысл. В то же время этот пример показывает, что ошибки в строении больших биомолекул иногда оказываются хотя бы в каком-то отношении полезными. И это очень важно, без таких полезных ошибок не было бы эволюции!

 

ЗАКОДИРОВАННЫЕ ИНСТРУКЦИИ

А теперь представь себе, что ты взял наугад из наборной кассы наборщика массу букв и все их бросил на стол, и перед тобой совершенно случайно оказался… ну хотя бы заголовок этой книжки. Вероятность такого события совершенно ничтожна, с такой же вероятностью воздух из комнаты может весь выйти в форточку… И когда ты видишь перед собой связный текст, ты не будешь гадать. Ты твердо знаешь, что текст не сам составился из случайно брошенных литер, а его придумал и написал какой-то человек, выражая некую мысль. Значит, и белок в клетке строится не как попало, а его строит некто для какой-то цели по строго определенной программе. Этот «некто», а вернее, нечто, и есть нуклеиновая кислота, точнее, дезоксирибонуклеиновая кислота (ДНК), молекула которой содержит длинный «текст», целый том закодированных «инструкций», как строить тот или иной белок. Этот том секретных инструкций клетка получает по наследству от своих предков и передает его потомкам как семейную святыню, без которой сразу развалится вся семья… Синтез, строительство белковых молекул в клетке — вещь сложная, и не все там понятно по сей день. Но главное ученые все же смогли подсмотреть. Многие участки молекулярного кода ДНК (их называют генами) — это запись строения того или иного белка (зная, какая аминокислота в белке больного анемией заменена, можно найти ошибку в генной записи, из-за которой белок производится с «опечаткой», такие «опечатки» ученые называют мутациями).

Как переносится кодовая запись гена на белковую молекулу? Каждый ген, кусок двойной цепи ДНК, если цепь расплести, обретает «липкость», к нему в этот момент норовят присоединиться определенные молекулярные последовательности. Над генами происходит сборка… Чего, белка? Нет, своеобразной копии гена, но только не ДНК, а РНК — рибонуклеиновой кислоты. Эта молекула-посредник, информационная, она же матричная РНК, точное, но зеркальное отражение гена, появляется в клетке ненадолго. Появившись, она спешит в другое подразделение клеточного «завода» — рибосому. Рибосома состоит из двух полушарий, и конец РНК-депеши закладывается (как это происходит, рассказывать трудно и долго) в одно из этих полушарий — то, что поменьше, как конец магнитной ленты в головку магнитофона.

Теперь рибосома готова к работе. Вокруг нее поднимается большая суета. Молекулы так называемых транспортных РНК начинают «рыскать», каждая в поисках своей аминокислоты. «Рыскание» это происходит вблизи рибосомы, в прозрачной плазме клетки. В этом растворе, если клетка здорова, хорошо питается и дышит, должны быть все необходимые детали-молекулы.

Невероятно странно: молекула «ищет», блуждает, чтобы «найти». Молекула обладает поведением — как живое существо. Как будто у нее своя воля есть или ей кто приказал. Ученые все еще далеки оттого, чтобы понимать со всей отчетливостью, как движутся внутриклеточные частички — органеллы и молекулы внутри клеток, как там отдаются приказы, которые так точно и в срок исполняются. Ну а то, что в срок… Никто пока не может сказать, где в клетке спрятан этот будильник-хронометр, который приводит в действие все «винтики» (ох, до чего неточное слово, но как еще сказать?) этого удивительного «предприятия» — клетки, не видимой простым глазом.

И вот происходит она, встреча. Узнавание. Транспортная РНК находит свою аминокислоту. Она скрепляется с ней. Она тащит ее к рибосоме. А там уже стоит, ждет, изготовившись, лента информационной РНК.

Транспортные РНК разные, но есть в них и общее: каждая похожа на скрепку — на каждой есть особый изгиб, похожий на бородку ключа. А вот узор этой бородки, то есть последовательность химических групп, у каждой транспортной РНК на этом изгибе свой. «Ключ» узнает свой «замок». Бородка «узнает» зеркально-подобный (комплементарный) «узор» на ленте информационной РНК и временно скрепляется с ним.

Как только первая аминокислота оказывается на месте, лента информационной РНК сдвигается «на одно деление» (на один ген), и к ней теперь может подойти следующая транспортная РНК с другой аминокислотой, которая укладывается рядышком с предыдущей. После того как аминокислоты соединились, транспортная РНК высвобождается для новой операции подтаскивания. Долго ли, коротко ли, но вот вся лента информационной РНК «проиграна» через рибосому, аминокислоты выстроены в нужном порядке и химически соединены, а все транспортные РНК отсоединены и отправлены восвояси (на эти соединения и отсоединения требуется энергия, и она все время подводится к месту сборки с помощью специальных молекул — носителей энергии). Есть молекула белка!

Ну что, все просто и ясно? Ты заметил, процесс столь сложен, что мне то и дело приходится употреблять такие слова, как будто в самом деле речь идет о настоящем заводе. Я не буду рассказывать еще подробней, про один процесс синтеза белка можно написать (и написаны) целые книги, здесь важно уяснить следующее: везде, где я говорил о переносе7, подтас-ке, узнавании, соединении, подводе энергии, дело не обходилось… без тех же белков-ферментов! «Завод» клетки в массе производит не только детали своего устройства, но и «работников»!

Долго рассказывать и о том, как происходит второй главнейший процесс живого — самовоспроизведение, деление клетки. Скажу только, что центральный момент этого процесса — это разделение, перепечатка «семейной реликвии-инструкции» — ДНК. Двойная спиральная молекула ДНК вдруг расплетается, и на каждой из двух образовавшихся нитей собирается по второй нити-спирали. И этот процесс самовоспроизведения ДНК не обходится без… опять-таки фермента-белка! Ну а этот белок тоже заранее изготавливается ДНК с помощью рибосом и РНК.

Вот как все сложно в живой клетке. Без ДНК не построишь белка (и РНК!), но без РНК тоже невозможно представить себе синтез белка. А без белка-фермента еще никто не смог добиться репликации (самовоспроизведения) ДНК. Без репликации же нет самовоспроизведения клеток, значит, нет размножения, наследования и роста, основных свойств живого мира. Когда-то это назвали центральной догмой молекулярной биологии и изобразили в виде формулы:

ДНК → РНК → белок

И вот как будто получается, что жизнь могла начаться только с того момента, когда на древней Земле, в «первичных бульонах», где-то в одном месте встретились все три вещества преджизни, пусть даже очень упрощенного устройства, но все три: ДНК, РНК, белок… Путь к каждому из этих веществ и так очень непрост, но чтобы они встретились в одном месте… Многие ученые снова стали подумывать о счастливейшей редкой случайности, вроде той, когда брошенные буквы сами сложились в осмысленные слова.

 

ПОИСКИ ВЫХОДА

В науке так бывает нередко: только начинает казаться, что на горизонте появился просвет, как новый факт или новое рассуждение показывает, что до решения путь еще не близкий. И если я скажу, что теперь ученые уже знают, что появилось раньше — ДНК, РНК или белок — и как могло произойти, что они встретились, да еще «узнали» друг друга (ведь в современной клетке далеко не каждая нуклеиновая кислота не с каждым белком может «найти общий язык»), то заранее попрошу тебя мне не верить. Эта трудная проблема еще далека от своего разрешения, может быть, она подождет, пока ты не станешь биохимиком и не займешься ею всерьез.

Но безвыходных положений не бывает, и сейчас, когда я пишу эти строки, в десятках лабораторий мира ученые нащупывают пути решения этой загадки. Что же именно делается?

Вспомним главные молекулярные превращения в клетке.

ДНК → ДНК (самовоспроизведение, репликация генной записи клетки).

ДНК → РНК (строительство самых простых, транспортных и более сложных информационных рибонуклеиновых кислот над особыми участками цепи ДНК — генами).

РНК → белок (строительство белковой цепи в рибосомах по записи информационной РНК и с помощью «услуг» транспортных РНК).

Кажется, все ясно, в основе всего — ДНК, от нее и следует вести родословную наших предков. Но ни одно из этих трех превращений не идет без белка-фермента, причем для каждого превращения нужен свой особый фермент, а для того — опять-таки особый ген в ДНК и вся процедура с двумя РНК. Заколдованный круг!

Некоторые российские и американские ученые сделали важное открытие, разрывающее этот порочный круг хотя бы в одном месте. Выяснилось, что отдельные гены, звенья ДНК и даже целые молекулы ДНК могут не только собирать (с помощью белка-фермента) РНК, но и, наоборот, собираться сами с помощью молекул РНК — правда, для этого нужен еще один особый фермент. Это потрясающее открытие, о котором мы поговорим в последней главе этой книги: творение новых генов на основе РНК могло бы объяснить некоторые загадочнейшие зигзаги эволюции растений и животных и поможет когда-нибудь человеку победить наследственные болезни и искусственно создать новые, нужные нам виды домашних животных и культурных растений. Здесь же для нас важно то, что неимоверно сложная спираль ДНК могла быть в принципе создана, если в первобытной луже встретились гораздо более простые РНК и белок.

Но может быть, для начала не нужна была и РНК? В нескольких лабораториях мира удалось собрать белковоподобную короткую молекулу антибиотика грамицидина без всяких рибосом и нуклеиновых кислот. Кодом-инструкцией для сборки цепочки грамицидина послужил другой белок. Все это означает, что первые шаги жизни были возможны и без чудесной встречи трех сложнейших молекул. Жизнь, может быть, началась на чисто белковой основе, и только позже ее усовершенствовало появление РНК, а еще позже создание настоящего гена.

 

СОЛЯРИС НА ЗЕМЛЕ

…Вот уже много лет кружит космический корабль землян вокруг планеты Солярис. Понять странные явления, происходящие на планете, пока не удается. Гибнут люди, они не могут найти взаимопонимания с необычайным живым и разумным веществом — океаном планеты Солярис…

Читатель, наверное, узнал сюжет фантастического романа польского писателя Станислава Лема. И фильм такой есть. У нас на Земле все живые существа — отдельно. Тебя не перемешаешь со мной, люди — отдельно даже от обезьян, а от кур и подавно. А вот на Солярисе вся жизнь планеты вместе, она единая, все живое — это океан Солярис, и океан Солярис — это единственный живой организм планеты. А интересно, может такое в самом деле где-нибудь быть?

Всякая фантастика основана на каких-то реальных знаниях. Лем хорошо знал историю споров по поводу проблемы происхождения жизни. Действительно, жизнь без существ, без организмов, возможно, существовала когда-то и на нашей планете. Эта мысль принадлежит выдающемуся англичанину Дж. Берналу, борцу за мир и ученому. «Быть может, никакого точного начала жизни не было вообще, — писал он. — Могли установиться известные циклы, которые были самовоспроизводящимися, то есть молекула А производила молекулу В и так далее, до тех пор, пока молекула Z снова не производила молекулу А. На этой стадии всю среду можно было бы назвать живой в биохимическом смысле, хотя ни единого организма еще не существовало». В сказке Л. Кэрролла Чеширский кот умел исчезать так, чтобы от него оставалась улыбка. Жизнь без организмов, на первый взгляд, напоминает эту симпатичную, но фантастическую улыбку без кота. Но только на первый взгляд…

Да, поначалу жизнь могла быть и такой, и мы не сразу поняли бы, что это жизнь, случись нам где-нибудь в космосе с ней встретиться. Может быть, миллионы лет существовала на нашей планете — или на какой-то другой планете в космосе — такая жизнь, жизнь без организмов. Медленно, не спеша, вершились круги замкнутых химических реакций, множество таких кругов. Но эти по-разному идущие процессы шли не без помех, рядом происходили другие химические процессы, иногда разные реакции — начало одной и конец другой — объединялись и порождали новые вещества, например, такие, которые могли бы стать катализаторами, ускорителями всего этого «кипения» в целом. Об этом медленном усовершенствовании химической, доорганизменной жизни ученые говорят так: путь от химической к биологической эволюции шел через процессы самоупорядочения и самоорганизации.

 

БИОКРИСТАЛЛ

Зима. Мороз градусов 30. Окна в домах, автобусах и троллейбусах покрываются изнутри удивительным узором. Пятьдесят лет наблюдал морозные узоры мудрый профессор из Ульяновска А. А. Любищев. Он был биолог, а точнее — энтомолог, насекомых изучал, но находил время задумываться об интересных явлениях природы, даже если они на первый взгляд и не имели отношения к его основной профессии.

Вглядись и ты в эти узоры…

Вот тропический лес. Деревья с пышными кронами, похожие то на пальмы, то на папоротники. Лианы, переплетение ветвей. Можно разглядеть растения, очень похожие на настоящие, особенно древние, уже вымершие. Иногда в древних горных породах геологи натыкаются на отпечатки древних морозных узоров, и не всегда легко отличить эту подделку природы от настоящего отпечатка древнего растения.

Скелет одноклеточных радиолярий и многоклеточных губок образован «органоминеральным» кристаллическим веществом, состоящим на 20–30 процентов из органики, а в остальном из минерального кристалла. В индивидуальном развитии такого организма идет процесс минерализации — замещения биомолекул минералом, причем законы кристаллографии и биохимии здесь тесно переплетены. Когда-то под высоким давлением в раскаленной сухой среде этот же процесс был обращен другую сторону. И когда поверхность планеты несколько остыла и появились лужи и моря, в них уже плавали и растворялись множество таких первых кентавров, полукристаллов-полуорганизмов — биокристаллов, готовых стать жизнью… И дальнейшая эволюция живого шла в огромной степени под действием законов кристаллографии. Жидкие кристаллы сегодня работают в дисплеях портативных компьютеров и телевизоров. Но оказывается, весь мир живого, задолго до рождения современных высоких технологий, природа построила по этим высоким технологиям…

Прямо или косвенно законы биокристаллографии управляют не только живой природой, но и высшим ее проявлением, эстетической сферой человеческой культуры. Внизу — проект входа на Всемирную выставку 1900 года. Архитектор Бине придумал его под впечатлением трудов дарвиниста Э. Геккеля с зарисовками скелетов радиолярий.

На самом же деле перед нами в тысяче обличий просто кристаллы воды.

Но кристаллизация на стекле (а также на тротуаре, на камнях) происходит в усложненных и не всегда в одинаковых условиях. Пар из воздуха то медленно и неохотно оседает на гладкой поверхности (при низкой влажности), то обильно. Часть льда порой тут же стремится испариться обратно — особенно если ветер дует. Люди на стекло дышат — опять же совсем другие условия кристаллизации. На стекле есть и выявляются при кристаллизации тончайшие царапинки от шлифовки. И все это порождает свои особенности рисунков Деда Мороза. Но при всем этом разнообразии в «стиле» всех морозных пейзажей есть нечто общее. Морозные узоры трудно спутать с нарастанием других кристаллов. «Стиль» Деда Мороза-художника определяется кристаллизационными свойствами молекул воды.

Ученые не раз задумывались, а не могли ли процессы кристаллизации, упорядоченного соединения молекул веществ сыграть свою очень важную роль в начале жизни и позже, уже в ходе эволюции? Уже знакомый нам биолог, философ и добрый мудрый человек Дж. Бернал в последние годы жизни писал о будущей большой науке, куда войдут в рамках общих законов и биология, и кристаллография, и эту будущую науку Бернал называл обобщенной кристаллографией. Дальше я постараюсь рассказать о некоторых «мостиках» между кристаллами и миром живого, но не удивляйся, что мостиков этих будет мало. Для науки это довольно новая область, и здесь когда-нибудь будут совершены большие открытия.

Но какое же отношение имеют свойства самоорганизации, заложенные в любом сложном химическом растворе, к проблеме зарождения жизни?

Давай порассуждаем. Допустим, никакой самоорганизации нет. И аминокислоты соединяются в том опыте профессора Сиднея Фокса — с выпеканием полимера на вулканической лаве — как попало. Оказывается, даже если у нас есть запас аминокислот размером с земной шар, при беспорядочном соединении бусинок-аминокислот у нас во всей массе получившихся молекул почти наверняка не будет ни одной пары одинаковых! Это будет смесь, лишенная свойств белка, ибо каждая молекула во всей этой массе будет обладать каким-то своим свойством, а соседняя — другим, противоположным, а смесь в целом будет пассивной — никакой! Да, у профессора Фокса не вышло настоящего моновещества, истинного белка. Но это была смесь нескольких белковоподобных веществ (а не бесконечного числа разных молекул). А потому эта смесь обладала важными свойствами белка. Ее могли есть микробы, и даже крысы не брезговали. А самое главное, полимер Фокса мог ускорять некоторые важные для жизни химические реакции. Не в сотни тысяч раз, как настоящие белки-ферменты, а просто в сотни раз, но для начала жизни и это было неплохо.

Таково могущество сил самоорганизации! Если не торопиться (а время в запасе у нарождающейся жизни было) и достаточно долго и терпеливо заставлять взаимодействовать между собой аминокислоты-буквы в густой смеси, да еще строго выдерживать некоторые условия — температуру, а еще — размер мелких частиц глины или пепла, видимо участвовавших когда-то в процессе самозарождения жизни, то буквы начнут сцепляться между собой не наобум, а «слогами» и даже «словами». Среди растущих обрывков цепи можно узнать такие, что и сейчас играют важную роль в настоящих фразах-белках, причем в самых важных. Получается, что нынешняя живая клетка, как хороший завод, быстро и умело выполняет работу, которая медленно и неуклюже, но сама налаживалась в теплых лужах еще безжизненной планеты. Фразы росли сами по себе и как бы «знали», какая буква должна быть следующей, и если эта «буква» оказывалась рядом, выбиралась она, а не любая другая «буква»-аминокислота. Естественный отбор на молекулярном уровне!

Да, это похоже на рост кристалла в насыщенном растворе соли, на рост сверкающего дерева на замороженном стекле.

Лет тридцать назад геолог В. В. Чернобровкин обратил внимание своего коллеги кристаллографа Э. Я. Костецкого на одно удивительное совпадение. В двойной спиралевидной нити молекулы ДНК расстояние между ближайшими звеньями, основаниями — неважно, чья это ДНК, комара или человека, всегда одно и то же и измеряется оно в 3,4 ангстрема. В мире кристаллов эта величина известна. Это размер элементарной ячейки кристалла апатита, одного из распространеннейших в природе минералов. И еще одно совпадение: апатит — один из немногих природных минералов, участвующих, наряду с белками, в строительстве многих живых организмов. Есть он и в наших с тобой костях и зубах. На этих двух совпадениях ученые начали разрабатывать свой вариант теории зарождения жизни, первичного синтеза прамолекул ДНК на естественной кристаллической матрице.

Оказалось, у апатита есть своего рода сродство с еще тремя минералами, участвующими или участвовавшими на разных этапах эволюции в строительстве скелета множества организмов — кальцитом, арагонитом, кварцем. Ученые поставили множество экспериментов. При температуре примерно в двести градусов и при повышенном давлении — а в начальной истории Земли был этап именно с такими «венерианскими» условиями — в смеси этих кристаллов молекулы аммиака, метана, окиси углерода не просто спекались в белковоподобные вещества, но и, встраиваясь в кристаллическую структуру апатита и минералов-«родственников», как на первичной матрице, строили высокоупорядоченные молекулы, весьма похожие на ДНК. Вспомнили о биоминералогии. Среди ископаемых и ныне живущих одноклеточных организмов — водорослей, радиолярий, фораминифер и многоклеточных — например, губок — есть такие, чей скелет образован «органоминеральным» кристаллическим веществом, состоящим на 20–30 процентов из органики, а в остальном из кристалла. В индивидуальном развитии такого организма идет процесс минерализации — замещения биомолекул минералом, причем законы кристаллографии и биохимии здесь тесно переплетены. Сейчас уже ясно, что когда-то под высоким давлением в раскаленной сухой среде мог преобладать jtot же процесс, только обращенный в другую сторону. Да, да. Преджизнь на каком-то этапе прошла через горячую безводную фазу первичного синтеза… И когда поверхность планеты несколько остыла и появились лужи и моря, в них уже плавали и растворялись множество таких первых кентавров, полукристаллов-полуорганизмов — биокристаллов, готовых стать жизнью… Сегодня Э. Я. Костецкий настаивает на том, что и дальнейшая эволюция живого шла в огромной степени под действием законов кристаллографии. Сама клеточная плазма, по современным воззрениям, это так называемый жидкий кристалл. Жидкие кристаллы сегодня работают в дисплеях портативных компьютеров и телевизоров, там они заняты чисто технической порученной им работой. Но оказывается, весь мир живого, задолго до рождения современных высоких технологий, природа построила по этим высоким технологиям… И мы с тобой «сконструированы» тоже в известном смысле как кентавры из органической и неорганической материи — биокристаллы.

Итак, законы самоорганизации так или иначе направили — не могли не направить — первоначальное развитие жизни… чуть было не написал — в нужную сторону. Нет, если бы я так написал, это было бы ошибкой. Кому нужную?

Конечно, мы с тобой здесь болельщики, мы — заинтересованная сторона, нам хочется, чтобы зарождающаяся жизнь выстояла и достигла уровня человека, но ведь нас-то тогда еще не было. Законы самоорганизации направили эволюцию неживого вещества (если это впервые произошло не на Земле, то должно было происходить где-то в космосе) ко все более сложным формам. Это усложнение не могло не привести в конце концов, постепенно, через ряд промежуточных этапов, к уровню живого. Гигантские молекулы, потом коллективы молекул, воспроизводящих себя в «живой луже», затем обособление самых маленьких из таких коллективов под общей оболочкой в капельках-организмах. И как сказал один ученый: «Едва родившись, жизнь уже кишит».

Возникли первые предклетки, полуорганизмы, неклеточные еще формы жизни, может быть, похожие на нынешние вирусы и фаги (способные, кстати, переживать неблагоприятные времена в виде кристаллов).

Когда-то знаменитый ученик Дарвина Эрнст Геккель, обращаясь к химикам, уже раскрывшим аминокислотный состав белка и научившимся составлять первые белковоподобные цепи, в восторге воскликнул:

— Если вы создадите правильный белок, он закопошится!

С тех пор прошло больше ста лет. Настоящий, правильный белок химическим путем все еще не создан. Но белки хорошо исследованы, и уже ясно, что они не «закопошатся» сами по себе, вне сложной системы других больших молекул.

Для современной науки характерен подход к решению некоторых задач, именуемых «методом черного ящика». Мы знаем, что «на выходе» — жизнь во всем ее многообразии. Знаем, что «на входе» — обычные химические вещества, климатические условия на поверхности Земли. Требуется смоделировать процесс, невидимо проходивший между «входом» и выходом», в «черном ящике» давным-давно… Отдельные отрезки этого процесса уже смоделированы. Но настоящей победой будет только искусственно от начала до конца синтезированное живое существо…

Впрочем, полной уверенности, что лабораторный модельный эксперимент действительно повторяет нечто происходившее на Земле миллиарды лет назад, наверное, и тогда не будет.

 

ГЛАВА ВТОРАЯ,

которая рассказывает о перекрестках эволюции, о Колумбе биологии, о приключениях молекул клеток, а также о трех дорогах в прошлое

 

 

НАПРАВО ПОЙДЕШЬ, НАЛЕВО ПОЙДЕШЬ…

Не нужно думать, что в один прекрасный день закончилась на Земле химическая эволюция молекул и началась биологическая эволюция организмов. Переход был достаточно плавным — черты химической эволюции, воспоминание о прошлом, ученые замечают и в современных высокоразвитых организмах. И все-таки, хотя это случилось и не в один день, переход от веществ к существам был достаточно «революционным» событием. Появились рождение и смерть — понятия бессмысленные для «солярисов». Появились поведение, конкуренция, отбор наиболее приспособленных. Началась настоящая, дарвиновская эволюция живых существ…

Почти полтора века назад плыл по морям и океанам земного шара английский парусник «Бигль» под командой бравого капитана, аристократа и джентльмена до мозга костей Фицроя. С плаванием «Бигля» не связано больших географических открытий — времена Кука, Лаперуза, Беллинсгаузена и Крузенштерна остались позади. Но для истории науки это плавание было более важным, чем для всеобщей истории открытие Америки Колумбом.

Новым Колумбом был никому пока не известный молодой натуралист, застенчивый и малоразговорчиый, согласившийся на пятилетнюю нелегкую службу без всякого денежного вознаграждения. В результате этого путешествия позже — через четверть века — появилась знаменитая книга «Происхождение видов». Молодым мореплавателем-натуралистом на корабле Фицроя и автором книги был Чарльз Дарвин.

Отправляясь в путешествие, Дарвин еще не был, как он сам писал, настоящим биологом — его биофаком стало само путешествие. Но он уже был неплохим геологом. Глаз геолога ставил его перед удивительными фактами, требовавшими объяснения.

Например, Дарвин увидел, как молоды геологически Галапагосские острова. Значит, рассудил он, те виды животных, которые встречаются только на этих островах, тоже не могут быть слишком древними. И все-таки они есть, они резко отличаются от своих родичей на Американском материке, от которых явно произошли. Причем все эти отличия таковы, как будто животные активно и быстро менялись, приспосабливаясь к особенностям жизни на скалистых, обдуваемых сильными ветрами вулканических островках. Дарвину стало ясно, что организмы меняются, эволюционируют под влиянием среды. Но как именно это происходит?

Вернувшись в Англию, он стал изучать историю племенного животноводства. И понял, что быстрые изменения, поразительные свойства новых пород домашних животных — результат прежде всего направленного, сознательного отбора. Хозяин-селекционер оставляет на племя, дает размножаться только таким голубям, ягнятам, жеребятам, которые ближе всего по своим признакам подходят к поставленной человеком цели. Не может ли что-то подобное действовать и в дикой природе, в естественных условиях? — задумался Дарвин. Но что за цель может быть у природы? А задумавшись, понял, что нечто подобное такой цели есть у каждого живого существа. Каждое существо так или иначе стремится выжить и оставить потомство.

На пути к этой «цели» каждое растение, микроорганизм, животное преодолевает множество препятствий, борется с голодом, климатом, болезнями, хищниками и конкурентами — претендентами на тот же корм. Тот, кто в этой борьбе оказывается слабей, вымирает или не оставляет потомства. А поскольку нет двух абсолютно одинаковых организмов — так уж устроила природа, и это называется изменчивостью, — то всегда по какому-то признаку одно существо оказывается чуть приспособленнее другого. Только ничтожная часть потомства любого дикого растения или животного выживает. И это отборная, то есть наиболее приспособленная, часть.

Взрыв жизни, адаптивная радиация…

Так, схематично, выглядело заполнение всевозможных «экологических ниш» на нашей планете маленькими изначально невзрачными насекомоядными млекопитающими после гибели в конце мелового периода господствовавших на суше, а воздухе и на море, динозавров. «Чем более потомки какого-нибудь вида будут различаться между собой… тем легче им будет завладеть более многочислен-ними и более разнообразными местами в «хозяйстве», — писал Дарвин.

Казалось бы, все ясно, теория естественного отбора готова, можно печатать. Но книга о теории появилась только через двадцать лет.

За это время Дарвин стал знаменитым ученым, он написал и опубликовал много важных трудов, но постоянно думал о своей спрятанной недоделанной работе. И о загадке, перед которой остановился.

Однажды Дарвин ехал в карете из Лондона в Даун, в свой сельский дом, куда он переехал вместе с семьей вскоре после возвращения из плавания. Как обычно в то время, он думал о своей новой теории и о трудностях, с которыми ему пришлось столкнуться. Он смотрел на лошадей своей упряжки, они были разных пород, и ему пришло в голову, что вот две лошади — одна сильная и грузная, другая легка в рыси. Они, как и все породы, выведенные человеком, предназначены и приспособлены для каких-то определенных задач. Куда же девается прототип, та универсальная лошадь, которую человек взял из природы для приручения? Дарвин почувствовал, что и здесь аналогия между искусственным и естественным отбором поможет ему в решении задачи. Ведь пока самым неясным для него в истории живого мира было то, что как только появляются два вида животных или растений, они начинают очень быстро оба отклоняться от первоначального вида-предка, причем как бы в разные стороны. Расхождение признаков…

«Допустим, в очень ранний период истории, — думал Дарвин, глядя на лошадей, — люди одного племени или в известной местности нуждались в лошадях, быстрых на бегу, а другие или в другом месте — в более сильных и грузных лошадях. Первоначальное различие могло быть очень мало, но с течением времени, вследствие постоянного отбора, с одной стороны, наиболее быстрых, а с другой — наиболее сильных животных, различие могло возрасти и дать начало двум подпородам. Наконец, по истечении столетий эти подпороды превратились в две хорошо установившиеся и совершенно отличные одна от другой породы. Лошади с промежуточными признаками, то есть первоначального типа, были худшими как для первого, так и для второго племени. Их все меньше оставляли на племя — и вот они исчезли».

Может ли что-нибудь подобное происходить в природе? Может, решил Дарвин. Как только появляется разновидность животного или растения, хорошо приспособленная к обитанию в какой-нибудь части той страны, — где до этого везде обитал вид-предок, эта разновидность сразу вытесняет своих родичей именно с этих мест. Предковый вид отступает перед своим более приспособленным потомком, отступает в те места, где он может жить и развиваться по-прежнему, а выделившаяся специализированная разновидность не только не имеет преимуществ, но даже и проигрывает из-за своей суженной специализации. Но, оказавшись в стесненных условиях, предковая разновидность либо вымирает, либо тоже начинает меняться, приспосабливаясь. Образуется другой вид-потомок. Два вида, происходящие от одного предка, как бы оказываются на разных полюсах. «Чем более потомки какого-нибудь вида будут различаться между собой… тем легче им будет завладеть более многочисленными и более разнообразными местами в «хозяйстве» природы, а следовательно, тем легче они будут размножаться», — писал Дарвин позднее.

Ну а сама неизмененная предковая форма? Она через какое-то время постепенно сократится в численности, теснимая своими более приспособленными родичами, и, если не найдет укромного местечка, где она могла бы жить по-старому, не развиваясь, вымрет либо «растворится» путем скрещивания с той или другой формой-потомком. В тех же редких случаях, когда ей удается найти свой особый изолированный мир, предковая форма уцелеет, превратившись в живое ископаемое. В глубине Индийского океана вблизи Коморских островов уцелел один из видов кистеперой рыбы, нашей прабабушки, вышедшей когда-то из воды на сушу и давшей начало земноводным, пресмыкающимся, млекопитающим и птицам.

Остался на одном из островов, где его никто не тревожил, один из древних «завров» — гаттерия, современница динозавров. Целый материк сохранил для нас мир животных, как будто явившихся из сказок, — мир сумчатых млекопитающих. Этот материк — Астралия. В Австралии сохранилось даже такое чудо, как полупресмыкающиеся-полумлекопитающие ехидна и утконос. Но все это исключения из правила. А правило заключается в том, что два недавно разошедшихся от общего родословного древа побега стремятся неограниченно разойтись друг от друга в признаках, то есть оказаться разными видами, затем родами, семействами, отрядами итак далее. Предковая же форма обычно обречена на безвозвратное исчезновение.

Сформулировав свое правило расхождения признаков, Дарвин понял, что новая теория, в общем, готова. И особенно ясно он это понял, когда в 1857 году получил с далекой Малайи письмо от своего молодого талантливого коллеги, путешественника Уоллеса. Уоллес сообщал Дарвину, что закончил работу о естественном отборе, и просил дать о ней заключение. Название работы сильно взволновало Дарвина. Статья Уоллеса называлась: «О стремлении разновидностей к неограниченному уклонению от первоначального типа».

Уоллес был благородный человек и, когда узнал о том, как глубоко обоснована у Дарвина эта главная работа его жизни, не только не попытался спорить и ссориться из-за того, «кто первый сказал» (так, к сожалению, иногда бывает между учеными), но, отдав свою жизнь пропаганде и развитию нового учения, сам всегда называл его дарвинизмом.

Дарвину, Уоллесу и дарвинистам не пришлось очень жестоко бороться за самую идею эволюции, превращения видов, за идею естественного отбора. Если не считать первоначальной очень резкой реакции некоторых деятелей церкви и религиозно настроенных ученых, в целом и общественность, и ученые Европы и Америки до конца столетия уверовали в новую теорию.

Но как только ученые принимали теорию естественного отбора, они начинали к ней присматриваться и находить недостатки и неясности, которых было немало.

 

Сомнение 1. УПРЯМЫЕ ХВОСТЫ

Простой пример. Всегда было известно, что часть особенностей того или другого существа появляется в результате наследственности, а часть — приобретена самим организмом в течение его жизни. Например, форма кроны у деревьев зависит от направления ветров в местности, пушистость меха у собаки или лисы частично зависит от того, на севере или на юге животное обитает. Два брата-близнеца начнут сильно отличаться друг от друга, если один занимается, ну, например, гиревым спортом, а другой бегом. Вот эти вторые, приобретенные, признаки — наследуются они или нет? Читающему эти строки известно из школьного курса биологии, что нет, не наследуются. А вот пишущий учил в свое время по школьному учебнику, что иногда вроде и наследуются. Называлось это почему-то мичуринским учением (сам садовод И. В. Мичурин ничего о таком учении при своей жизни не слыхивал), а несогласных выгоняли с работы и даже сажали в тюрьму.

В работах самого Дарвина не было ясного ответа на этот вопрос. Дарвину больше нравилась идея случайных, неопределенных отклонений в наследуемых признаках живых существ, с остальным вполне мог справиться естественный отбор, отличая, выделяя приспособленных, подавляя, отсекая неприспособленных. И все же Дарвин, говоря на эту тему, каждый раз оставлял какое-то место для сомнительного наследования приобретенных признаков. Почему?

Не было настоящей теории наследственности. Сам Дарвин думал, что каждый орган тела взрослого животного или растения вырабатывает что-то вроде полномочного «представителя» — геммулу. Эти геммулы со всего тела током крови или соков собираются в органах размножения. Но если бы наследственность передавалась так, приобретенные признаки наследовались бы! Ведь из отрубленного хвоста не могла прийти геммула «хвостатости», и, значит, щенок бесхвостой собаки должен быть обязательно бесхвостым или хотя бы с укороченным хвостом. Самое удивительное, в научной литературе того времени появлялись тысячи описаний опытов, как будто подтверждающих такую точку зрения, — описывались и собаки и короткохвостые щенки. По-видимому, те опыты были «нечистыми» — кто-то из предков короткохвостого щенка был из короткохвостной породы, а это совсем другое дело!

Выдающийся немецкий биолог Август Вейсман взялся разрубить запутанный узел наследования приобретенных признаков самым прямым и беспощадным образом. Он рубил… хвосты мышей — выращивал их поколение за поколением, и каждое поколение тщательно обмерялось. Результаты этого опыта с точными измерениями были опубликованы. В двадцати двух поколениях мышей не обнаружилось никакого уменьшения длины хвоста. Хвосты у мышей упрямо вырастали до нормы. Приобретенные признаки не наследовались!

Опыты Вейсмана подтвердили его теорию о том, что передачу наследственности осуществляют специальные частицы, «атомы наследственности», хранящие и передающие память поколений. И все-таки до недавнего времени, пока не стала совершенно ясной структура единиц наследственности — генов, снова и снова некоторые ученые пытались вернуться к идее наследования приобретенных признаков…

 

Сомнение 2. КОШМАР ДЖЕНКИНА

Дарвина терзало еще одно сомнение. Одна из главных идей «Происхождения видов» — малость, незаметность тех отклонений, которые со временем, накапливаясь, дают большие изменения, порождают виды. Но такие малые, незаметные отклонения все время должны находиться под угрозой исчезновения!

Достаточно, рассуждал об этом современник Дарвина инженер Дженкин, существу с едва появившимся отклонением в одну сторону, скреститься с существом без отклонения или с отклонением в другую сторону, как в потомстве едва наметившийся новый признак исчезнет или почти исчезнет. И все насмарку!

Выход из этого «кошмара» давали только труды современника Дарвина Г. Менделя (но это поняли много позже, сначала менделизм был чуть ли не синонимом антидарвинизма), открывшего, что наследуются не доли, не частицы признаков, а сами признаки, а вернее, как опять же истолковали это позднее, гены, кодирующие эти признаки. Раз появившись, новый признак обязательно передается целиком потомству либо в явном, либо в скрытом виде — никуда он исчезнуть не может. Правда, и сейчас неясно, сколько времени нужно, чтобы новый ген стал новым признаком вида. Но это уже не кошмар, а обычный вопрос, требующий наблюдения и раздумий.

 

Сомнение 3. ПРИЗРАК КЕНТАВРА

Много сомнений и споров вызвала «догма» теории естественного отбора о расхождении свойств и признаков. Основываясь на этой догме, было очень удобно строить родословное древо всего живого. Каждому классу, роду, виду — своя ветка определенного ранга. Считалось, что идеальное эволюционное древо должно соответствовать систематике всех организмов, в каждой развилке должен сидеть предок вида, рода, класса. А если не сидит, то, значит, не найден еще, но обязательно найдется, только надо поискать. Эта система действительно помогала и помогает работать и находить и прогнозировать. Но не всегда…

А может ли быть обратное — схождение признаков? Ведь и дерево можно привить чужим черенком… Ведь всякая новая жизнь на Земле, как правило, зарождается в результате объединения наследственных зачатков существ двух полов. Ученые припоминали случаи создания «кентавров» — удивительных скрещиваний далеких друг от друга разновидностей, видов и даже родов.

Замечательный российский ученый Г. Д. Карпеченко уже в 20-х годах скрестил редьку и капусту — растения из разных родов. Получился капустно-редечный кентавр, да не просто какой-то там урод, а новое растение, которое стало размножаться как новый вид. Может быть, и в природе этот «химерный» путь много раз был пройден: соединяются два непохожих существа, вот и получаются, разом, без долгой эволюции, новые виды?

В каждом биологе сидит систематик, и он восставал при таких предположениях — как тогда строить стройное эволюционно-систематическое древо? Но природа не обязана подчиняться соображениям удобства или неудобства ее исследователей. Еще Дарвин, отвечая на подобный вопрос, указывал, что чаще всего химеры, кентавры, потомство от таких скрещиваний, гибриды бесплодны. Он не знал, почему изредка из этого правила бывали все-таки исключения (гибрид Карпеченко, например, был полиплоидом, довольно редким — хотя и не единственным — случаем сложения наследственности, хромосомных наборов редьки и капусты).

Но дело не только в гибридизации. Если просто вспомнить всю историю живого мира даже в самых общих чертах, ясно, что вообще усложнение, соединение не могли не сопровождать эволюцию на всех этапах. Вначале в лужах или океанах с «бульоном» были сравнительно простые молекулы. С ними происходила химическая эволюция — молекулы усложнялись, становились все больше, появились полукристаллы-полуорганизмы, похожие на нынешние вирусы и фаги.

Предорганизмы и биомолекулы становились все сложней, они объединялись под общей оболочкой, появились первые по-настоящему живые организмы, то есть проходящие весь путь от рождения до размножения и смерти безъядерные клетки — бактерии, архебактерии и какие-то еще, не дошедшие до наших дней и еще не опознанные в древних микроскопических окаменелых остатках.

В клетках нынешних животных и растений «обитают» маленькие органоиды (органеллы) — митохондрии, хлоропласты и т. д. Они двигаются в клетке, они во многом автономны. Какие-то органеллы могут даже самостоятельно размножаться. Мы уже говорили о том, что наши клетки — это тоже кентавры, которые произошли от соединения под одной оболочкой самых разных древних существ. К ним стоит присмотреться, к этим знавшим славное прошлое частицам клеток… Ядро (а в ядре — ядрышко), митохондрия — энергетическая подстанция животной клетки (а растительной — хлоропласт, в прошлом — сине-зеленая водоросль), центриоль, рибосомы. Впрочем, если познакомиться с ними поближе, оказывается, что наши предки внутри нас не все забыли из того, чему научились от матери-природы миллиарды лет назад, когда (как думают сейчас уже почти все специалисты) они были самостоятельными…

Ну а что такое ты, читатель? Или я? Или лягушка, или елка? Это соединившиеся вместе отдельные клетки. Клетки, научившиеся жить вместе, разделив обязанности.

Итак, в ходе эволюции существа становились все более сложными. Конечно, это усложнение нельзя сводить только к соединению более простых частей. Но все-таки соединение какую-то роль не могло не играть…

Итак, природа знает сведение воедино, соединение свойств разных организмов, она даже не могла обойтись без него в какие-то эпохи. Древо не идеально. Да и не противоречит ли такое рассуждение правилу расхождения, выведенному дарвинизмом и очень плодотворному для многих поколений биологов?

 

ЭВОЛЮЦИЯ ЭВОЛЮЦИИ

В науке часто бывает так: спорят ученые до хрипоты, спорят всю жизнь, а правы-то оба, как потом выясняется.

Может быть, именно так обстоит дело с расхождением и сближением в мире живого. Может быть, обе точки зрения верны. Оба процесса — объединение и расхождение свойств разных существ — действуют в эволюции. И всегда действовали. Только в первые сотни миллионов лет эволюции объединение играло более заметную роль. Дерево разветвляется не только ввысь, в будущее, но и вниз, в прошлое. Ниже уровня земли — мощная система корней…

Но со временем организмов становилось все больше, они стали сильно отличаться друг от друга, научились все надежнее обособляться, защищать свое потомство от всяких неожиданных смешений, и все большую власть над ними приобретало правило дивергенции, которое и господствует в современном живом мире (и тут прав был Дарвин, считавший, что скрещивание, сближение видов или родов в современном мире есть и играет какую-то эволюционную роль, но ничтожную, несравнимую со всеобщим преобладанием расходящихся путей). Получается, что эволюция была всегда, но когда-то в ней главную роль играли иные законы, нежели сегодня. Эволюция сама развивалась, эволюционировала. Здесь мы подходим к другому очень древнему спору ученых — это спор о принципе актуализма.

Как-то мне пришлось быть на одном совещании геологов, где снова, как и сотню лет назад, разгорелся этот спор — спор о том, позволяют ли наши знания о нынешних вулканических, горообразовательных процессах, о том, как отлагаются сейчас илы на дне океана или галька в горных ущельях, производить уверенные реконструкции далекого прошлого. (Эта уверенность нужна геологам, чтобы улучшить методы разведки месторождений полезных ископаемых, ведь большинство таких месторождений возникло в очень давние времена.) Скорее всего, и здесь правы обе спорящие стороны. Наиболее общие законы действовали на Земле во все времена, и это позволяет нам вообще сметь рассуждать о временах миллиардолетней давности, но характер действия этих законов, их относительное значение менялись с ходом геологической истории. Происходила эволюция эволюции.

Что же касается древа эволюции, схождения и расхождения признаков, то, может быть, кроме них, в ходе эволюции действуют иногда совсем иные силы, вообще выходящие за рамки давнего спора. Но об этом мы поговорим в конце книги…

 

ИМПЕРИИ ЖИВОГО

Сам момент, когда из одного эволюционного ствола вырастают две ветви, не очень ясен. Именно эти разветвления по каким-то не совсем ясным причинам палеонтологи не могут найти в окаменелостях, напластованиях прошлых эпох — это называется неполнотой геологической летописи. Разветвления — очень важный момент теории эволюции. Когда произошла первая большая дивергенция?

Вот в «Солярисе» появились первые едоки-организмы — и сразу же стали уничтожать «питательный бульон», вещества преджизни, из которых могли возникнуть первые организмы. Они уничтожали «промежуточный тип», из которого могли возникнуть организмы еще раз! Именно поэтому жизнь могла зародиться на Земле только раз. И зародилась она именно с едоков, гетеротрофов, неспособных еще к фотосинтезу, самостоятельному извлечению углерода из тогдашней атмосферы.

И даже если кое-где и удавалось сохранившимся веществам преджизни породить вновь примитивные существа, эти существа опять-таки были обречены на уничтожение. Ведь жизнь на Земле ушла вперед, и хорошо развившиеся, приспособленные организмы были несравненно сильнее новичков.

Так произошла первая большая дивергенция. На живое и неживое — без промежуточного «полуживого» связующего звена между ними (нынешние вирусы и фаги могут служить только приблизительной моделью тех первичных полуорганизмов-полукристаллов, ведь они сейчас способны лишь к паразитическому существованию в организмах настоящих).

Дальше были события в мире первых клеток-прокариот. Это были «надцарства», или «империи» бактерий и архебактерий (архей). В эволюции эти «империи» возникли путем еще одной дивергенции (кто был раньше, пока трудно сказать) около 4 миллиардов лет назад. Не исключено, что были и другие дивергенции, другие «империи», не дожившие в самостоятельном виде до наших дней. Архей и бактерий не очень-то различали раньше, между ними много общего, но, похоже, именно из представителей этих и, возможно, других «империй» при их объединении под общей оболочкой получилось третье из нынешних надцарств, ядерные клетки-кентавры — эукариоты. Возможно, общая оболочка новорожденной клетки, которая не похожа на белковые оболочки вирусов и бактерий, как раз и принадлежала еще одному из не дошедших до нас в самостоятельном виде существ…

Среди собственно бактерий нашлись такие, что очень рано научились фотосинтезу. Цианобактерии, то есть сине-зеленые водоросли, живут на Земле без особых изменений по сей день, но в те времена и они поучаствовали в первой большой дивергенции, встроившись в качестве органелл-хлоропластов в клетки эукариот-водорослей (от которых произошли в дальнейшем все зеленые растения).

Три надцарства (эукариоты, прокариоты-археи и прокариоты-бактерии) сегодня считаются главными в живом мире, фундаментом всей систематики и одновременно эволюции.

В нашей «империи» эукариот царства животных, растений и (отдельно) грибов в эволюции располагаются рангом пониже.

 

ПЕРВАЯ РАЗДАЧА СКЕЛЕТОВ

До сих пор мы рассуждали о временах, от которых в геологических пластах, этой каменной летописи Земли, не осталось почти ничего. А то, что осталось — какие-то крошечные микроскопические окаменевшие палочки, шарики и нити в древних горных породах Гренландии, Австралии, Канады, Африки, Карелии, — это все очень трудно рассматривать, нет даже полной уверенности, что это живые организмы, а не какие-то минеральные причуды природы. Если же это все-таки остатки живых существ, то это очень интересно — ведь такие же палочки, шарики и нити ученые часто находят в веществе каменных метеоритов, падающих на Землю из межпланетного пространства.

Если эти шарики и нити были живыми существами, то между ними должны попадаться и те, которые мы могли бы считать нашими предками, если бы у нас было хоть малейшее понятие, чем наши предки-шарики (нити — это все-таки, видимо, древние водоросли) отличались от других шариков-микроорганизмов, которые нашими предками не являются. Бесспорно только одно — они, наши предки, были вот такими крошечными бактериоподобными организмами, и даже трудно сказать, были ли эти крошки ближе к животным или растениям (так же, как это трудно сказать про современных микробов).

Семь восьмых истории жизни на Земле ученые называют эрой скрытой жизни — криптозоем. Почти все нерастительные организмы Земли все это время развивались и эволюционировали, будучи мягкими, бесскелетными. Погибая, организмы разлагались без следа, не оставляли окаменелостей. Лишь очень редко эти мягкие медузоподобные существа — все они были жителями древних морей, озер и рек — так захоронялись в иле, что разлагались очень медленно и их мягкие тела замещались твердым кремневым веществом. Несколько десятков слепков таких древних животных палеонтологи — специалисты в изучении вымерших животных и растений — обнаружили в древних отложениях Австралии и некоторых других областей Земли. Но и среди этих редких слепков трудно найти наших предков, может быть, их даже и не удастся никогда найти и узнать.

И все-таки не вся жизнь в докембрии была скрытой, бесскелетной. И тогда были существа, которые научились выделять известь и строить коллективные скелеты, похожие на нынешние постройки коралловых полипов. Эти коллективные скелеты составляют красивейший мрамор, давно получивший название «коврового камня» или, по-гречески, строматолита за свой необычайно ритмичный, похожий на орнамент ковровый рисунок.

Строматолитами почти всю свою научную жизнь занимался замечательный геолог и писатель, необычайно одаренный, тонкий и остроумный человек И. Н. Крылов. Ему я, пишущий эти строки, обязан многим, в том числе, отчасти, и замыслом этой книги.

Что же это были за существа, первые изобретатели скелета? Гадать ученым не пришлось: эти организмы, одноклеточные и нитчатые сине-зеленые водоросли, живут на Земле и по сей день, ими в жаркое лето зацветает вода в прудах и даже огромных водохранилищах, огорчая рыбохозяйственников. Есть в продуктах выделения этих самых древних из ныне живущих организмов вещества, для современной высокоорганизованной жизни неприятные и попросту ядовитые. Попадаются и сейчас на нашей планете места, соленые озера и опресненные воды океана в устьях некоторых рек, где сине-зеленые по старой привычке строят свои рифы, конкурируя с кораллами — любителями воды чистой и соленой. Первыми сине-зеленые водоросли заводятся и в почти кипящих кислых бассейнах на склонах и в кальдерах вулканов.

Ты спросишь, какое отношение имеют эти единственные, хорошо изученные жители криптозоя к нашим предкам — ведь они же растения? Суди сам.

Сине-зеленые, наряду с некоторыми бактериями (впрочем, перегородки между ними нет, сине-зеленые имеют второе название — цианобактерии) — из числа самых первых автотрофов, то есть это существа, научившиеся использовать солнечное излучение для фотосинтеза, добывания углерода из углекислого газа и воды. Сине-зеленые автотрофы стали новым источником пищи для гетеротрофов — живых существ, не умеющих проводить фотосинтез. Мы с тобой, как и все животные (и еще грибы), — гетеротрофы. Начав извлекать углерод, сине-зеленые наладили на нашей планете производство кислорода. Огромные пространства земной поверхности стали окисляться, появилась возможность для экономичного и высокоэффективного кислородного дыхания, и это дало колоссальный толчок всей эволюции — подавляющее большинство нынешних обитателей Земли дышат кислородом. Ты считаешь, этого мало? Хорошо. Сине-зеленые или их близкие родственники два-три миллиарда лет назад были не только пищей гетеротрофов. Некоторые из новых более высокоорганизованных живых одноклеточных организмов научились заглатывать сине-зеленых, не переваривая их, а оставляя в клетках как фотосинтезирующую частицу-органеллу. Сначала такое сожительство двух организмов было временным сотрудничеством — симбиозом. И сегодня на Земле немало есть простейших, внутри которых живут вполне самостоятельные, по-другому размножающиеся «цианеллы». Но постепенно большая клетка научилась передавать потомству кодовое распоряжение об устройстве хлоропласта — органеллы, бывшей когда-то самостоятельной, хотя и примитивной протоклеткой. Так, считал известный русский ученый академик А. Фаминцын и считают многие современные ученые (но лишь в самое последнее время), родился современный мир зеленых растений.

Ну а все-таки, скажешь ты, цианобактерии, сине-зеленые — они не были ведь нашими предками? Трудно сказать. Какие-то другие бактерии, мало чем от них отличающиеся, были. Здесь важно то, что «примитивные» сине-зеленые клетки-водоросли (примитивны они своим внутренним устройством, в них недостает некоторых важных органелл — составных частей настоящих, больших клеток, и прежде всего в них нет ядра — этого «мозга» современной совершенной клетки) сделали первую серьезную попытку объединиться друг с другом, чтобы дать начало новому уровню организации — многоклеточным организмам. Попытка эта частично удалась: многие сине-зеленые уже тогда существовали в виде нитей, гирлянд из клеток — этакая одномерная многоклеточность. Некоторые современные исследователи бактерий не в культуре, а в природе отмечают, что там, «на воле», колонии бактерий (например, скользкие пленки в термальных источниках на склонах вулканов и просто в водопроводах или шарики в почве) ведут себя вовсе не так, как те же бактерии в чашечке в лаборатории или тоже в почве или свободно плавающие, но по отдельности. Пленки и колонии типа «бычий глаз» гораздо лучше защищаются от разрабатываемых человеком антибиотиков, у них отмечается элементы «социального» поведения, «чувство кворума». У бактерий даже есть гены, управляющие именно колониями и раньше принимавшиеся исследователями за «молчащие гены» непонятного назначения. По некоторым расчетам, таких генов «коллективности» у бактерий — до половины всего генома! Так что даже незаконченность, незавершенность опыта наших предков-прокариот (многоклеточного «прокариотного» растения или животного в эволюции, видимо, так и не появилось) делают их коллективные постройки интересной моделью, показывающей, как упорно природа стремилась выйти на более высокий уровень многоклеточного строения.

 

ОТ КЛЕТОК-РЕМЕСЛЕННИКОВ К КЛЕТКАМ-РАБОЧИМ

Итак, в какой-то момент эволюции колония одноклеточных организмов превратилась в первый многоклеточный организм. Правда, «момент» этот наверняка длился десятки или сотни миллионов лет. И резкой границы — вот до сих пор колония бактерий, вот простейших, а дальше уже многоклеточное существо — наверное, не было.

Чем же отличается колония клеток от единого организма? Одноклеточное существо можно сравнить с ремесленником-одиночкой. Ремесленник работает один, и все трудовые операции одного при изготовлении, скажем, воинского доспеха может выполнить другой.

Клетку многоклеточного животного (или растения) можно сравнить с рабочим предприятия. В чем разница? Главное отличие: на предприятии есть разделение труда. Там (даже если это старинное предприятие без механизации — мануфактура) трудятся рабочие разных специальностей и каждый занят своим делом. Заменить одного рабочего другим гораздо трудней, его надо переучивать на другую специальность.

К предкам многоклеточных животных, нашим предкам, ближе всех нынешние низшие многоклеточные. Например, губки. У этих животных нет ни настоящих органов тела (например, желудка или сердца), нет тканей (у нас, ты знаешь, есть мышечная ткань, нервная, покровная и т. д., причем каждая ткань образована клетками одной специальности).

И все-таки губка — это не колония простейших. Клетки ее тела ведут себя очень самостоятельно, они легче переучиваются, осваивая «смежные специальности», чем клетки нашего тела, но они разные, и каждая занята своим делом.

Губка образует что-то вроде открытого кверху кувшинчика. В стенках кувшинчика сидят клетки-трубочки, через которые внутрь губки проникает вода (а с водой кислород для дыхания и всякая муть для питания).

По всей внутренней поверхности кувшинчика сидят совсем иные клетки с хвостиками-жгутиками, очень похожие на существующих в природе простейших жгутиковых инфузорий. Работа этих клеток состоит в том, чтобы дружно болтать своими хвостиками и тем самым заставлять воду течь через клетки-поры внутрь кувшинчика. Снаружи кувшинчик «облицован» плоскими клетками, напоминающими клетки нашего кожного покрова. А между «кожей» и жгутиковыми клетками сидят клетки, занятые улавливанием и усвоением поступающей пищи. Эти клетки бродят по всему телу губки и ведут себя, как обычные амебы. Они охватывают своим студенистым телом частицы пищи и переваривают их в пищеварительных вакуолях, возникающих специально по этому случаю… Если кусок велик и «жалко» его выбрасывать, амебы начинают вести себя более осмысленно. Кусок будет окружен несколькими амебами и переварен коллективно!

Напитавшись, клетки-амебы могут вдруг начать меняться на глазах, отращивая жгутик, и вот уже они заменяют своих голодных собратьев, машут хвостиками, создают ток воды. А те, наоборот, превращаются в амеб и начинают заниматься вопросами пропитания. Может надоесть однотонное существование и клеткам «кожного покрова». И они могут заменить клетки-провиантмейстеры или клетки-водометы. Похоже, чуть не из каждой клетки губки можно вырастить целую новую губку. Но тогда, может быть, губка — это все-таки не целый организм, а колония слегка специализированных клеток? Но нет, именно с губки начинает действовать правило Гарвея, действительное для всех цельных многоклеточных животных: «Все живое — из яйца». У губок есть специальные клетки (опять-таки способные превратиться в другие), занятые вопросами размножения, формирования яйца, зародыша будущей целой губки.

Специально сохраняется в теле губки некоторое число неспециализированных клеток — клеток без определенного занятия. Это на случай беды. Повредит губку прибой или хищник — клетки без специальности кидаются латать дырку: одни наружный защитный слой выстилают, другие, уже с хвостиками, глядишь, воду гонят, третьи дырку в себе прорастили — через пору вода и еда идут, и ее тут поджидают уже сформированные новые клетки-амебы.

Есть клетки, занятые строительством скелета. Очень красивый скелету губок — биокристаллы-спикулы из кальцита или кремня. Почему биокристаллы? Да потому, что с одной стороны здесь используются природные кристаллобразующие силы, а с другой — не просто используются, но и направляются силами жизни. Под микроскопом ученые с изумлением выследили это чудо.

Вот клетка-скелетообразовательница «задумала» делиться. Ядро разделилось, их уже два, а клетка еще не делится, медлит. И вот уже видно: между ядрами протягивается полупрозрачная ниточка. Ниточка обрастает кальцитовыми молекулами. Кальцитовая иголочка растет, и клетка все-таки делится. И тут начинается самое удивительное: две клетки начинают работать вдвоем, будто между ними связь какая-то есть, доброе согласие. Клетки рассаживаются по концам иглы-спикулы.

Одна — на том ее конце, который растет внутрь губки, другая — на том, что снаружи. Эта вторая клетка начинает двигаться по спикуле внутрь губки, по неведомо какой программе откладывая на ней еще слой кальцита, формируя изящную иглу. Доходит до второй — и вот уже другая начинает двигаться в ту же сторону, образуя самый конец иглы. Обе клетки сходят с конца иглы, дело сделано.

Повторяю: каждая из этих клеток, образующих тело губки, очень напоминает и внешне, и строением, и по роду деятельности какое-то самостоятельное одноклеточное существо, амебу или инфузорию. Конечно, если просто представить себе, как однажды собрались амебы и инфузории и договорились: ты делаешь то, а я это, сотворим-ка цельный многоклеточный организм, — это будет похоже на неправдоподобную сказку. Все, конечно, «проще», то есть сложнее. Но разве не похожа на сказку эта сложная жизнь внутри губки, примитивной по сравнению с нами, высшими многоклеточными, вторичноротыми, позвоночными, млекопитающими, да еще приматами к тому же, что значит — первыми, главными. Ведь снаружи губка и на животное-то не походит, неподвижная, вроде растения, их так и звали долго: зоофиты — животнорастения.

А разве не похоже на сказку сложное поведение маленьких предклеток-органелл — ядер, митохондрий, рибосом внутри клеток? И даже поведение молекул? Помнишь, мы говорили об этом… Транспортная РНК подтаскивает нужную аминокислоту к рибосоме, а та собирает белковую молекулу, как станок с программным управлением…

Задолго до появления многоклеточных жизньдостигла потрясающей сложности. Ученые сейчас всерьез говорят о поведении клеток, органелл и биомолекул, но знают они о законах этого поведения гораздо меньше, чем о законах поведения, скажем, волков в стае.

Действия клеток в телах губок, медуз и других древних морских животных удивительны. Но не думай, что клетки внутри нас, «царей природы», какие-то совсем иные. Нет, и в них есть черты самостоятельности. Их можно размножать в чашечках с питательным раствором, и там они, вспоминая далекое прошлое, начинают походить на амеб — медленно ползать, выдвигать псевдоподии, обволакивать частицы пищи и самостоятельно переваривать их! И у нас под верхним слоем кожных специализированных клеток есть запас неспециализированных, готовых всегда прийти на помощь, если ссадина или рана. Это — регенерация. Не такая, как у губок (каждая клетка еще может заменить любую), и не такая, как у морских звезд (из каждого луча разорванной морской звезды вырастает новая звезда), и даже не такая, как у более близкого к нам тритона, способного отрастить новую лапу. Но и это неплохо.

Обрати внимание и запомни, это скоро понадобится: когда многоклеточному организму плохо, в нем иногда происходит как бы шаг назад.

Его шанс на выживание порой зависит от того, насколько он способен к регенерации, то есть велик ли у него запас неспециализированных клеток, клеток без определенного занятия, готовых выучиться любой нужной профессии. Легче выучить новичка, чем переучить старого мастера другой профессии.

Иногда говорят, что живая природа знает только прогресс, только движение вперед. Как видишь, это не совсем так. Порой отступления помогали сохранить жизнь — значит, они были нужны для того же прогресса.

Начиная с этой главы мы будем говорить уже о многоклеточных наших предках, о том, как они, превращаясь один в другого, «шли» к человеку. Ты увидишь, что и в этом развитии были моменты, напоминающие регенерацию. Иногда развивающемуся сообществу животных приходилось несладко на Земле, и тогда оно могло выжить, отступив назад, к менее специализированной и, значит, более древней форме. А отступив, подняться на следующую ступеньку эволюционного развития. Один мой знакомый палеонтолог говорил об этом так: шаг назад — два шага вперед.

Ну а когда появились многоклеточные наши предки? И давно и недавно. По последним сведениям, это произошло в конце раннерифейской эпохи, примерно 1,4 миллиарда лет назад. Низшим грибам — 2,2 миллиарда лет. Уже знакомым тебе строматолитовым рифам, самым первым — 2,4 миллиарда лет. Это значит, что цианобактерии, сине-зеленые водоросли, которые, наверное, не сразу научились строить рифы, еще старше. Самым древним остаткам одноклеточных, первым простым безъядерным клеткам типа бактерий или водорослей в некоторых случаях — 3,4 миллиарда лет.

Интересно, что первые сложные клетки, ядерные одноклеточные организмы типа дрожжей и амеб появляются в слоях земных незадолго перед появлением многоклеточных. Может быть, со временем ученые обнаружат, что в начале рифея — последней эпохи эры тайной жизни — создались какие-то особые условия для усложнения и прогресса живых существ. И что оба важнейших скачка в эволюции наших предков — слияние доядерных клеток в сложные клетки и объединение новообразованных сложных клеток в большие организмы — шли подряд. Во всяком случае, путь от начала до первой настоящей клетки был неизмеримо дольше и трудней, чем переход к многоклеточным, «большим» животным и растениям.

 

А НУЖНА ЛИ ПАЛЕОНТОЛОГИЯ?

Здесь читатель вправе задать автору несколько вопросов: вот вы хотели рассказать о самых древних наших предках. А о ком рассказываете — о губках. Ничего себе древность. В аптеке продается пресноводная губка-бодяга, ее полно в наших речках и прудах. От ревматизма, говорят, помогает. В морях и океанах губки устилают дно. И каких только губок нет! Значит, губки — современные животные, какие же они предки? Но если предки живут рядом с нами и их так удобно изучать, тогда зачем рыться в земле, отыскивать ископаемых животных, которые и сохранились плохо, и не известно, чем питались, как себя вели.

И еще: в каждом учебнике зоологии про это есть. Каждый организм, даже человек, когда развивается как зародыш, как будто проходит тем же путем, которым шли его предки, превращаясь друг в друга. Картинка есть: у человеческого зародыша — жаберные щели. Значит, мы были рыбами. Хвост — значит, мы были хвостатые. И тогда опять-таки зачем гадать, кто из этих ископаемых мог быть нашим предком, просто надо взять хороший микроскоп и очень внимательно проследить, как развивается зародыш, на кого он похож в первый день, во второй — до конца. И вся родословная готова.

 

ТРИ ДОРОГИ В ПРОШЛОЕ

Вопросы важные. Стоит их обсудить.

Да, губки наши современницы, но у ученых есть веские основания подозревать, что древние первые многоклеточные были на них похожи, а поскольку эти древние многоклеточные в геологических слоях не сохранились, значит, можно смотреть на губок как на модель, иллюстрацию, набросок портрета нашего предка. Мы не раз еще будем говорить о таких живых моделях далекого прошлого. Но говорить о них мы можем именно потому, что нам это «разрешила» палеонтология. Из палеонтологии мы знаем, что губки, с тех пор как у них появился скелет (и, значит, они появились на страницах геологической летописи), почти не менялись.

Родственными отношениями в мире живого занимается самая древняя из биологических наук — систематика. Все живые существа на Земле — родственники (только степень родства — ее и определяет систематика — разная). Можно изучать предков, раскапывая их захоронения, а можно восстанавливать родственные связи, сравнивая нынешних, живущих потомков, каждый из которых несет в себе те или иные черты предков. Эти две дороги в прошлое — палеонтологическая и сравнительно-анатомическая — идут рядом, часто пересекаются, но это разные дороги, они не сливаются в одну, как не сливаются идущие рядом шоссе и река — голубой путь для теплоходов и барж.

Ну а что касается третьего пути в прошлое… Да, зародыш часто как бы повторяет эволюционное развитие предков, но не всегда, не точно. И вообще здесь все очень непросто. Но мы с тобой договорились не обходить трудные вопросы. Попробуем не разобраться — разобраться полностью в этих делах науке еще не удалось и удастся не скоро, — попробуем понять главные черты этого еще одного великого чуда жизни.

Нужна ли палеонтология? Каждый организм, даже человек, когда развивается как зародыш, как будто проходит тем же путем, которым шли его предки, превращаясь друг в друга. У человеческого зародыша на определенной стадии есть жаберные щели. Значит, мы были рыбами. Хвост — значит, мы были хвостатые. И тогда опять-таки зачем гадать, кто из этих ископаемых мог быть нашим предком, просто надо взять хороший микроскоп и очень внимательно проследить, как развивается зародыш, на кого он похож в первый день, во второй — до конца. Вот родословная и готова… Стадии развития зародышей позвоночных рыбы, курицы, свиньи, человека.

 

ГЛАВА ТРЕТЬЯ,

в которой сравниваются два способа исследовать природу и появляются предки, живущие на дне моря, а также обнаруживается, что, когда нарушаются научные законы, начинается самое интересное

 

 

«ПРИЯТНОЕ ЗРЕЛИЩЕ ПРИРОДЫ»

В средние века мало кто думал, что окаменевшие кости — странного вида, попадающиеся в каменоломнях, — это останки давно вымерших животных. Тем более никому и в голову не могло прийти искать среди этих костей следы наших эволюционных предков — сначала надо было еще додуматься до самой идеи эволюции…

Тайну зарождения жизни искали только в современной живой природе. Причем давно было ясно, что вовсе не обязательно каждый раз анатомировать женщин, умерших от неудачных родов (церковь всегда подозрительно относилась к подобным исследованиям). Еще Аристотель знал, что люди в общих чертах примерно так же появляются на свет, как и все млекопитающие звери, а в развитии зародыша обнаруживалось сходство даже с птицами. Великий врач древности Гиппократ (а он был огромным авторитетом для всей средневековой медицины) так и писал:

«Цыпленок растет в яйце и совершенно таким же образом делится на члены, как и дитя».

Тебе никогда не приходило в голову поискать в яйце, которое тебе дали на завтрак, зародыш будущего цыпленка? Если приходило, то учти, что до тебя это же самое приходило в голову миллионам, и, может быть, из этого детского любопытства, когда оно овладело и взрослыми, родилась эмбриология.

Эмбриологией называется наука, изучающая зародышей, эмбрионов животных. Она очень много сделала для того, чтобы люди поняли свое родство со всем живым миром.

А одним из самых больших эмбриологов был уже знакомый тебе англичанин Вильям Гарвей.

Между прочим, Гарвей был придворным врачом английского короля Карла I Стюарта, того самого, казненного во время английской буржуазной революции. О причинах этой революции ты, наверное, помнишь лучше меня. Ну а недовольство английских пуритан именно Карлом I было вызвано безудержным расточительством этого короля. Король очень любил дорогие удовольствия, а среди них самое дорогое — королевскую охоту на оленей.

Король развлекался охотой, содержал множество слуг, егерей, конюхов. Это было, конечно, непохвально, но в истории иногда бывает так, что нет худа без добра: охотничья страсть Карла привела его к казни, Англию — к кровавой революции, но она же помогла его придворному врачу Гарвею создать великое произведение «Происхождение животных», на обложке которой был изображен Юпитер, в руках у него яйцо с вылезающими оттуда змеями, рыбами, птицами и человеком, а на яйце та самая знаменитая надпись «Все живое — из яйца».

Вот что писал в этой книге Гарвей о страсти короля к охоте и о том, как из этого получился прок для науки:

«У нашего покойного государя… было обыкновение для облегчения души от тяжелых забот и для укрепления здоровья почти каждую неделю охотиться на зверей, в особенности на оленей и ланей, которых ни один государь в Европе не держал для этой цели в большем количестве… Охотились в течение трехлетних месяцев на самцов… а осенью и зимой также три месяца на самок. Тогда мне была предоставлена возможность вскрывать их в большом числе… и наблюдать, сколько угодно».

«Зародыша, — пишет дальше Гарвей, — уже величиной с боб… все члены которого были сформированы, я предоставлял для рассмотрения светлейшему королю и королеве. Приятное зрелище природы! Плавал гладкий и совершенный плод в светлой прозрачной и кристаллической жидкости (как бы в чистейшем стеклянном сосуде), по величине соответствующий голубиному яйцу и одетый собственной прозрачной оболочкой».

Исследуя зародышей оленей, а также цыплят в высиживаемых наседкой яйцах, Гарвей проверял выводы своего учителя — знаменитого анатома Фабриция, дерзнувшего поспорить с самим Аристотелем. Из рассуждений Фабриция следовало, что и белок, и желток яйца питают подрастающий зародыш, но никак не влияют на его форму. Хотя Фабриций и не говорил этого прямо, но можно было понять, что форма зародыша — это что-то присутствующее в яйце с самого начала. «Фабриций постоянно искал материю цыпленка (или определенную часть яйца, из которой образуется его тело), как если бы порождение цыпленка происходило путем метаморфоза, или преобразования собранной ранее материи, и все части тела, или, по крайней мере, главные, сразу возникли… и становились телом».

Так писал Гарвей о взглядах своего учителя и возражал ему:

«Ни одна часть будущего плода не существует в яйце актуально (то есть в готовом виде), но все части находятся в нем потенциально… И этот способ возникновения мы называем «путем эпигенеза», именно возникновение одной части (зародыша) после другой… есть порождение в собственном смысле слова».

Именно из спора Гарвея с Фабрицием родился знаменитый спор, раздиравший биологию еще почти два столетия. Это спор преформистов и эпигенетиков.

Великая развилка. Налево пойдешь — станешь червячком или мухой, одним словом, беспозвоночным, направо — позвоночным. Эта развилка не сохранилась в слоях земных, но память о ней хранит эмбриональное развитие любого многоклеточного животного. Все у нас и червей начинается с яйца и на первых порах разворачивается похоже: в нижней части яйца развивается нервный тяж, вокруг которого как бы нарастает все остальное. Но тут-то и расходятся пути. Эмбрион нашего родича по подтипу черепных позвоночных лягушки как бы переворачивается, и нервный тяж, вокруг которого впоследствии образуется хорда и позвоночник, оказывается в спинной части тела. Беспозвоночные никуда не переворачиваются, у них нет спинного хребта, нервный тяж остается на брюшной стороне. Эмбрионы еще похожи, но они уже в корне противоположны.

 

ШКАТУЛОЧНАЯ ТЕОРИЯ

Помнишь, мы говорили о том, как ошибался революционный демократ Писарев, увидевший в принципе «живое из живого» мистику и идеализм.

В истории науки так бывало неоднократно: верная общая идея, если ее применять к практической науке очень уж прямо и не вовремя, может привести к странным выводам, к ошибке.

Гарвей, вслед за Аристотелем, правильно решил, что живое существо целиком рождается заново, что бесполезно даже с помощью сильнейшего микроскопа искать в только что вымеченной икринке маленькую лягушку — ее там нет. Что же там есть?

Мы-то с тобой сейчас знаем, что: зародышевая клетка и в ее ядре — генная запись на молекуле ДНК. Но Аристотель и Гарвей никак не могли знать этих достижений науки XX века. И они говорили: части будущего организма находятся в яйце потенциально, в идее. Эту идею они в те времена не могли понимать иначе, как нечто вроде божественного, чудесного веления.

Многие биологи никак не могли примириться с подозрительной «идеей», управляющей зарождением живого существа. Но как тогда объяснить зарождение?

И вот уже знакомый тебе Фабриций в 1600 году, а позже, в 1679 году, еще больше его соотечественник итальянец Марчелло Мальпиги выдвигают гипотезу, что никакого зарождения вообще нет, а есть только рост и развертывание готовых, только мелких, а потому не видных зародышей, во всем похожих на взрослое существо.

Семнадцатый век, микроскопы плохие, усталым — до чертиков в глазах — ученым очень хочется увидеть микроскопическое существо в яйце, чтобы избавиться от подозрительной аристотелевской «идеи», и вот на страницах научных трактатов появляются превосходно сделанные рисунки крошечных цыплят, а то и человечков величиной с булавочную головку. Казалось бы, все в порядке, зародыш материален, существует, но…

Еще не наступила вторая половина XVIII века (и, значит, еще не появился знаменитый труд Каспара Фридриха Вольфа, доказавший, что Гарвей был все-таки прав), а теория заблаговременной готовности зародыша, теория преформации, возникшая из стремления к материальному, вещественному объяснению одной из самых волнующих загадок жизни, зашла в логический тупик. И больше того, она привела туда, куда Фабриций и Мальпиги меньше всего хотели возвращаться, — к библейскому сотворению.

Все просто: если, например, в курице содержится уже готовый цыпленок, которому остается только вырасти и развернуться, то и в этом цыпленке содержится готовый цыпленок следующего поколения. В нем, в свою очередь, еще одна будущая курица, в той — еще и т. д. до… бесконечности?

Но хотя тогда ученые еще не знали, что вещество состоит из атомов и что уменьшение размеров не может продолжаться до бесконечности, длинный ряд вложенных друг в друга куриц (или людей) смущал их, казался неправдоподобным. Значит, какая-то матрешка-курица будет последней. А какая-то была первой! Уж не та ли, которую Бог сотворил незадолго до Адама и Евы? Сотворил, вложив в нее заранее всех будущих кур одна в другую вплоть до самой последней! А человек? Ну и он, — конечно. Кончится запас матрешек — и настанет страшный суд. «Итак, — писал один из последователей Мальпиги, — мы должны думать, что все тела людей и животных, которые, быть может, появятся до окончания мира, были созданы еще при сотворении мира». Другой преформист, Сваммердам, высказался еще более ясно:

«В природе нет зарождения, но только размножение, рост частей… Все человечество было заключено в чреслах Адама и Евы. Когда иссякнет запас их яиц, человеческий род прекратит свое существование». Знаменитый физиолог и поэт Галлер высчитал, что в шестой день сотворения мира более шести тысяч лет назад Бог создал разом зародыши 200 миллиардов людей — со всеми их поступками и характерами, со всеми их судьбами — уродов и красавцев, жестоких и добрых, все это искусно заключил в тело «праматери Евы» и успокоился.

И уже с самого начала преформисты перессорились, не все были согласны, что Бог проделал эту хирургическую операцию именно с Евой. Почему не с Адамом? Знаменитый философ Лейбниц в одной своей проницательной, умной книге написал:

«Души людей всегда существовали в форме организованных тел в наших предках с Адама, следовательно, при начале вещей».

Так даже верный как будто изначально «материализм» преформистов, при самых благих намерениях, может привести к самой смешной (на современный взгляд) нелепице. И сейчас нам, как ни странно, кажется более трезвым «идеализм», «идея» и «потенция» Аристотеля и Гарвея — ведь не могли же они тогда знать, как именно записано распоряжение о будущем устройстве организмов в не открытых тогда еще клетке и клеточном ядре.

Когда же ошибочная теория укрепляется и становится главной, господствующей, иногда, к сожалению, находятся недобросовестные экспериментаторы, готовые обманом подтвердить все что угодно. Фабриций, Мальпиги, Галлер ошибались в своих рассуждениях, но в их трудах нет обмана. Другие люди, экспериментаторы, имен которых можно и не называть, «увидели» и даже зарисовали в семени лошади микроскопическую лошадь, в семени осла микроскопического длинноухого и даже маленьких петушков в семени петуха.

Наверное, ты догадался, что теория матрешек (в Западной Европе подобная игрушка состоит из множества шкатулок, вложенных одна в другую, и поэтому эту теорию называли шкатулочной) начисто отвергает всякую возможность эволюционного развития живой природы, превращения одних существ в другие.

Вся история жизни оказывается утомительным повторением одного итого же порядка: зарождение → зародыш → рождение → рост → зрелость → зарождение.

Как писал когда-то поэт и натуралист Древнего Рима Лукреций:

…и теперь пребывают все в том же движенье Вечно зачатков тела, в каковом, пребывали и раньше, Тем же порядком, а впредь продолжать они двигаться будут.

 

НО ВОТ ПРИШЕЛ ВОЛЬФ

Полтора века назад теория матрешек считалась вершиной научной мысли. «Победой разума над воображением» называли ее преформисты. Воображение, видимо, все-таки никак не могло примириться с мириадами вложенных одно в другое существ. Но пришло время, и разум тоже взбунтовался против всесильной теории.

Как вестники недалекого ее конца возникли Вопросы к теории:

1. Глубокоуважаемая теория матрешек! Как вы объясните появление уродов и у зверей и у людей — шестипалых, двухголовых, сросшихся несчастных созданий. Они тоже были запланированы Богом в дни творения?

2. Почему сын похож на отца или на мать, а то и на обоих? И не похож на датского короля? Ведь для первоначального всеобщего творения все будущие существа — равны.

3. Ящерица с оторванным хвостом отращивает новый, такой же. Запасные хвосты были запланированы заранее или нет и сколько их запланировано? Губка, гидра, морская звезда — разрежь их хоть на сто частей, из каждой частички вырастет новая губка, гидра. А тут как?

4. Последний вопрос. Если зародыш заранее существует, а только невидим до поры, то с того момента, как его можно видеть, он уже должен быть абсолютно похож на взрослое животное. Под микроскопом же видно, что сосуды цыпленка не появляются внезапно под окуляром, а развиваются постепенно из более простых структур, а заполняющая их бесцветная жидкость далеко не сразу краснеет, то есть становится кровью.

Все эти вопросы поставил перед теорией матрешек в 1759 году Каспар Фридрих Вольф в своей диссертации. На вопросы молодого ученого попытался ответить знаменитый натуралист Галлер. Ответы его были неубедительны, но поверили ему, знаменитому ученому, а не Вольфу. Проверять же экспериментом, кто прав, почему-то никому не пришло в голову. Над Вольфом стали смеяться, как над чудаком. Но Вольф не отступил. Его пригласили в Петербург в молодую Академию наук России. Вольф поехал.

В 1768 году российский немец академик Вольф опубликовал в трудах Российской академии сочинение «О формировании кишечника». Для теории матрешек это был еще один страшный удар. Вольф проследил, как образуется кишечник цыпленка в яйце.

От брюшка зародыша отделялся слой ткани в виде желобка, потом края желобка смыкались — возникала трубка. Эта трубка становилась кишечником. Работа Вольфа была так обстоятельна, все в ней было так толково и ясно показано и доказано, что с ученым уже больше не спорили. Работу Вольфа просто замолчали. До начала XIX века в европейской науке по инерции продолжала доживать свои последние дни теория матрешек, хотя она уже была мертвой теорией, бесплодной теорией, теорией, которая никуда не звала и ничего не обещала.

Ну а теория настоящего зарождения, теория эпигенеза, что она обещала дать науке?

Она обещала ответить на каверзные вопросы Вольфа. Она обещала проложить путь для ответа на главный вопрос — о зарождении и развитии всей жизни на Земле. Не случайно, как только утвердилась мысль о том, что зародыш сильно меняется во время развития в икринке или яйце, появилось подозрение, что зародыш не только меняется, но меняется по определенному закону. На ранних стадиях зародыши птиц, млекопитающих, земноводных удивительно походили друг на друга, причем чем более ранние были зародыши, тем большее сходство обнаруживалось.

При этом оказывалось, что в зародыше млекопитающих есть признаки пресмыкающихся, земноводных и даже рыб. Но не наоборот!

«Эмбрион проходит через классы животных», — написал об этом в 1805 году молодой германский ученый Лоренц Окен.

А раз так… А что, если и обратная теорема тоже верна, классы животных развивались и вытекали один из другого так, как идет превращение эмбриона. От простейшего одноклеточного существа — через рыб, земноводных и рептилий — до человека!

 

ЛУЧШЕ ДУМАТЬ ИЛИ БОЛЬШЕ ЭКСПЕРИМЕНТИРОВАТЬ?

Гарвей и Вольф были великие экспериментаторы, и в результате своих экспериментов они поняли: зародыш возникает каждый раз заново, его заранее в яйце не существует.

Мальпиги и Галлер были не менее старательные естествоиспытатели, но их эксперименты привели к идеям, противоположным и совершенно неверным. В истории науки так было не раз: наблюдая одно и то же, исследователи приходили к разным выводам. И много раз во многих ученых это порождало недоверие к опыту вообще. Плох тот ученый, рассуждали некоторые, который стремится проникнуть в тайны природы грубым инструментом. Инструмент истинного ученого — мозг, силой своего ума он должен поднимать завесу неведомого.

Помнишь? Исходя из теории матрешек, Галлер и Лейбниц логическим путем приходили к мысли о миллиардах готовых маленьких человечков, заключенных в тело то ли Адама, то ли Евы. Понять, насколько это возможно физически, было невозможно, оставалось только свалить всю вину на Творца — так ему было угодно. В логике есть такой способ доказательства — приведение к абсурду. Берется какая-то исходная идея. На нее строго логически нанизывают следствия. И если цепочка следствий приводит к результату 2х2=5, это значит, неверна исходная идея. Для некоторых ученых, даже не очень хороших экспериментаторов, миллиарды человечков в теле Евы были тем самым абсурдом, который начисто зачеркивал исходную мысль — о заблаговременной готовности организма, об отсутствии подлинного зарождения нового в живом мире.

В 1805 году опубликовал свою работу «Зарождение» молодой ученый Лоренц Окен. И современники, и теперешние историки науки упрекают Окена за умозрительность, то есть за презрение к опыту, за стремление решить загадку жизни с помощью одних только рассуждений.

В одной из газет того времени появилась рецензия на работу Окена, в которой, кроме довольно лестных слов по поводу смелости и оригинальности взглядов Окена, содержалась и жестокая критика. Газета обвиняла Окена в «наглом навязывании» природе придуманных им законов. Что же за законы навязывал природе Лоренц Окен?

«ТЕЛА ВСЕХ ВЫСШИХ ЖИВОТНЫХ СОСТОЯТ ИЗ ИНФУЗОРИЙ КАК СОСТАВНЫХ ЧАСТЕЙ».

Инфузории — это одноклеточные животные, ты знаешь, они очень похожи на взятые в отдельности клетки тел многоклеточных животных. По существу, это одно и то же. Так что это высказывание Окена правильное. Но в его время клеточное строение высших животных и растений еще не было обнаружено — силы микроскопов не хватало, чтобы разглядеть их во всех тканях. Значит, Окен каким-то образом догадался об истине…

До Окена поколения ученых спорили, из мужского или женского зачатка развивается взрослый организм — кто из родителей «главнее». Окен не только догадался (именно догадался, без всяких на то экспериментальных оснований), что «оба главные», но и провозгласил, что зарождение начинается со слияния двух зародышевых клеток-«инфузорий».

«ЗАРОЖДЕНИЕ ЕСТЬ СИНТЕЗ ИНФУЗОРИЙ»

Эти «инфузории», из которых состоит и с которых начинается всякий высший организм, были для Окена не просто составными частями. Он их называет «предзверьками», «предсуществами»:

«ВСЯКОЕ ЖИВОЕ ТЕЛО СОСТОИТ ИЗ ПРЕДСУЩЕСТВ».

Это значит, что одноклеточные организмы появились раньше, чем высшие животные и растения. И что в каком-то смысле мы — кентавры, мы составлены из наших предков!

Вслед за некоторыми учеными XVIII века Окен провозгласил и знаменитое:

«ЭМБРИОН ПРОХОДИТ ЧЕРЕЗ КЛАССЫ ЖИВОТНЫХ».

Окен часто и с гордостью заявлял, что он как истинный ученый может больше увидеть в природе силой своего ума, чем анатом-экспериментатор, убивающий в лаборатории тысячи лягушек. И что удивительно, он действительно как будто лучше разобрался в кое-каких общих вопросах, чем деятели экспериментальной науки (правда, тут была маленькая хитрость: Окен сам редко занимался опытами, но за опытами других следил очень внимательно).

Ученых, подобных Окену, называли натурфилософами. Уже к середине XIX века наука полностью отказалась от натурфилософского подхода к изучению мира. И произошло это не случайно. Вместе с поразительными, на наш взгляд, догадками в сочинениях натурфилософов можно найти и много неверных мыслей, просто нелепиц.

Не исключено, что жизнь на Земле зародилась, и несомненно, что она долго развивалась в воде, в море. Это очень древняя идея, но как, когда, в каком виде «мы были в море», не могли сказать: ведь палеонтология, эта летопись земной жизни, еще только зарождалась. И вот натурфилософ Окен, рядом с потрясающими своими догадками, столь же серьезно провозглашает, что человек вышел из моря буквально, в самом прямом смысле. Он считал, что море, эта «материнская стихия», сумело «высидеть» что-то вроде больших яиц, в которых, скорчившись, сидели маленькие человеческие эмбрионы. Потом эти яйца вышвырнуло на берег, часть человечков погибла, а часть выжила. Окен рисовал перед потрясенным читателем удивительную картину детства человечества. Смеясь, плача и крича в громе прибоя, маленькие дети ползали по пляжам, собирали съедобные ракушки, подрастали, становились людьми. Это все похоже не на науку, а на сказку. Это и была сказка. В том-то и была главная беда натурфилософии, что она, выводя «силой мысли» все новые построения, нередко не учитывала возрастающей шаткости подобных логических «мостов», висящих без опоры на экспериментальные факты.

Да, натурфилософы догадались, что между развитием живого мира и развитием зародыша есть связь, параллелизм. Но как они эту связь понимали?

Нет, не так они поняли эту связь, как потом Дарвин и дарвинисты. Не зародышевое развитие повторяет эволюционный путь, а наоборот! Зародышевое развитие человека было предначертано заранее и послужило руководством для развития живого мира. Оставалось реализовать все стадии этого предначертания в виде различных животных (и даже растений!). Натурфилософы Ф. Тидеман и Л. Окен торжественно объявили, что все животное царство — это получившие право на жизнь разные зародышевые стадии «высшего существа» — человека. Человек не произошел от обезьяны (мы знаем уже, как представлял себе происхождение человека Окен), а появился после нее по тому же божественному плану, но только доведенному на этот раз до своего полного исполнения. Человек объявлялся заранее задуманной целью мироздания. При этом он и был мирозданием, микрокосмом: ведь в нем содержалось все животное царство! Все животные, по этой теории, были как бы химерами, кентаврами, составленными изо всех предшествующих на «лестнице существ» классов животных. Но самой причудливой химерой, многосоставным кентавром оказывался именно человек, как венец творения, замыкающий пресловутую лестницу!

Удивительно, не правда ли? Начав как будто с борьбы против теории матрешек, теории предопределенного развития, натурфилософы вернулись к той же, по существу, ошибке. Опять все развитие предопределено заранее, но только не в виде бесчисленных одинаковых кругов-повторений, а в виде реализации поочередно всех стадий зародышевого развития «высшего существа».

Но в науке редко что пропадает даром, даже явные ошибки. Дальше ты увидишь, что в самой сердцевине этих ошибочных воззрений натурфилософов было все-таки спрятано рациональное зернышко, которое разглядели много позже: не только эволюция отражается на эмбриональном развитии, но и эмбриональное развитие в самом деле сильно влияет на эволюцию, на характер превращений одних животных в других. Да и взгляд на эволюцию, как на в какой-то мере создание составных, химерных генных наборов и организмов, как ты уже знаешь, снова в почете.

И это еще раз показывает верность правила Гарвея, которому мы — помнишь? — решили следовать: «Ни хвалить, ни порицать: все трудились хорошо!»

Нужен опыт, нужна и теория. Бывают в истории науки времена, когда опытных данных много, а хороших мыслей, идей не хватает, чтобы все связать. И тогда теоретики порой нужнее экспериментаторов. Но ведь бывают и другие времена. Идей множество, а вот настоящих опытных фактов, чтобы провести среди этих идей хороший отбор, не хватает.

Нужно и то и другое, а вот кем ты станешь, если будешь ученым, теоретиком или экспериментатором, это уж дело твоих способностей, склонностей. Как писал поэт и натуралист Гете: «Можно ли познать себя? — Не путем созерцания, но только путем деятельности. Попробуй исполнить свой долг, и ты узнаешь, что в тебе есть».

 

ИНТУИЦИЯ УЧЕНОГО

Итак… Окен догадался о многом, что биологии только предстояло узнать. Великий французский ученый Ламарк догадался, что одни животные произошли от других путем постепенных изменений, приспосабливаясь к среде, условиям существования. Но недостаточный запас практических знаний привел обоих к серьезным ошибкам. Ламарк не смог выдвинуть убедительной причины для приспособительных изменений живых существ. Животному «хочется» дотянуться до самых верхних веток — и вот у жирафы чуть вытягивается шея, а у слона — чуть вырастает хобот. Приобретенные свойства передаются по наследству, а у потомка опять подрастает шея или хобот.

Натурфилософов жестоко критиковали, но вместе с их ошибками отбрасывали иногда и кое-что ценное.

Наступал XIX век, век пара и электричества, век, когда в науке на первое место становился факт, опыт, что-то зримое, осязаемое. Еще Исаак Ньютон когда-то говорил: «Гипотез не сочиняю». В XIX веке стремление обойтись без гипотез, общаться только с фактом распространилось во всех науках. Задачу биолога сформулировал великий палеонтолог Ж. Кювье, больше всех критиковавший учение Ламарка: наблюдать, классифицировать и описывать.

Конечно, систематизация знаний очень важна. Но ограничиться систематизацией… О таком ученом-фактокопателе ядовито писал В. Маяковский:

Не человек, а двуногое бессилие, С головою, откусанной начисто Трактатом «О бородавках в Бразилии».

Задачей науки объявлялось знание, а не учение, система, а не дерзкое устремление в будущее.

Теория эволюции Дарвина, основанная на понятных и всем доступных фактах, предлагала для размышления захватывающие идеи. Человеку всегда интересно его происхождение, его место в мире. Наукой заинтересовались чиновники, торговцы, рабочие. Получив в руки новую путеводную нить — дарвинизм, биологи стали не просто описывать, они стали направленно искать, подбирать материал таким образом, чтобы осветить для себя и для всех других место того или иного животного или ископаемого существа в системе родства живого мира, в генеалогическом древе природы. Особенно всех интересовали истоки человеческого рода, шире — млекопитающих и, наконец, всех позвоночных животных. Более ста лет назад пришел в биологию Александр Онуфриевич Ковалевский. Наступала новая эра в эмбриологии. Ковалевский задался целью нащупать самое начало побега позвоночных.

Еще студентом Ковалевский придумал новый метод окрашивания исследуемых под микроскопом организмов. Неизвестно, как он догадался выбрать для своих исследований малопонятных и малоинтересных, по мнению биологов того времени, морских животных — асцидий, ланцетников, баляноглоссов. Почему-то он выбрал именно их. Может быть, его вела даже и не гипотеза (ее, видимо, еще и не было), а смутная догадка, интуиция ученого — вещь, как мы видели на примере натурфилософов, вовсе не бесполезная. А тут натурфилософская интуиция соединилась с блестящим даром экспериментатора. Так или иначе, истинная роль именно этих животных в великом царстве живого стала проясняться только после работ Ковалевского, даже для него самого. Но лучших объектов для опытов он не мог придумать, даже если бы заранее точно знал, какой результат его ждет.

Как только позволили обстоятельства и средства (очень скудные, Ковалевский был беден), молодой биолог выехал в Неаполь на лазурные берега воспетого поэтами залива, где принялся пристально изучать ставшего потом знаменитым ланцетника, «эту замечательную рыбку», как писал поначалу сам Ковалевский и как тогда все считали. Но дело как раз оказалось в том, что ланцетник рыбой-то и не был… Он близкий родич далекого предка не только рыб, но и вообще всех позвоночных животных.

Ланцетники есть и в нашем Черном море. Может быть, ты когда-нибудь их увидишь — я не видел, хотя много нырял, разглядывая всякую живность, и на Кавказском и на Крымском берегу. Это безглазое, безмозглое (головы нет!), «бессердечное» полупрозрачное существо и правда внешне напоминает маленькую, с мизинец, рыбку. Ланцетник живет в песке на дне, прячась от врагов, питаясь, чем придется, что попадет съедобного в ил. Удивительно, что этот самый солидный кандидат в наши предки дожил до наших дней только потому, видно, что конкурентов в такой малозаметной жизни у ланцетника и нет почти, а врагам долго и утомительно его в песке разыскивать. У ланцетника нет скелета. Но у него есть спинная опора, хорда! Это гибкая струна с нервной трубкой вдоль. И этому простому приспособлению, позволяющему животному более свободно владеть своим телом, суждено было сделать «наш» тип животных властелинами моря, суши и воздуха.

Удивительны и поучительны у ланцетника первые часы жизни. Как устройство и принцип работы самолета легче понять на простой модели из дощечек и папиросной бумаги, нежели в кресле лайнера Москва — Душанбе, так и происхождение и первые часы развития зародыша позвоночных легче всего изучить на примитивной, но понятной «модели» — на развитии яйца и зародыша ланцетника.

Яйца-икринки ланцетника очень просты — в них мало желтка, питающего вещества, и поэтому, чтобы пропитать себя, личинка ланцетника, как писал Ковалевский, «должна сейчас же отправиться на работу». Личинка начинает питаться, плавать, вести самостоятельную жизнь, еще не став настоящим хордовым позвоночным животным! Она очень похожа на беспозвоночных. Эмбриология навела мостик между позвоночными и беспозвоночными, разделенными, как прежде думали, неодолимой пропастью.

Снова подтвердилось удивительное правило, подмеченное еще натурфилософами, подтвержденное великим эмбриологом Карлом Бэром и по-новому понятое Дарвином. Зародыши разных животных на самых первых порах своего развития очень похожи друг на друга и на самых первых своих давних эволюционных предков, на более поздних стадиях они уже меньше схожи между собой и напоминают своим строением более недавних предков и т. д.

Правило было простое, оно обещало легкую и быструю разгадку всяких тайн эволюции. Ведь далеко не все звенья в цепи предков удается раскопать палеонтологам — охотникам за древними костями. И вот, основываясь в большой степени на исследованиях Ковалевского и других эмбриологов, один из последователей Дарвина немецкий естествоиспытатель Э. Геккель поспешил провозгласить «основной биогенетический закон»: Онтогенез (индивидуальное развитие организма) является повторением филогенеза (эволюционного развития вида).

Многие ученые с радостью приняли новый закон. Ведь когда есть закон, легче разобраться в массе фактов и можно идти дальше. Но и в XIX веке и в наше время «закон» Геккеля никак не мог и не может занять такого положения в науке, как, например, законы Ньютона.

Всего через два года после знаменитой статьи о ланцетнике Ковалевский опубликовал новые свои работы. «Ему, — писал друг и единомышленник Ковалевского знаменитый биолог И. И. Мечников, — было недостаточно открытия, что позвоночные и беспозвоночные связаны непрерывным звеном в виде блуждающей посредством ресничек личинки ланцетника. Ему хотелось ближе определить, с какой именно группой беспозвоночных находится в ближайшем родстве эта поразительная личинка. Со свойственной ему энергией и настойчивостью Ковалевский разрабатывает историю развития целого ряда низших животных».

Ковалевский занялся баляноглоссом. Баляноглосс был похож на роющегося в морском дне червяка, но в строении его жабр Ковалевский обнаружил черты, сближающие это животное с хордовыми. Это и был родич хордовых среди беспозвоночных. Позднее интуиция Ковалевского была еще раз блестяще подтверждена — в переднем конце тела этого «червяка», нашего прапрадядюшки, нашли небольшой отрезок гибкого хрящика, очень похожего на хорду.

Однако Ковалевскому никак не удавалось подсмотреть, как развивается баляноглосс, не удавалось найти его личинку. Только в 1870 году ее нашел Мечников. Это была торнария — давно уже известная ученым личинка, как они думали, какой-то морской звезды. Недаром получилась эта путаница — торнария ничем не отличается от настоящих личинок иглокожих: морских звезд, морских ежей и многих прочих замечательных животных моря, входящих вместе с нашим типом хордовых в огромное сообщество вторичноротых животных. Так окончательно была подтверждена мысль Ковалевского, что ближайшие родственники хордовых среди беспозвоночных — это совсем на нас непохожие иглокожие, они вроде двоюродных братьев позвоночных животных. Трудно представить себе общего предка, от которого произошли и морские звезды и человек, страшно давно он жил, и ничего, может быть, от него не осталось в каменной летописи Земли, но он был, и ученые, наверное, со временем реконструируют его возможный образ.

Так, глядя в микроскоп, эмбриологи строили систему родства живого мира и заглядывали в далекое прошлое Земли. Получалось…

1. Чуть больше или чуть меньше миллиарда лет назад часть морских животных стала в ходе своего развития испытывать странное превращение: там, где у них прежде был рот, формировался задний конец тела, служащий для выброса пищевых отходов, а где был задний конец, прорывался новый рот.

Почему этот переход ко вторичноротости оказался эволюционно столь выгодным? С нашей теперешней точки зрения, вроде бы не было такой причины. Но для общего предка иглокожих и хордовых дело могло обстоять иначе. Он, как и многие морские животные, часть своей жизни проводил, плавая в поисках удобной «стоянки».

Найдя такую стоянку, он должен был прикрепиться и жить «привязанный» неподвижно всю остальную жизнь наподобие современных актиний и асцидий.

Прикреплялся он передним концом тела, может быть, с помощью специальных щупальцев. И… тем самым закрывал себе рот. Для дальнейшей, неподвижной жизни надо было проращивать новый рот… У общего предка иглокожих и хордовых, возможно, ели оба рта — только в разные периоды жизни. (Оговорюсь, здесь изложена лишь одна гипотеза образования «вторичноротости» — гипотез этих много.)

Так или иначе, прошло время, потомки перестали прикрепляться, и этот момент индивидуального превращения быстро сдвинулся под действием естественного отбора на ранние стадии зародышевого развития. Первичный рот уже «не ел» — у иглокожих он служит для удаления непереваренной пищи. А у позвоночных, появляясь ненадолго, напоминает нам о пройденном нашими предками пути.

2. Можно примерно так же попробовать реконструировать появление у какого-нибудь вторичноротого предка этап перехода к «хордовости». Вот неизвестно, в связи с какими особенностями жизни у какого-то нашего предка к взрослому его состоянию появилась маленькая хрящеватая струнка нотохорд (как у баляноглосса). Нотохорд, укрепляя удлиненное тело, оказался выгодным, и вот он растет с чередой поколений и появляется все раньше в индивидуальном развитии организма, пока дохордовая стадия в развитии зародыша лягушки или коровы не окажется просто напоминанием о древних, но бывших в действительности событиях.

Если бы все было так, то прошлое действительно буквально записано в нас самих.

Но…

«Но это его не удовлетворяет, — пишет Мечников о Ковалевском. — Подметив, что прозрачные зародыши асцидий (оригинальных морских животных, прикрепленных к подводным предметам и с виду ничуть не похожих ни на одно из позвоночных) представляют стадии, напоминающие зародышей ланцетника, Ковалевский делает усилия для того, чтобы исследовать подробно эту тему. Но подходящий для этого вид асцидий довольно редок в Неаполе. Тогда Александр Онуфриевич переезжает на остров Искию (километрах в 25 от Неаполя), где с помощью местных рыбаков добывает нужное ему животное в большом количестве и достаточно свежем виде. Тотчас же он устраивает свою маленькую подвижную лабораторию (он и в

Неаполе работали своей единственной комнате) и засаживается за эмбриологию асцидий».

Эти три работы — о ланцетнике, баляноглоссе и асцидии — сделали нашего соотечественника в 25-летнем возрасте одним из знаменитейших ученых мира, редкая везучесть, как тогда говорили, для биолога. Но эта «везучесть» объяснялась необыкновенными способностями Ковалевского, его интуицией в выборе главной цели и удивительной фантастической терпеливостью, неутомимостью в постановке эксперимента.

Работа Ковалевского об асцидий ставит сразу под сомнение всю привидевшуюся биологу легкость решения проблемы корня позвоночных.

Взрослые асцидий ничем не похожи на нас, хордовых. Они принадлежат к подтипу оболочников, и самое, казалось бы, замечательное в них — это как раз оболочка, туника, полупрозрачное одеяние, домик асцидий. Этот домик в минуту опасности некоторые оболочники могут покинуть и построить новый. Построить… из целлюлозы, вещества, из которого сделан этот лист бумаги. Это вещество растительных тканей, неведомо как освоенное одним-единственным подтипом животных!

Но самое удивительное для нас в оболочниках все-таки не это. У асцидии, наиболее развитой из них — личинки обладают самой настоящей хордой. По форме напоминающие головастиков, они, прежде чем прикрепиться и зажить взрослой оседлой жизнью, долго свободно плавают, как бы выискивая наилучшее место для прикрепления и дальнейшего процветания в неподвижности.

Такой подвижной личинкой обладают многие прикрепленные неподвижные жители моря, иначе как бы они расселялись по просторам океанского дна? Для личинок вырабатываются особые органы движения — щупальца, реснички, парашют медузок-личинок кораллов. А у этих личинок гибкая хорда в подвижном хвостике! Сейчас биологи называют оболочников первичнохордовыми или еще личиночнохордовыми животными (а баляноглоссов — полухордовыми).

Еще один «предок»? Но если так, то предок-то, выходит, не сама асцидия, а ее «детеныш» — личинка! По биогенетическому закону зародыш, личинка, должен походить на древнюю, предковую группу животных (так и бывает у ланцетника). А здесь все наоборот: личинка «прозорливо» похожа на нас, потомков, а взрослое животное — на гораздо более древних беспозвоночных.

Получается как будто, что природа вроде как заранее знает, что ей потом очень даже пригодится хорда! И пробует ее создать заблаговременно, «ставя опыт» на личинках. Правда, некоторые ученые считали, что асцидия — это деградировавшее, отставшее в развитии животное, упростившееся из-за того, что приспособилось к сидячему существованию, а личинка — в полном согласии с биогенетическим законом — «вспоминает» о лучшем, хордовом прошлом. Эти ученые указывали: вот есть же среди оболочников такая аппендикулярия, которая оставляет себе хорду на всю жизнь.

И правда, аппендикулярия плавает свободно всю жизнь и размножается и умирает с хордой, но сейчас многие (не все!) ученые склоняются к мысли, что это крошечное животное, очень похожее на личинку асцидии, по происхождению не предок асцидии, а наоборот, как бы не выросшая, но научившаяся размножаться личинка. Так бывает в природе, это явление называют неотенией (в переводе с греческого — растянутая юность). В аквариумах часто разводят аксолотлей — симпатичных влажнокожих земноводных с веточками наружных жабр. И мало кто знает, что аксолотли — это не выросшие из-за неблагоприятных аквариумных условий, но умеющие сами размножаться личинки амфибии амбистомы, дышащей легкими.

Такие размножающиеся личинки могут совсем «забыть» о своем умении превращаться во взрослое животное, если плохие условия растянутся на века. И вот в эволюции появится новое животное, бывшая личинка, недоросток, шаг назад… Но что такое шаг назад в эволюции? Если этот шаг назад выгоден в новых условиях, это уже шаг вперед.

Так, очень может быть, и произошли наши хордовые предки. Какие-то неприятные перемены в подводном мире могли толкнуть наших предков на энергичную борьбу с грозящим вымиранием, на прорыв к совершенно иному существованию. Например, дыхание и энергетический обмен — очень разные у «продвинутых взрослых» у «недоразвитых» личинок тех же амбистом: экономные, но вялые, у первых и неэкономичные, но вдвое более энергичные, у вторых. Небольшое временное приспособление — хорда, помогавшая личинкам асцидии расширять область расселения своих сидячих взрослых, — вдруг закрепилась вплоть до стадии размножения (как у аппендикулярий). Личинка-переросток (с «точки зрения» взрослой асцидии, уродина недоразвитая) могла превратиться во взрослое хордовое вроде ланцетника и дать начало всему миру хордовых жителей планеты — и нам с тобой, значит, тоже!

Начало хордовых. Эти животные мало изменились за те полмллиарда лет, что отделяют нас, настоящих черепных позвоночных от тех, кто про-кладывал когда-то этот эволюционный путь на морском дне. Асцидия ведет колониальный, прикрепленный образ жизни, как коралловый полип, но ее личинка плавает свободно и во всю пользуется преимуществами гибкого, снабженного хордой тела. Именно на личин ку асцидии похожа аппендикулярия, которая уже и во взрослом состоянии вполне достойна роли нашего предка. Ланцетник похож на элементарную схему любого хордового животного. Но у него нет еще ни настоящего позвоночника, ни черепа, а значит, и даже зачаточного головного мозга.

 

ПЕСНЯ О КОВАЛЕВСКОМ И ЛАНЦЕТНИКЕ-АМФИОКСЕ

Начиная с работ Ковалевского в биологии, эмбриологии началась новая эпоха. К скромному ученому в Неаполь съезжались со всего мира биологи, врачи — маститые, знаменитые и просто студенты. Ковалевский уехал, а в Неаполь все тянулись его последователи, повторяя его опыты, изумляясь их простоте и наглядности. В конце концов биологи Европы организовали там что-то вроде постоянной биологической станции, куда еще в начале XX века можно было приехать, поработать, послушать воспоминания старого рыбака, добывавшего ланцетников «самому Ковалевскому». Пели на станции песню немецких студентов, которую я тебе здесь попытаюсь перевести, — в ней довольно точно описываются опыты Ковалевского, первые этапы развития личинки ланцетника, похожие на первые превращения зародыша всех позвоночных животных… Пелись каждые четыре строчки, каждая пятая — скандировалась.

Шел я берегом, один, А навстречу — господин. Выразив восторг, Он мне дал листок,

ГДЕ БЫЛО НАПИСАНО: КОВАЛЕВСКИЙ, ПРОФЕССОР ИЗ ПЕТЕРБУРГА.

Утро, будят. Пишет мне Он в любезнейшем письме: Вас прошу прийти В восемь без пяти.

БЫТЬ В ОЗНАЧЕННОЕ ВРЕМЯ НА МОРСКОМ БЕРЕГУ НЕПРЕМЕННО НАТОЩАК!

Вот, взволнован и побрит, Приняв самый светский вид, Я с горы иду И чего-то жду.

СО СКЛОНА ВЕЗУВИЯ ДОБИРАЮСЬ ДО НАЗНАЧЕННОГО МЕСТА, ОЩУЩАЯ ЛЕГКИЙ ГОЛОД.

Герр профессор там стоит, В море вдумчиво глядит И меня позвал, Чтоб и я стоял

И ТОЖЕ ТАРАЩИЛ ГЛАЗА В МОРЕ.

Над заливом все темней, А в желудке голодней, И приплыл тогда Тот, кого он ждал.

ЭТО БЫЛ ЛАНЦЕТНИК-АМФИОКС, КОТОРЫЙ ПО РАССЕЯННОСТИ УРОНИЛ ЧТО-ТО В ВОДУ.

В тот же миг, тиха, нежна, Амфиоксина жена Приплыла на зов И, не тратя слов,

С МЕСТА НЕ СХОДЯ, ОТЛОЖИЛА СВОЮ АМФИ-ОКСИНУ ИКРУ.

Ковалевский возбужден, Вот ныряет в море он, И, икру достав, Он бежит стремглав

К СЕБЕ ДОМОЙ, ВЕЛЕВ МНЕ СЛЕДОВАТЬ ЗА НИМ.

Амфиоксина икра Развивалась до утра, Вырос из одной Клетки — целый слой!

ЭТОТ СЛОЙ, КОТОРЫЙ КОВАЛЕВСКИЙ НАЗВАЛ БЛАСТОДЕРМОЙ, ОБРАЗОВАЛ К ПОЛУНОЧИ ПУЗЫРЕК-БЛАСТУЛУ.

Прогибается слегка Оболочка пузырька, Чтобы стать сплошной Стенкою двойной.

СБЛИЗИВШИЕСЯ СТЕНКИ СВЕРНУВШЕГОСЯПУЗЫРЬКА-БЛАСТУЛЫ ОБРАЗУЮТ ДВОЙНУЮ ОБОЛОЧКУ НОВОГО ТЕЛА ЗАРОДЫША.

И поплыл живой мешок, И реснички — вместо ног, Добывать еду. Ну а я все жду.

КОВАЛЕВСКИЙ РАССКАЗАЛ МНЕ, ЧТО ЛИЧИНКА АМФИОКСА, ПОПЛАВАВ СВОБОДНО, ПЕРЕХОДИТ К СЛЕДУЮЩЕМУ ПРЕВРАЩЕНИЮ.

И теряя аппетит, Вдруг сбивается с пути, То плывет вперед, То назад плывет,

ТО ЕСТЬ БЕСПОКОИТСЯ: ЭТО ЧЕРЕЗ ТЕЛО ЛИЧИНКИ, ПОДОБНО ВЕРТЕЛУ, ПРОРАСТАЕТ ХОРДА!

А потом и мозг спинной, Все детали до одной Я назвал бы все, Но, увы, месье,

ИЗ-ЗА ОМЕРЗИТЕЛЬНЫХ ЛАТИНСКИХ НАИМЕНОВАНИЙ ЭТО ЗАТРУДНИТЕЛЬНО.

Под конец осилил я: Есть еще асцидия. Вроде и она Хордою знатна.

НО ПОЧЕМУ-ТО С ВОЗРАСТОМ ОНА ГЛУПЕЕТ, КУДА-ТО ТЕРЯЕТ СВОЙ ХРЕБЕТ И БОЛЕЕ ВЫСОКАЯ ПРИРОДА ПОЗВОНОЧНЫХ ЖИВОТНЫХ В НЕЙ ИСЧЕЗАЕТ.

А когда я все узнал, Аппетит во мне взыграл, Аж живот свело. Тут и рассвело.

Я УЖЕ НЕ МОГ БОЛЬШЕ СЛУШАТЬ: ЗАЧЕМ УЗНАВАТЬ ТО, ЧТО И ТАК УЗНАЕШЬ ПРИ ПОЛУЧЕНИИ ОБРАЗОВАНИЯ.

Мне принес профессор трость, Шляпу тоже он принес… —  Вас узнать был рад. Дорогой собрат! —

СКАЗАЛ КОВАЛЕВСКИЙ И ПРОВОДИЛ МЕНЯ ДО ДВЕРЕЙ БЕЗ УЖИНА.

 

ГЛАВА ЧЕТВЕРТАЯ,

в которой выясняется, что внутри нас живет не только прошлое, но и будущее

 

ИНТУИЦИЯ ПРИРОДЫ

У Ковалевского, как у всякого настоящего ученого, была богатая интуиция. Как бы ни был трудолюбив экспериментатор, шансы сделать открытие, продвинуть вперед науку у него равны почти нулю, если он будет пробовать, экспериментировать «методом слепого тыка», не предчувствуя, не предугадывая, куда свое трудолюбие лучше всего приложить.

А могла ли природа добиваться таких удивительных результатов в эволюции живого, действуя методом «слепого тыка»? Только методом проб и ошибок? В последнее время ученые, уже зная, с какой скоростью могут появляться новые случайные признаки в организме, попробовали подсчитать, сколько же времени понадобится эволюции, чтобы дождаться признака действительно полезного, да потом еще закрепить его отбором. И сколько лет нужно, чтобы множество таких случайно получившихся свойств сформировали, наконец, лошадь или человека. Подсчеты дали очень большие цифры: времени жизни на Земле не хватало.

Получалось, что и в эволюции живого есть что-то вроде интуиции ученого. Какой-то фактор, как бы нацеливающий «эксперимент» природы или хотя бы заранее предупреждающий: такие-то и такие попытки просто бессмысленны, лучше и не пробовать. Некоторые философы, те, которые с большой неохотой уступали эволюционному учению, узнав о таких подсчетах, очень обрадовались. Ну конечно, раз в природе есть что-то вроде интуиции, предопределяющей дальнейшие шаги, значит, есть что-то вроде талантливого ученого, обмозговывающего, как это все поумней да поэкономней сделать. Творец!

Ученые, как правило, ничего не имеют против великого изобретения человечества, религии, понятие Бога дало человеку очень многое, без этого понятия он бы не стал Человеком. Основные понятия человеческой совести, норм общежития, нравственного закона, по мысли Канта, не менее прекрасного и важного, чем звездное небо над головой, возникли в сфере веры. Но он же всегда выступал против «религиозных» спекуляций в науке и «научных» в религии. Многие ученые, в том числе и столь досадивший некоторым священнослужителям Чарльз Дарвин, были глубоко верующими людьми, что не мешало им искать и находить истину, разлитую в Природе независимо от хотения или нехотения человека.

Точного ответа на все вопросы, связанные с эволюцией, нет. Во всяком случае, столь точного, как в математике. Но найдено очень многое — усилия поколений ученых не только не пропали даром, а вознаграждены захватывающей и величественной картиной, открывающейся перед человеком, пожелавшим узнать свою родословную.

Можно говорить о философии природы, философии эволюционного учения.

В затруднительных случаях полезно попробовать вернуться к началу и оттуда попытаться распутать клубок, в котором запутались… Вернемся и мы к химической эволюции, зарождению жизни, когда все было гораздо проще. Была некая лужа, в ней замкнутым циклом происходили химические реакции — так, что последняя реакция воспроизводила начальные условия для первой. Это и была преджизнь. Допустим, что-то в окружающей среде менялось, «живая лужа» должна была приспособиться к изменению, эволюционировать.

Человек обитает почти по всей Земле — и там, где жарко и где всегда холодно. Там, где не хватает одних веществ и в избытке другие.

Разные условия существования влияют на нас, на болезни, самые распространенные в той или иной области. Но прямого влияния этих разных условий на тип человека, на его наследственность нет или почти нет. А вот какие-то химические или температурные изменения в древней «живой луже» уже означали ее эволюционное изменение. Изменение живого или предживого само по себе означало тогда и генетические изменения.

Следующий этап. Появились организмы, в которых был молекулярный наследственный код, запись устройства организма на нити нуклеиновой кислоты. Между генетическим набором и строением организма появились тонкие, сложные, непрямые связи. Код не содержал в себе организма, как не содержит в себе автомобиля технологическая схема его изготовления.

И обратно: жизненные приключения организма не влияли прямо на его генетическую программу.

Философы говорят: в царстве живого есть своего рода этажи, уровни организации живого. Отношения между уровнями не простые. Каждый верхний этаж-уровень «держится» на нижнем, но и сам на него как-то влияет. С появлением генетического кода свойства организма, его признаки и наследственная основа оказались «на разных этажах». Причем что интересно: с окружающей средой, с естественным отбором имеет дело в основном «верхний этаж» — признаки, свойства. А наследуются не сами признаки, а их генная запись!

Теперь для того, чтобы вызвать стойкие, существенные наследуемые изменения в строении организма, нужно вносить поправки прямо в запись, в гены. Это мутации. Они происходят время от времени самопроизвольно, но становятся чаще, например, при облучении организма радиоактивностью, при воздействии некоторых химических веществ. Казалось бы, то же прямое воздействие среды… А вот и нет! Среда воздействует на запись. Но не на содержание записи, а на скорость ее «редактирования». Сами же «принципы редактирования» не меняются. Поправки при этом «редактировании» — мутации. Среди них может оказаться и случайно полезная, вызывающая признак, который способствует выживанию, а значит, в дальнейшем и появлению нового вида. Но в основном, по теории вероятности, этот метод «слепого тыка» чаще приводит к мутациям нейтральным, бесполезным, а еще чаще и прямо вредным, подлежащим уничтожению в процессе естественного отбора.

Это значит, что условия жизни могут резко измениться, а вид будет терпеливо дожидаться, пока в его генах случайно произойдет мутация, которая приспособит его к новой жизни. Ясно, что эволюция с помощью только мутаций и отбора — вещь мучительно медленная и трудная. Такая эволюция происходила и происходит у бактерий, весьма вероятных кандидатов в наши далекие предки. Под микроскопом в чашечках с питательным раствором ученые вызывают мутации у этих мельчайших организмов и выводят новые разновидности — штаммы бактерий. Меняется ген — меняется признак. Все просто и быстро. И все же миллиарды лет эволюции бактерий не изменили их принципиально, современные бактерии — это очень правдоподобные модели наших самых отдаленных предков.

Но где-то еще в первой половине докембрия появился «третий этаж»-уровень организации живого. Простые клетки типа бактерий, сине-зеленых водорослей объединяются в единое целое, образуя сложные, ядерные клетки. Предклетки, ставшие органеллами сложных клеток, знают разделение труда. Генная запись в настоящих клетках, в амебах, например, намного сложнее, чем в бактериях. В ней записано все новое сложное устройство организма. Запись эта — запись всех мутаций, которые произошли и не были отброшены отбором во всех предках нового организма. В генной записи — сама история. Но это история, которая в большой мере определяет будущее развитие потомков организма.

Каждая следующая мутация, физико-химическое изменение нуклеиновой молекулы так меняет свойства самой этой молекулы, что дальнейшие поправки в генах возможны уже не любые и не где придется. Нуклеиновая молекула — это сложная система, в нее что-нибудь новое встроить можно только там, где это позволяют расположения и валентности соседних химических групп. Значит, на самом «первом этаже» среди мутаций происходит что-то вроде первичного физико-химического отбора. И отбора строгого: образуется как бы несколько направлений, коридоров, по которым возможны еще генные изменения. Это значит, что уже на «первых этажах» организации признаки организму предлагаются не любые и не бесконечное число, ему предлагаются в некотором количестве заранее определенные варианты. (Забегая вперед: на всех других «этажах» ограничения еще более жесткие.)

Замечательный российский ботаник Н. И. Вавилов объездил весь мир, изучая культурные злаки и их предков — злаки дикорастущие. Работа имела большое народнохозяйственное значение: нужно было найти такие зерновые, которые давали бы максимальный урожай на тех или иных почвах, в тех или других климатах нашей огромной страны. Вавилов открыл, что всяких разновидностей, скажем, пшениц — не бесконечное разнообразие, а определенный ряд вариантов: с усиками-остьями и безостые, короткостебельные и длинностебельные и т. д. Но когда мы переходим к другому злаку, скажем к ячменю, то и у него мы видим те же самые ряды. Ко ржи — опять то же самое. Причем аналогичные (а правильней сказать — гомологичные) признаки у разных злаков так схожи, что неспециалист скорее примет за один вид рожь и ячмень с одинаковыми признаками, чем разновидности внутри одного вида. Начертив таблицу гомологических рядов злаков, Вавилов обнаружил там «пустые клетки», как когда-то Менделеев в своей таблице элементов. И как в свое время Менделеев, Вавилов смело предположил, что «пустые клетки» должны быть заполнены еще не открытыми разновидностями растений, которые обязательно должны где-то на Земле обитать. И он нашел эти предсказанные разновидности, некоторые из них были очень ценными для сельского хозяйства. Гомологические ряды Вавилова (подобные ряды были обнаружены и среди древнейших раковинных одноклеточных животных кембрийского периода, и во многих других группах организмов) хорошо показывают, что задолго до того, как начнет свое беспощадное действие естественный отбор, в организмах на «первых этажах» их организации достаточно строгий отбор вариантов уже произведен. Прошлое действительно определяет отчасти будущее, пути эволюции.

Мой друг и известном смысле учитель, рано умерший замечательный палеонтолог и философ Сергей Мейен как-то сказал мне:

«Естественный отбор отбирает не так, как пропускает макаронная машина вязкое тесто, а скорее так, как мы отбираем в магазине вполне готовые и даже упакованные товары».

И это благодаря сложной иерархии «этажей» — уровней развития живого.

 

БИОВРЕМЯ, ГЕОВРЕМЯ…

Непростая механика эволюции становится еще более сложной, когда появляется «четвертый этаж» — уровень организации живого. Одноклеточные организмы, до того боровшиеся друг с другом за место под солнцем и за лакомый кусок, оказываются в недрах одного многоклеточного организма, где они вынуждены сотрудничать, помогать друг другу и всему организму в целом. Каждый многоклеточный организм в своем индивидуальном развитии проходит снова путь от одноклеточности к многоклеточности, путь не простой, состоящий из множества операций, совершаемых удивительно вовремя, как бы по некоей команде.

Ученые знают, как записаны гены-приказы, как получаются мутации-опечатки, но до сих пор неизвестно, как в клетках, в организмах записано биологическое время, где та запись, которая определяет, что человеку жить менее века, а собаке — около 15 лет, а бабочке — столько-то дней. Где запись, которая приказывает, чтобы у мальчика в 15 лет начали расти усы, а у петушка в определенном цыплячьем возрасте — гребешок, а у раннего зародыша того и другого — жабры, которые потом исчезают. Ты знаешь, конечно, в общем-то симпатичный мультфильм, где художник нарисовал маленького львенка… с гривой. Это очень грубая биологическая ошибка, нелепость, вроде пятилетнего ребенка с запорожскими усами.

Похоже, будто «кто-то» пробегает по всему генному фонду растущего организма и проверяет, работает ли все еще вот эта группа генов (порой как будто и не нужных уже), а эта?. А эта?.

Почему так происходит? Может быть, строить организм настолько сложно, что природа может идти только одним, уже когда-то пройденным путем? И, не сделав жабр, она не могла бы перейти к следующей операции?. Зародыш просто влачится без особого смысла по раз и навсегда проторенной когда-то дорожке.

Ученые давно пытались проверить, так ли это. В конце прошлого века один биолог удалил хрусталик глаза подрастающего тритона. Тритон славится тем, что умеет отращивать себе заново разные отрезанные части тела. Регенерация! Так вот, в процессе обычного зародышевого развития хрусталик глаза у тритона (и у нас, людей, тоже) образуется в определенный момент из клеток кожного покрова. Тритон с удаленным хрусталиком восстанавливает повреждение. Но хрусталик глаза, главное рабочее свойство которого — прозрачность, в этом случае вырастает не из кожи тритона, а из радужной оболочки поврежденного глаза!

А главное рабочее свойство радужной оболочки — как раз непрозрачность. Это шторка, диафрагмирующая зрачок-объектив. Как же может шторка стать линзой? В фототехнике, конечно, не может, а в глазу тритона — пожалуйста! Как по команде, на место события является множество лейкоцитов — белых клеток крови, несущих в наших телах функцию охраны порядка. Лейкоциты набрасываются на частицы пигмента, красителя, окрашивающего глаз в тот или иной цвет, и уносят этот пигмент куда-то в своих студенистых телах. Прилегающие к вырезанному хрусталику участки радужной оболочки светлеют, осветленная ткань затягивает поврежденное место сплошной пленкой, из которой и образуется — уже обычным, дедовским способом — новый зрачок. Похоже на то, что организм может и заменять строительный материал, и в принципе обходиться, если это очень уж нужно, без рабского копирования всего прошлого генеалогического древа. Большинство стадий эволюционного развития, кстати, действительно исчезает из онтогенеза.

Так что если присмотреться, то и нет никакого рабского копирования. Зародыш повторяет лишь некоторые (не все) стадии развития предков, причем не всегда в точной последовательности и вовсе не синхронно. То есть никогда в яйце цыпленка ты не найдешь маленькой рыбки. В тот самый момент, когда у зародыша есть «жабры», одни его органы уже обогнали в развитии «рыбий» этап, а другие еще не доросли до него.

А если так, то почему все живое давным-давно не научилось выращивать взрослых существ попроще, вовсе минуя странные стадии, напоминающие далекие геологические эпохи?

Это зачем-то нужно! Нужна память далекого прошлого, нужно «проигрывание» этой памяти в ходе индивидуального зародышевого развития. Нужно потому, что это запас готовых инженерных решений, которые могут пригодиться в долгой эстафете эволюции. Ведь чем сложней организм, тем трудней ему проявлять в признаках происходящие на «первых этажах» организации химико-физические изменения — мутации. И даже если изменение в гене пробилось через «этажи» организации к новому свойству, признаку организма, то, скорее всего, этот новый признак будет уродством, а не полезным приобретением.

Помнишь, мы говорили об эволюции эволюции. Возможно, чем дальше развивается жизнь, тем менее прямое значение приобретают абсолютные новшества, мутации и все большую роль играет перебор в новых сочетаниях накопленных и готовых вариантов, создание новых конструкций из «стандартных узлов». Может быть, эмбриональное повторение прошлых стадий эволюции и есть этот перебор. Земноводные животные произошли от рыб. Между этими классами животных есть важнейшие отличия. Например, в устройстве кожных покровов. Рыбы покрыты чешуей, амфибии — голой слизистой кожей, пронизанной порами, кровеносными сосудами, богатой железами. Уже давно ученые догадывались, что кожа земноводных очень напоминает кожу рыбной личинки. Российский биолог Б. С. Матвеев выдвинул в тридцатых годах предположение, что для образования такого важного органа, как дышащая влажная кожа земноводного, не нужно было ни какой-то таинственной сверхмутации всего организма, ни, может быть, долгого пути «обратного развития» кожного покрова. Достаточно было отсечь в ходе индивидуального развития рыбы конечную стадию образования чешуи — и готовое «инженерное решение» было найдено.

Да, у природы есть нечто вроде интуиции — пока таинственное, то есть еще ждущее настоящего объяснения свойство предвидения. Эта интуиция, предвидение будущего, как и интуиция ученого, заложена в богатом прошлом опыте, в опыте всех предшествующих поколений в большом, предусмотрительно прибереженном запасе, архиве уже отработанных вариантов. Как человек оперирует не мелкими бытовыми подробностями, когда пытается заглянуть в будущее, так и природа, экономя время эволюции, оперирует не мелкими незначительными изменениями (как думали дарвинисты вначале) и не редкими внезапными мутационными перестройками. Эволюционное будущее (не самое далекое, конечно) в значительной мере предопределено, оно, как и прошлое, находится внутри живых организмов, оно заключено во всей цепи их зародышевого развития.

Многие ученые, например российские биологи Северцов и Шмальгаузен, говорили об эволюции онтогенезов, то есть о том, что в эволюции «единицей измерения» следует считать не организм, не вид, не популяцию, а тип индивидуального развития от зарождения до смерти.

Онтогенез можно представить себе в виде длинной «колбасы», причем ось этой «колбасы» — время жизни организма, биовремя, а каждый «плоский срез» — это состояние организма в тот или иной момент жизни. Ясно, «колбаса» эта тонкая в начале (организм маленький) и утолщается к концу. Внутри этой «колбасы» можно заметить то утолщающиеся, то сходящиеся на нет вытянутые вдоль оси времени нити волокна — это признаки организма, в разных временных срезах они имеют разную толщину, по-разному развиты в разные периоды жизни. Все срезы этой «колбасы» равноправны. И червеобразный зародыш с жаберными щелями — это человек, и беспомощный грудной младенец, и полный сил мужчина (женщина), и дряхлый старец. Вся или почти вся «колбаса» записана в генах, как бы существует заранее, поэтому однояйцовые (то есть происходящие из одной зародышевой клетки) близнецы будут похожи друг на друга на всех этапах своей жизни.

Вся эта «колбаса» в целом и эволюционирует, то есть движется в другом, геологическом времени, в череде поколений… На нее действуют мутации, некоторые из этих «опечаток» в генной записи, становясь признаками, а потому подпадая под действие естественного отбора, оказываются не опечатками, а редакторскими поправками, улучшающими текст. Тут очень важно понять: мутация, новая генная структура, реализуется не в признаке вообще, а в свойстве организма, проявляющемся в той или иной степени, в том или ином возрасте. На какой именно возраст падает максимальное действие мутации, зависит от таинственного и еще не раскрытого фактора, который управляет биовременем, приводит в действие в определенный момент те или иные гены.

Мутацию, меняющую форму плода у растения, мы можем и не заметить, если выращиваем растение только на цветы. Какая-то мутация может способствовать длительному хранению плодов, то есть проявиться в самом конце жизненного цикла. В природе такая мутация может пройти бесследно, существовать незаметно у какого-то ничтожного процента диких растений — и это будет скрытая мутация. Но человек может заметить ее и путем селекции выделить растение с важным для него свойством. Мутация может вызвать пушистость меха у взрослого животного. Если дело происходит в холодные времена и в полярных странах, естественный отбор не только постарается закрепить новый признак, но и сдвинет его в биовремени — онтогенезе организма — на возможно более ранние стадии, чтобы сохранить от замерзания и детенышей. Если мутация вредна, естественный отбор постарается сдвинуть ее проявление в признаке на самый конец жизни. Может быть, именно поэтому в старости чаще всего проявляется наследственная предрасположенность к болезням.

Может измениться запись признака для очень ранней стадии — детской или даже зародышевой. Такое изменение влияет на всю последующую жизнь и может сильно изменить весь тип организма. Поэтому ранняя мутация, если она хоть немного не встраивается в существующую систему организма, либо отсекается отбором (детская смертность и гибель зародышей во много раз превышает смертность среди взрослых, зрелых существ), либо регулируется в ходе зародышевого развития — мутантный признак нередко компенсируется или затушевывается изменениями в развивающихся рядом тканях и органах.

Вредных мутаций большинство, но могут быть и безвредные и даже полезные. Ранняя мутация, резко перестроив организм, может дать что-то вроде скачка в эволюционной истории…

Но таких мутаций — чем выше уровень развития животного или растения — становится все меньше. Опять эволюция эволюции! Раз большинство мутаций вредные, жизнь ищет способы бороться с ними. В клетках появляются особые механизмы починки поврежденных генных записей, мутацию можно перевести в разряд скрытых, прикрепив к ней особый ген-подавитель, который не дает ей проявить свои зловещие возможности в нежелательном признаке. Многие мутации, изменения в генах, не обязательно вызывают нежелательный признак, а только изредка, у некоторой части потомства. Тогда вид в целом не пострадает. Гены с таким уступающим, лишь изредка выявляемым действием называют рецессивными (в противоположность доминантным).

Итак, эволюция может идти за счет внутренних изменений в самой «колбасе-онтогенезе». Одна часть «колбасы» может постепенно очень сильно вытянуться (неотения, растянутая юность!), другая, наоборот, сократиться, уйти в эмбриональный запас (стадия жаберных щелей у человеческого зародыша). Могут перемещаться из конца в конец «колбасы» отдельные возрастные признаки…

И значит, нет ничего удивительного, если по некоторому признаку онтогенез отразит эволюцию предков животного, а по какому-то не отразит. И даже наоборот, древний, забытый вроде бы признак сдвигается из зародышевой на зрелую стадию. Но первых случаев больше — ведь чем древнее признак, тем все-таки труднее его применить в новых условиях.

Каждый из нас несет в себе прошлое. И несет не как памятный подарок, а как полезный и необходимый багаж на долгом пути эволюции. Почти все, что еще может понадобиться для новых неволшебных превращений, есть в этом багаже. Значит, каждый из нас, жителей Земли, несет в себе не только свое прошлое, но и свое будущее.

 

ЗЕМЛЯ В ДОКЕМБРИИ

Жизнь явилась и сделала несколько шагов. Но это не значит, что планета стала похожа на современную. На докембрийской Земле мы бы сразу погибли.

Сначала не было свободного кислорода. Самые первые бактерии и водоросли, возможно, обходились без процесса дыхания, необходимая для жизнедеятельности энергия добывалась иначе — например, с помощью брожения.

Сине-зеленые водоросли, строя рифы в океанах, уже выделяли кислород, он накапливался в воде. Кислород был сильнейшим ядом для многих древних существ, но он ускорил эволюцию для тех, кто сумел перейти на кислородное дыхание. Им дышали первые многоклеточные животные в океане, но в атмосфере его по-прежнему почти не было. Горные породы еще молодой, «неокисленной» Земли жадно поглощали его, окисляясь. Главный газ атмосферы был углекислый, как на современной Венере. Те же сине-зеленые, еще когда только научились строить рифы, стали удалять углекислоту из воды (а значит, и из атмосферы), связывать ее в известковых коллективных скелетах. Говорят, если выделить весь углекислый газ, скрыто содержащийся во всех ископаемых известняках, земная атмосфера увеличится в десятки раз и станет почти полностью углекислой, вернется к первобытному, венерианскому типу.

Но выделение кислорода и поглощение углекислоты шло очень медленно. Прошли миллиарды лет с зарождения жизни, а содержание кислорода в атмосфере к началу второй половины рифея (миллиард лет назад) достигло, как считают некоторые, только одного процента (сейчас 21 %). Внешне Земля мало отличалась от той безжизненной планеты, на которой возникли первые «живые» молекулы. Суша была голая, пустынная. Зато в океане…

 

ВТОРАЯ РАЗДАЧА СКЕЛЕТОВ

Шестьсот миллионов лет назад на рубеже огромной докембрийской эпохи и кембрия по всей Земле в океанах как-то вдруг разом появились тысячи уже вполне развитых, эволюционно приспособленных, по-разному специализированных организмов. Как будто Земля была внезапно заселена извне… И было время, когда «кембрийское нашествие» организмов использовалось противниками эволюционного учения: вполне готовая высокоорганизованная жизнь, говорили" некоторые ученые, появилась сразу, а не развивалась путем медленных преобразований.

Это были археоциаты — малопонятные, многочисленные в кембрии, но вскоре без остатка вымершие животные, строившие коллективные скелеты-рифы, наподобие современных кораллов; фораминиферы — одноклеточные существа с красивыми, разнообразной формы раковинками, живущие до сих пор. Королями кембрийского моря были трилобиты — мелкие и крупные, подвижные, защищенные панцирем членистоногие хищники, родичи более поздних раков и скорпионов. Внешне на них похожи нынешние мокрицы.

Среди остатков животных, появившихся во время «кембрийской революции», напрасно искать наших предков — хордовых, хотя они, несомненно, уже жили в морях. Правда, получили скелет и губки — их можно считать формой, близкой к первым многоклеточным. Но губки уже существовали к этому времени, может быть, не меньше миллиарда лет, это была новость «с бородой». В чуть более молодых слоях палеонтологи находят граптолиты — причудливые колонии животных, явно близких к нашему полухордовому современнику, исследованному А. О. Ковалевским, — баляноглоссу. Но и полухордовые «пропечатываются» в книге эпох гораздо позже тех времен, когда они давали начало хордовым нашим предкам. То же можно сказать и о первичнохордовых — оболочниках, которые так и не получили скелета, но все-таки порой их отпечатки в окаменевших илах древних морей попадаются на глаза палеонтологам. Но все это позже. На границе же кембрия и докембрия наши прямые ланцетникоподобные, видимо, предки оставались палеонтологическими невидимками.

«Нашествие скелетов» — так можно было бы назвать внезапное, почти одновременное появление по всей Земле множества животных, обладающих хорошо сохраняющимся в земле скелетом. Кончилась длинная эпоха жизни тайной — криптозой, начался фанерозой — эпоха жизни явной. Порог между криптозоем и фанерозоем (сейчас этот период называют вендом, и фанерозой начинают с него) довольно резкий, его обычно приводят в качестве примера, когда говорят, что, кроме долгих постепенных изменений, в истории жизни бывали и своего рода революции — изменения относительно «внезапные», затрагивающие сразу множество животных.

Почему так бывает? Почему скелет понадобился разом и одноклеточным фораминиферам, и сложным, видимо уже плавающим и ползающим предкам трилобитов, и всем другим?

Помнишь, я рассказывал тебе о старом ученом, многие годы изучавшем морозные кристаллы на стекле и пытавшемся понять, почему эти узоры так похожи на настоящие растения. Скорее всего, физико-химические законы кристаллообразования, которые были такими важными при зарождении жизни, могут широко и могуче вмешиваться в самый ход уже начавшейся и далеко ушедшей эволюции живого…

Кристаллы выпадают из насыщенного раствора. Океан насыщен малорастворимой известью — углекислым кальцием СаСО3. Насыщен настолько, что в теплых мелководьях тропиков кое-где известь сама осаждается из воды. Получаются очень красивые белоснежные отмели из оолитового, известкового песка.

Один американский ученый высчитал, что с момента зарождения первых сине-зеленых водорослей, выделяющих кислород, атмосфера Земли менялась очень медленно. Мы говорили: с начала позднего рифея, то есть в последний миллиард лет, его содержание в земной атмосфере стало исчисляться процентами. Подсчитано, что с «точки Пастера», то есть с 1-процентного содержания кислорода в воздухе, многое в древнем мире стало необратимо меняться. Появилось кислородное дыхание, что резко ускорило развитие крупных многоклеточных организмов. Вода в океанах из чуть кислой, какой она была до достижения точки Пастера, стала чуть щелочной. Морские организмы — самые разные — оказались перед общей проблемой. Образующийся в их телах в процессе обмена углекислый кальций, известь и другие минеральные выделения стало трудно удалять: труднорастворимые соли в щелочной среде тут же норовят кристаллизоваться.

К началу фанерозоя созрели условия для выбора — жить по-старому становилось невозможно. Мы не знаем, сколько животных вымерло, так и не справившись с этой проблемой. Возможно, это было самое грандиозное вымирание в истории Земли (о других эпохах вымирания мы еще будем говорить). Свидетельство тому — бедность кембрийских отложений видами и родами (при общем обилии скелетных останков). Но вымиравшие жители эпохи криптозоя чаще не оставляли своих автографов в книге эпох. Перед живым миром было два выхода.

Первый: изменить обмен веществ так, чтобы вокруг тела не возникало «душегубки» из извести. Те животные, которые пошли по этому пути, остались мягкотелыми.

Второй путь: «душегубку» превратить во что-то полезное — в домик, панцирь, в опору для мягких частей тела.

И вот самые разные виды, роды, классы животных научились, подобно сине-зеленым водорослям, использовать новшество, строить из выделяющейся извести скелеты, которые могли хорошо служить и для защиты, и для нападения. Так, думают некоторые ученые, и наступил фанерозой — эра жизни явной. Но наступил не для всех животных. Фанерозой, эра скелетной жизни, для наших позвоночных предков наступил не в начале кембрия, а уже в следующей геологической эпохе — в ордовике.