Тайна земных катастроф

Гангнус Александр Александрович

Геопоэзия (вместо эпилога)

 

 

Сейсмическая мутность

Сейсмология — наука о колебаниях. И, как таковая, она оказывается в ближайшем родстве с другими разделами физики, изучающими волны, — оптикой, акустикой, физикой радиоволн. Дисперсия, дифракция, интерференция, преломление, отражение, поляризация — с каждым из этих понятий в сейсмологии связан целый хвост чаяний и уже опубликованных работ.

И здесь чисто популяризаторский прием нестрогих аналогий оказывается часто путем к новому видению проблемы. Квантовая механика разрубила гордиев узел дилеммы "волна-частица" для света очень просто: она возгласила дуализм. И электрон не только частица, но и волна, и звук не только волна. В нелинейной акустике давно уже известно понятие фонона — элементарной частицы звука, ибо по универсальной переходной формуле Планка E=hγ, где Е — энергия частицы, а γ — частота колебаний в волновом процессе, всякое волновое явление нетрудно изобразить как в виде потока частиц, так и в виде "цуга волн". Представив акустический процесс в виде потока фононов, физики добились немалых достижений в области изучения взаимодействия звука и решеток кристаллов.

Сейсмология очень близка к акустике. Продольные волны сейсмологии: — это по существу те же звуковые волны, только очень широкого диапазона частот, с мощным хвостом в инфразвуковой области — области самых длинных волн. Глазу непривычно видеть медленность таких колебаний, что-то нарочитое видится в неспешных зигзагах перописца на сейсмографе видимой записи, когда он начинает вырисовывать автограф далекого землетрясения. Что-то могучее и грандиозное в сравнении с эфемерным мельтешением обычных звуковых колебаний, не говоря уж о свете...

Но восприятия обыденного здравого смысла не всегда точны. Если по формуле Планка пересчитать сейсмические колебания в фононы, а точнее, в сейсмоны (ибо все-таки звук и сейсмические волны — это не совсем одно и то же), то великое обернется малым. Сейсмоны самых длинных сейсмических колебаний невероятно малоэнергичны в сравнении с фононами слышимого звука, не говоря уже о квантах радиоволн и тем паче о фотонах света. Это потому, что энергия дуалистической частицы равна произведению частоты (а она мала именно в сейсмодиапазоне) на постоянную Планка (постоянная есть постоянная).

Это значит, что квантованность, прерывистость сейсмического излучения невероятно мала, но она не равна нулю. А потому любую порцию сейсмической энергии можно изобразить в виде некоей (очень большой) суммы сейсмонов.

Как ведут себя сейсмоны? Вот мириады их, излученных сильным землетрясением, бегут со скоростью продольной волны (в коре — около 5 километров в секунду). Скорость продольной волны — абсолютная скорость сейсмического пространства-времени. Казалось бы, какая разница, как описывать процесс: от волны в нем как будто больше, чем от частицы. Но видный западногерманский сейсмолог Бергхеммер описывает затухание сейсмического излучения как диффузию фононов-сейсмонов, и его описание, как говорят специалисты, учитывает некоторые тонкие эффекты, в ином представлении непонятные.

Вблизи самого очага — полный набор сейсмонов, начиная от ультразвуковых и звуковых: Земля кричит в голос в районе сильного землетрясения. Этот гул часто предупреждает о начинающейся катастрофе. Еще Александр Гумбольдт, в начале прошлого века путешествовавший по Южной Америке, описал это явление. Два раба-негра, поднимавшие воду из колодца, испугались до беспамятства, услышав со, дна колодца грозный крик земных недр перед толчком. Но наиболее энергичные высокочастотные звуковые фононы быстрее всего теряются на пути сейсмического луча. Татьяна Глебовна Раутиан, старейший сотрудник экспедиции и энтузиаст исследования землетрясений, с помощью частотно-избирательных приборов, раскладывающих колебания на спектр разных частот, с помощью фононов оригинально описывает процессы затухания и рассеивания сейсмической энергии на пути от землетрясения до сейсмоприемника.

Фононы-сейсмоны только начинают появляться на страницах сейсмологической литературы. Может быть, они так и останутся оригинальным способом описания. Но мне они симпатичны, и я болею за их более прочное утверждение в науке. Может быть, какие-то необычные заблаговременные изменения в потоке сейсмонов от слабых землетрясений позволят по-новому подойти и к проблеме прогноза сильных толчков?

Читатель этой книги уже информирован и о других параллелях между причинно-следственными странностями в термодинамике и даже квантовой физике, с одной стороны, и в сейсмологии — с другой. Одна из важных, основных проблем нынешней науки о землетрясениях — ее положение на распутье между чисто детерминистским и статистико-вероятностным путем, сходным с магистральным путем нынешней "Большой физики". Будет немного жаль, когда выбор будет сделан в пользу последнего пути (все же интуитивно хочется простых, "здоровых", стройных причинно-следственных рядов), но, по-видимому, это неизбежно.

Впрочем, некоторые видные деятели этой науки видят подвижной границу между "детерминистским" и статистическим компонентами предмета изучения сейсмологии. И даже считают, что первая задача науки, несущей ответственность за прогноз бедствий, — определить эти границы и получать результаты тем способом, какой в данной области наиболее эффективен. Сам объект исследования должен в каждом данном случае как бы сам диктовать, как его лучше изучать.

Друг и порой наставник в сложных дебрях сейсмологии замначальника экспедиции Алексей Николаев писал в заключение своей книги: "Природа быстро вступает в противоречие с идеализированными представлениями о ее состоянии и нередко выигрывает встречу с интерпретатором. Усложнение детерминированной модели не приносит утешения: интерпретация становится неопределенной, ее результаты расплывчатыми... Переход к статистическим моделям-это существенное упрощение задачи, позволяющее сравнительно легко миновать сложности изощренного детерминированного описания".

Сам А. Николаев сделал свой вклад в новое понимание проблемы, развив учение о мутности сейсмического пространства. "Мутность — это все те детали, которые вылезают за рамки детерминированной модели..." Алексей в свое время отлично знал, какое великолепное поле упражнений острякам он открывает введением термина "мутность". Но он проявил завидную стойкость и вышел победителем. Термин со временем примелькался и завоевал сторонников.

Мутность сейсмотектонического пространства — это нечто обратное понятию прозрачности этого пространства. Земля насквозь просвечивается сейсмическими лучами... Значит ли это, что Земля прозрачна для них? Нет! Так же как непрозрачно толстое стекло, сплошь заполненное пузырьками и кристаллами, каждый из которых пропускает свет, но каждый — по-своему. Такое стекло пропустит свет, но его нельзя назвать прозрачным. Оно заполнено неоднородностями. И на этих неоднородностях проходящий свет рассеивается.

Когда сейсмолог получает сигнал от далекого землетрясения, он отлично знает, что сигнал этот очень мало похож на первичный, испущенный очагом. Иногда говорят, что задача сейсмолога, получив сигнал, так его обработать, отфильтровать все постороннее, наносное, приобретенное по пути, чтобы, с одной стороны, получить чистый первичный сигнал, с другой — узнать все о пути следования луча. Это и есть главная задача сейсмологии с точки зрения детерминированной модели. Эту задачу можно сравнить с задачей астронома, наблюдающего свет далеких звезд. Он узнает, что звезда удаляется, что она вращается, узнает по спектру ее химический состав, а вдобавок и еще кое-что о межзвездной среде, через которую прошел луч, и даже об атмосфере Земли.

Но как выглядит претворение в жизнь этого идеала в сейсмологической действительности?

Даже если мы учтем ошибку прибора, специально уточним геологический разрез по пути следования луча, мы на нашей сейсмограмме всегда получим колебание, на какую-то величину "отскакивающее" от любых расчетных величин. Часто сейсмологи тратят годы на выяснение причин такого "отскока" (детерминистский идеал влечет сейсмолога, как огонь — бабочку!), ничего не выясняют, а потом, бывает, тот "отскок" куда-то девается, появляется другой, столь же необъяснимый.

Но, если вдуматься, так все и должно быть. Земля пропускает сейсмические лучи, но Земля не прозрачна для них. Можем ли мы выявить каждый кристалл в глубине толстого мутного стекла? Нет, да и не очень это нужно. Но мы можем сделать общую оценку мутности...

Так и поступил Алексей Николаев в своем изящном исследовании. Все отклонения амплитуд на сейсмограмме от картины, объяснимой с детерминистской позиции "докопаться до гвоздя", он записал в "коэффициент мутности" и стал широко и глубоко исследовать новый параметр. Широко — от степей Казахстана до окраинных морей СССР, глубоко — до верхней мантии. Ну, а об естественно-философской глубине такого подхода к проблеме я и не говорю — она очевидна.

 

Дрейф неоднородностей

Лично мне в диссертации А. Николаева больше всего нравится его необычайно одобрительное, я бы даже сказал, дружелюбное отношение к планете, доставшейся ему волею судеб для исследования. Геофизический результат своих исследований он видит прежде всего в том факте, что "Земля удачно создана для исследования мутности... обладает локальной однородностью статистических характеристик и достаточным их разнообразием, хорошо районирована и стратифицирована".

Это ясное удовлетворение доставшимся ему объектом исследования как нельзя лучше характеризует исследователя. Добродушный и неизменно благожелательный (не только к планете Земля), Алексей Николаев, на мой взгляд, в этом смысле выгодно отличается от тех ученых, которые вечно недовольны коллегами, аппаратурой, собственной должностью, собственной наукой ("не тянет-таки за физикой") и науками смежными ("все статьи пишут, а о деле не думают"), и даже объектом исследования, и математический идеал "квадратного океана", "однородной, идеально упругой" Земли в силу своей недостижимости у них становится поводом для недовольства той реальной Землей, которая требует стольких хлопот.

Земля — наш внутренний космос. Наши телескопы — сейсмографы, наши звезды — землетрясения. Сейчас во многих странах строятся целые системы сейсмостанций, хорошо между собой связанных, позволяющих с максимальной точностью фиксировать устройство "внутреннего космоса".

— Ошиблись американцы, построили свою ЛАСА (телескопную систему сейсмостанций. — А. Г.) в мутном месте. Там рельеф поверхности Мохо и мутность коры портят всю картину. Можно было бы попрозрачнее окошко найти. — Это Алексей говорит.

— А где попрозрачнее?

— Да во многих местах. Вообще на континентах везде довольно большая мутность — в верхних десяти километрах. Здесь больше всего всяких неоднородностей. Что за неоднородности? Всякие, но вообще можно иногда и выявить какие. Волны рассеиваются больше всего на неоднородностях — пузырьках диаметром того же порядка, что и длина волны. Так мы узнали, что, скажем, в толще осадков под дном Черного моря поперечник неоднородности — два-три километра. Именно такие размеры имеют те включения в "стекло" нашей планеты, которые портят настроение стольким сейсмологам. Глубже десяти километров кора становится все прозрачнее. Мантия особенно прозрачна, и это хорошо: ведь через нее проходит основной путь сейсмических лучей от дальних землетрясений. Нам было интересно, как проявит себя подошва коры — граница Мохоровичича. Ведь она могла повести себя как шершавая поверхность матового стекла, и это означало бы, что эта поверхность, отделяющая кору от мантии, — неровная. Но раздел Мохоровичича проявил себя с хорошей стороны. Для сейсмических волн он прозрачен, как поверхность моря в полный штиль... Самая прозрачная кора — ближе к океанам. Там, на дне, и устроить бы сейсмотелескоп... Но это еще не скоро будет. Есть и на материке места неплохие.

Конечно, хотя Алексей и доволен своей наукой и планетой, есть у него и мечты. Одна из них — "заложить сейсмические эпохи". Где-нибудь в Приморье один раз, скажем, в год производить сильный взрыв. Специально расставленная для всеохватного приема аппаратура принимает сигналы. ЭВМ сравнивает полученные сигналы, выявляет изменения во времени. Разные., сейсмические лучи, прошедшие под альпийским складчатым поясом, Сибирью, океаном, покажут в развитии тектоносейсмическую жизнь земных глубин. Ведь сильнейшие землетрясения готовятся десятки лет, и их подготовка тесно связана с "брадисейсмическими" (выражение Голицына), то есть медленными, перемещениями коры и подкоровых масс. Аномалии скоростей, неоднородности, выявленные николаевской методикой в масштабах десятков лет, возможно, обнаружат и, кажется, уже обнаруживают заметный дрейф, показав воочию несколько кадров из всемирного геологического процесса.

 

Сейсмовидение

Аспирант Института физики Земли Петр Троицкий в тысячный раз всматривается в кубик парафина, просверленный в глубине крест-накрест, — простая модель кусочка земных недр, которые нужно сделать объемно видимыми, прозрачными. Надежда и сомнение борются, теснятся в его душе. И почему-то он не очень удивляется, когда на верхней грани парафинового кубика неожиданно возникает странная фигурка крошечного старичка с белой шелковистой бородкой и в островерхом капюшончике. Старичок приветливо улыбается, протягивает руку — и вот уже аспирант рядом со старичком, на гладкой парафиновой поверхности, они идут с маленьким гномом — теперь не таким уже маленьким, Троицкий немногим выше, — рука об руку они входят внутрь парафиновой модели, ясно видны тускло просвечивающие стены коридора, которые Троицкий сам сверлил дрелью. Они доходят до пересечения коридора — дырки с другим подобным накрест просверленным коридором, и старичок что-то говорит, успокаивая. Вот, мол, видишь, все правильно, все на совесть, а сейчас самое главное. Они выходят из полупрозрачной парафиновой глыбы и вступают на узкую зыбкую дорожку, прямо, как стрела, устремленную в черную даль. Троицкий догадывается: это луч лазера, сейчас они дойдут до скрещения этого луча с его отражением от голограммы... И вот уже виднеется впереди яркая точка, она все ближе, и Троицкий ясно видит: перед ним крошечное серебристое изображение того парафинового куба, что высится сзади гигантским небоскребом, а в середине голографического объемного — хочется пощупать — изображения ясно видны крест-накрест две дырки. "Ну вот, а ты волнуешься, — говорит старичок, — все получается, не бойся, работай дальше". Он куда-то исчезает, а Троицкий с радостно бьющимся сердцем протягивает руки к объемному изображению, они, как и должно это быть, проходят через призрачный образ, не встречая сопротивления, и... Троицкий просыпается. Звонит будильник, за окном голубеет небо, красно-листая по-осеннему черешня шелестит ветками по стеклу. Талгар, город-спутник Алма-Аты, предгорья заснеженного Заилийского Алатау, конец октября 1973 года.

Я должен попросить прощения у читателя за еще один пересказанный сон. Но и этот сон — факт, причем широко известный в наших экспедиционных кругах. Правда, голографическое изображение той условной неоднородности, которая будет играть важную роль в будущей диссертации. Троицкий видел не только во сне, но и наяву, в лаборатории.

Голография! Изобретение XX века, осуществившее еще одну мечту фантастов, долго казавшуюся несбыточной, — объемное, максимально близкое к оригиналу изображение реальных предметов.

Говорят, уже близко к реализации объемное движущееся изображение...

"Под сводом, возведенным на потрескавшихся, изъеденных колоннах, стояла женщина, словно ожидая меня... Я уже различал ее лицо, мерцание искорок в бриллиантовых пластинках, закрывавших уши, белую, серебрящуюся в тени ткань. Я не мог поверить. Сон? Я был в нескольких десятках шагов от нее, когда она запела... Я боялся спугнуть ее, шел все медленнее. Я был уже в световом кругу, охватившем каменную беседку... Ее голос усилился, она призывала мрак, умоляла, замирая, руки упали, как будто она забыла о них... Я не знал, что такое возможно... И вдруг за моей спиной какая-то девушка пробежала к беседке, за ней кто-то гнался... она сбежала по ступенькам вниз и пронеслась сквозь стоявшую... Я отошел в темноту с окаменевшим лицом, как ребенок, которому раскрыли, что сказка — ложь".

Это уже не из сна. Это — реал, объемное телевидение из "Возвращения со звезд" Станислава Лема. И вот к принципам голографии, объемного видения обратились сейсмологи...

Реальность фантастическому реалу придало изобретение лазеров. Это пока единственный возможный источник когерентного излучения, излучения одной частоты, чистого цвета. Обычный свет, которым мы пользуемся, даже окрашенный специальными светофильтрами, — это смесь волн разной длины. Излучение Солнца — это сплошной спектр волн разной частоты.

Если осветить когерентным излучением статуэтку и рядом — фотопластинку, то свет, попав на пластинку двумя путями — напрямую и отразившись от статуэтки, образует на пластинке хаотический на взгляд набор черных и белых пятен — интерференционную картину. Колебания в одной фазе усилят, а в противофазе ослабят друг друга. Потом луч лазера той же частоты, попав на проявленную пластинку — голограмму, сделает в принципе то же, что делает игла проигрывателя, бегущая по пластинке. Он воспроизведет запись, в данном случае — видимый оригинал, в пространстве рядом с голограммой, воспроизведет как объемное изображение.

Сейчас сейсмологи находятся в "долазерной" эпохе. Сейсмограммы обычные — это запись всех волн, приходящих от землетрясения. Можно пропустить запись через фильтры и получить сейсмограммы разного сейсмического "цвета" — 1, 3, 10 герц... Так работают частотно-избирательные сейсмо-станции, создание советского сейсмолога X. К. Запольского. Но когерентного излучения типа радиоволны в локаторе или лазерного луча сейсмологи еще практически в своем распоряжении не имели.

Между тем прообраз сейсмического локатора или лазера уже есть на нашей планете... Сейсморазведчики для просвечивания недр используют взрыв, Сейсмическое широкополосное излучение такого источника колебаний тоже немало дает исследователю. Но взрыв есть взрыв. В море он глушит рыбу, на суше тоже не слишком приятен. Развернувшаяся в последние годы всемирная борьба за охрану среды обратила свои взоры и на такой источник шума, загрязнений и опасностей для всего живого, как разведочные взрывы. И появились вибраторы. Одну такую машину я видел как-то на крыше строящегося антисейсмически укрепленного здания в Алма-Ате. Несколько грузов-эксцентриков, укрепленных на могучих валах, начинают вращаться. Регулируя скорость вращения, вес эксцентриков, их взаимное положение, можно подобрать разные, строго заданные частоты искусственного землетрясения, направление колебаний (эксцентрики в горизонтальном направлении оказываются в фазе, а в вертикальном — в противофазе; вот и источник поперечной вибрации). В США вибраторы, установленные на грузовиках, служат для сейсмического просвечивания недр в целях разведки полезных ископаемых. Но Николаев и Троицкий хотят большего. Вибратор может стать "реалом" сейсмологии. И месторождение полезных ископаемых, и очаг землетрясения, и вулканическая камера в недрах огнедышащей горы, и погруженные в мантию плиты литосферы, бывшие некогда земной поверхностью, и граница между ядром планеты и мантией, где задается ход величественного кипения недр Земли и вырабатывается магнитное поле планеты, — все это объекты для будущего сейсмовидения.

Сейчас сейсмолог подобен музыканту, который, вместо того чтобы слышать мелодию, разъял музыку как труп... Или представьте себе существо, практически слепое, но научившееся с помощью приборов записывать странные колебания в окружающей его среде. Оно запишет много таких Колебаний, установит, что они исходят из определенных источников, установит много интересных закономерностей в амплитудах, частотах колебаний, их затухании и рассеяний. А теперь допустим, что это существо, равное нам по разуму, но с другими органами чувств, живет наподобие неких слепых муравьев... на красивой, покрытой цветами лужайке. И все регистрируемые этими крошечными существами колебания — это волны видимого света.

Бесспорно, такие существа могут больше нашего узнать о свойствах колебаний, частотных характеристиках разных источников излучения, но догадаются ли они о существовании лужайки? Наверное, завяжутся между ними споры о том, как подходить к замеченным ими отклонениям от строго закономерной, по их мнению, картины — с позиций ли чистого детерминизма, расследуя причины каждого отклонения, или с позиций статистического детерминизма, примирившись с такими отклонениями как с неизбежностью и пытаясь вписать их в некую картину с более широкими рамками... И победителем окажется тот, кто сможет посмотреть на явление совсем другими глазами, и не "сбоку" (по существу сейсмограмма и любая механическая запись колебаний — это механический срез ряда волн вдоль оси времени), а "в лоб", силясь увидеть целое изображение из всей совокупности приходящих волн.

Если опять перейти к Земле и сейсмологам, то здесь таким способом настоящего сейсмовидения (а не сейсмометрии), может быть, окажутся со временем именно голографические принципы высвечивания всех подробностей внутреннего устройства Земли. Интересно, что будущие сейсмоголограммы легко представить себе цветными. Цветом можно закодировать гамму частот сейсмических волн, с которыми имеет дело сейсмолог. Самые длинные — красным, оранжевым цветом, короткие — желтым, зеленым, синим... Ведь различные структуры нашей планеты весьма по-разному проводят, рассеивают и отражают сейсмические волны разных частот. Каждую область исследуют в нескольких длинах волн, и общий результат, изображение в сейсмовидении, окажется расцвеченным, а значит, и более информативным.

...Петр Троицкий взял большой кусок парафина и высверлил в нем два перекрещивающихся отверстия — неоднородность. Затем обложил брусок пьезоэлектрическими датчиками — они у него служили "сейсмографами". "Неоднородность" просвечивалась источником ультразвука (в лабораторных опытах — частая замена длинных сейсмических волн). Интенсивность "озвученности" каждого датчика была измерена и нанесена в виде по-разному зачерненных квадратов на лист бумаги. Это была голограмма. Лист потом сфотографировали, и кадрик пленки использовали как уменьшенную копию голограммы. В соответствии с масштабом этого уменьшения была подобрана частота лазера (уменьшение понадобилось потому, что световые волны намного короче ультразвуковых). Когда лазером осветили кадрик-голограмму, в черном пространстве прибора Николаев и Троицкий увидели изображение своей "неоднородности". Она была не так прекрасна, как певица из "Возвращения со звезд", — крестовина и все, но исследователям она была намного дороже самой прекрасной "неоднородности" из фантастики. Первый шаг был сделан. Звуковую голограмму можно переводить в световую. Значит, и сейсмическую можно будет. Волны есть волны, все они описываются одними законами. Значит, не за горами объемные изображения самых таинственных неоднородностей, скрытых в глубинах Земли. Повторенные через годы, такие сейсмоголограммы покажут движения в сокровенных недрах; не окажутся для них невидимыми и опасные сгущения энергии в районе готовящегося землетрясения.

 

Земля-корабль

Геопоэзия... Так назвал один американский геолог странный мир, открывающийся перед современными науками о Земле. Это не порицающий, а скорее подбодряющий эпитет. В эпоху научной революции поэзия гипотез порой преобладает над сухостью детального анализа.

Началось это в конце прошлого — начале нынешнего века, когда ученые узнали, что наша планета не совсем равномерно обращается вокруг собственной оси. Эта неравномерность ярко выражена в масштабе десятилетий. Особо сильные ускорения в угловом движении испытала Земля в 1898 и 1920 годах. Таинственным образом меняется угловая скорость поверхности вращающейся Земли и в течение года. Сейчас она максимальна в июле и минимальна в январе. Потрясающее и многозначительное совпадение: по этому же закону распределяется в году средняя частота сильных землетрясений на планете (как коровых, так и глубоких) — максимум в июле, минимум в январе, с разрывом между ними примерно процентов в двадцать.

Н. Н. Парийский и некоторые другие ученые видят в этом совпадении подтверждение гипотезы, связывающей сезонные изменения угловой скорости вращения Земли с движениями циклонов и антициклонов по лику планеты. Может быть, так оно и есть? Но... эти глобальные метеорологические процессы поддаются расчету — нет, не могут они объяснить загадочных сезонных изменений.

По мнению члена-корреспондента АН СССР П. Н. Кропоткина, гораздо вероятнее, что изменения угловой скорости вызваны небольшими вариациями в течение года в размере среднего радиуса планеты (с этой величиной момент вращения Земли связан квадратичной зависимостью). Вслед за американским ученым Р. Дике П. Н. Кропоткин указывает еще на одно совпадение. Именно в июле скорость бега Земли по ее орбите вокруг Солнца складывается со скоростью движения самого Солнца в Галактике, а в январе вычитается из него!

А по формуле Лоренца масса тела зависит от его скорости. Это релятивистское увеличение массы — для близсветовых скоростей и микрочастиц, и не всякому может прийти в голову идея примерить те же формулы для нашего обычного макромира. Выше скорость движения по орбите — больше масса. Масса больше — больше сжатие планеты. Больше сжатие — быстрее вращение. Если теоретически подсчитать это ускорение вращения Земли в результате релятивистского увеличения массы планеты в июле, в момент максимальной скорости движения планеты относительно всей совокупности окружающих нас миров (оказывается, это в некоторых случаях допустимая система отсчета), получится величина, почти совпадающая с наблюдаемым ускорением вращения планеты. На 1,25 миллисекунды сутки в июле в среднем короче, чем в январе!

Конечно, летнее (для нашего северного полушария) возрастание массы Земли должно сопровождаться и увеличением силы тяжести примерно на одну стомиллионную. Но существующие методы определения силы тяжести не позволяют заметить такое изменение. И если гипотеза Дике — Кропоткина справедлива, получается, что изменения угловой скорости Земли — гораздо более точный измеритель земной гравитации, чем самые лучшие приборы.

Эффект ежегодного изменения "активной массы" нашей планеты зависит еще от одного параметра. Он максимален, если плоскость земной орбиты вокруг Солнца (эклиптика) параллельна движению всей системы вокруг центра Галактики. Если же эклиптика расположена поперек этого движения, то скорость Земли 30 километров в секунду не складывается и не вычитается из скорости Солнца (около 250 километров в секунду). И никаких изменений массы, а также угловой скорости вращения Земли не будет!

В каком же положении находится Солнечная система сейчас? Оказывается, намного ближе ко второму случаю. Угол между направлением движения Солнца в Галактике (а оно лежит сейчас к созвездию Цефея) и плоскостью эклиптики равен примерно 70 градусам! Нетрудно подсчитать, что в случае, если этот угол равен нулю (а в таком положении Солнечная система была 50 миллионов лет назад), ежегодная пульсация Земли будет в 100 раз больше теперешней! Это значит, что примерно во столько же раз увеличивается в эти эпохи горообразовательная, сейсмическая и вулканическая активность планеты. Если какие-то новые наблюдения и подсчеты подтвердят гипотезу Дике — Кропоткина, это будет означать, что в распоряжении геологов новое мощное орудие долгосрочного прогноза. Ведь впереди в ближайшие 15 миллионов лет — дальнейшее приближение нашей Солнечной системы к перпендикулярному взаимному положению эклиптики и направления движения системы, когда ежегодных релятивистских приращений массы и угловой скорости просто не будет! И следовательно, на минимуме окажется та часть сейсмотектонической активности, которая возбуждается этими ежегодными вариациями.

...Эффект приращения массы электрона в зависимости от скорости впервые предсказал еще в 1895 году К. Лоренц. В эксперименте это гениальное предвидение впервые подтвердили, измеряя отношение массы электрона к его заряду (m/e) в лучах радия. Заряд не зависит от скорости, поэтому изменение этого отношения сразу же показало справедливость предположения Лоренца. П. Н. Кропоткин считает, что "в случае гравитационных деформаций Земли мы тоже имеем дело с изменением отношения m/e. Упругие свойства Земли целиком определяются зарядами электронов в оболочках ато-моз". А раз так, продолжает свою мысль Кропоткин, увеличение массы планеты каждый год должно приводить к заметному увеличению сжимающих напряжений в литосфере планеты, что не может не сопровождаться повышением уровня сейсмичности.

Фантасты любят помещать своих героев в "релятивистские" условия путешествий. На сверхбыстрых ракетах космонавты скитаются по Вселенной, испытывая на себе парадокс близнецов (полетавший близнец все еще юн, а его брат-домосед уже старец), увеличиваясь в массе при субсветовых скоростях и даже полностью "переходя в излучение" по формуле эквивалентности энергии и массы. Но мы и так "на космическом корабле", и в нашем распоряжении немалые скорости: 30 километров в секунду — скорость Земли, и еще 250 километров в секунду — скорость нашей Солнечной системы в Галактике. Есть какая-то, и немалая, своя скорость и у самой Галактики в системе общего разлетания Вселенной. Эти скорости еще долго не будут достижимы для наших ракет. Но мы их и связанные с ними парадоксы мира высоких скоростей можем с комфортом изучать и никуда с Земли не вылетая.

Вы стоите на дачной платформе. Гудит приближающийся поезд дальнего следования. Вот промчался ревущий электровоз — и сразу тон сигнала становится ниже. Эффект Доплера! Астрономы уже заметили, что знакомые им полосы разных элементов в спектрах звезд в той части неба, куда быстро летит наше Солнце, заметно смещены в более коротковолновую, фиолетовую часть спектра. На фоне общего "красного смещения" разбегающегося мира звезд эта "цель пути" выделяется особо контрастно. И вот теперь не исключено, что, наблюдая вариации в частоте сильных землетрясений, мы отмечаем самые таинственные из странностей релятивистского мира — странности переменной гравитации.

 

О пользе аналогий

Читатель, вероятно, уже отметил, что автор часто обращается к идеям и образам новейшей физики. Возможно, для того чтобы попытаться уловить закономерности в нынешнем вихре событий, происходящих в науках о Земле, существует и другой путь. Возможно, проводимые параллели могут при внимательном рассмотрении оказаться не совсем параллельными, как-то произошло в геометрии Лобачевского. В свое оправдание могу только сказать, что сами основатели новой физики, объясняя "на пальцах" категории своей науки, смело обращались к закономерностям макромира, усматривая там не просто аналогии, а проявления общих законов мироздания. Подобное единство общих закономерностей видели в мире — от атома до звезд — и основатели диалектического и исторического материализма.

Ну, а подобрав соответствующие оправдания, осмелюсь продолжить... Разве не странен мир, сферическая поверхность которого расширяется, а сам он тем не менее объема не меняет? Такова Земля по представлениям новейшей глобальной тектоники. Не заставляет ли эта установленная особенность нашей планеты иначе взглянуть на странность разлетающегося мира галактик?

Традиционно при сопоставлении микромира и геологического мира говорят о разнице временных масштабов на этих двух системных уровнях, подразумевая всегда длительность существования Земли и эфемерность атома. Но время относительно. В системе атома — иной счет времени. И если геологический мир можно сопоставить с миром атома, то только наоборот: Земля являет собой пример изумительной кратковременности (только как бы поставленной для нас под увеличительное стекло еще большей эфемерности нашего собственного существования), рядом с которой время атома — вечность.

Вот что писал об этом Макс Борн:

"Считается, что возраст мира составляет 10 9 лет (сейчас эта цифра увеличена на порядок — 10 10 . — А. Г.), то есть орбитальных периодов Земли. С другой стороны, число периодов в основном состоянии водородного атома — порядка 10 13 в секунду. Таким образом, когда время измеряется в подходящих для каждого случая единицах, то ситуация как раз противоположна простому пониманию: звездный мир является короткоживущим, а атомный мир — чрезвычайно долгоживущим".

Собственное время системы... Кто знает, сколько закономерностей мы не можем увидеть, по привычке отсчитывая все по эталонам нашего общепланетного времени? Мы жалеем бабочку-однодневку, но по сравнению со скоростями наших собственных жизненных процессов она живет, возможно, дольше нас. И время жизни великого человека, оставившего миру десятки томов бессмертного материала для размышлений, несравненно длиннее времени жизни посредственности. Гёте главной своей заслугой считал умение из каждой минуты делать маленькую вечность...

Сейсмотектоника имеет дело с геологическим пространством и геологическим временем. Число землетрясений определенной энергии в определенном объеме есть величина постоянная только в масштабах годов и сотен тысяч кубических километров. В процессе подготовки землетрясения собственное локальное пространство-время в зоне подготовки начинает менять свою метрику, что и проявляет себя разными прогностическими признаками.

Локальное сейсмическое пространство приобретает другую кривизну (именно так можно объяснить прогностическое изменение отношения скоростей продольных и поперечных сейсмических волн, ибо это отношение связывает через простую формулу истинный и кажущийся углы выхода сейсмического луча на поверхность Земли). Напряженные перед ударом недра как бы поляризуются — появляются запретные направления для подвижек в слабых землетрясениях; отсюда возможность прогноза по механизмам землетрясений.

Меняется и отсчет собственного времени в период подготовки толчка. Почти с самого начала существования сейсмологии ученые знают: если нет или очень мало толчков в сейсмическом районе — жди катастрофы. Если сравнить собственную временную шкалу сейсмического процесса, размеченную сейсмическими событиями, слабыми землетрясениями, с нашей обычной часовой шкалой, то этот эффект выглядит как резкое замедление собственного времени в перенасыщенном потенциальной энергией объеме горных пород. Чем не аналогия замедления времени в космическом корабле, достигшем близсветовой скорости?

Гармские сейсмологи Виталий Пономарев и Юрий Тейтельбаум с помощью нашей старенькой ЭВМ "Мир" попытались проследить, как это происходит.

...Машина выдает один за другим помесячные "срезы" событий, происходящих в сейсмической жизни района. Начиная, например, с июля 1957 года на карте района появляется огромное светлое пятно, свободное от землетрясений с энергией 109-1011 джоулей. Сейсмическое время как бы остановилось для внешнего наблюдателя на целых пять месяцев. В то же время прямо на границе этого пятна сплошной цепочкой выстроились "дефицитные" землетрясения. Выстроились, а переступить "запретную черту" не могут. И вот 7 января 1958 года прямо посреди "запретной зоны", в хребте Петра Первого, происходит землетрясение с энергией 1013 джоулей — сильное по масштабам района. И после этого события, как по приказу, снимается запрет. Белое в течение почти 5 месяцев пятно покрывается кружками слабых землетрясений всех уровней энергии.

В момент, когда пишутся эти строки, в Гарме еще нет регулярного прогноза землетрясений по комплексу предвестников. Возможно, основой такого прогноза будут ежемесячные карты и кривые Виталия и Юрия. Подозрительные "затишья" в сейсмической активности как во времени, так и в пространстве будут проверяться всеми разработанными к тому времени способами. И если предварительный прогноз подтвердится, скажем, данными о смене типов подвижек в очагах землетрясений или понижением отношения скоростей продольных и поперечных сейсмических волн, можно будет объявлять тревогу.

Почему происходят затишья перед сейсмической бурей? Что здесь причина, что — следствие? То ли сильный толчок происходит из-за того, что сейсмическая энергия, долго не расходуясь, накапливается, то ли наоборот, среда, "предчувствуя", что землетрясения не миновать, начинает заранее скапливать силы для решающего удара. Как ни странно, больше похоже на правду второе предположение. Лабораторные эксперименты показали: если сдавливать в тисках кусок любого твердого материала, он потрескивает все время с настойчивой регулярностью. Но за некоторое время до полного разрушения трески всегда внезапно прекращаются. Самые общие рассуждения (например, приведенные выше — об изменении самого пространства-времени в перенасыщенном потенциальной энергией объеме), по-новому и интересно описывая события, недостаточно наглядны. Можно, конечно, вспомнить о законе сохранения энергии (сумма потенциальной и кинетической энергий есть величина постоянная, а значит, после затишья неизбежно землетрясение), но и эта элементарная формула, описывая явление, не объясняет его.

Между тем, как мы уже видели, в окружающем нас мире происходит немало вещей, непонятных с точки зрения обычного, механического понимания причинно-следственных связей. То в одной, то в другой научной дисциплине начинают раздаваться голоса: мы видим нечто объяснимое, только если предположить, что у процесса существует какая-то намеченность, цель! Но ведь цель может быть только у разумного существа... Как же выйти из этого философского парадокса? Что за "цели" могут быть у природы?

 

Цель или следствие?

...Я люблю бывать в Ленинграде. Ленинградская наука отличается, на мой взгляд, каким-то более задумчивым, менее торопливым отношением к исследованию. Отсюда, наверное, это повышенное внимание ленинградцев к структуре, скрытым связям, к философии природы.

Однажды в среде геологов и биологов зашел разговор о явно чужой проблеме — о "тепловой смерти Вселенной". Все процессы во Вселенной могут идти, только пока есть перепады энергий, как гидроэлектростанция может работать лишь при условии, что уровень воды за плотиной будет ниже, чем перед ней. А паровой двигатель будет работать только в том случае, если температура в топке намного выше, чем в окружающей среде. В Восточном Памире, на высоте 4 тысяч метров, встречаются плоские и слабохолмистые степные ландшафты, совершенно нетронутые "пропиливающей" деятельностью воды. Не потому, что там вовсе нет воды, а потому, что далеки от этих мест склоны и спуски, где немалая потенциальная энергия вознесенной на такую высоту воды могла бы себя показать, стать кинетической энергией работы.

Физики видят и знают процессы перекачки энергии с высоких уровней на низкие, но обратный путь — вознесения энергии на высший уровень — возможен как будто только как частность, боковое ответвление главной тенденции. Воду в горы приносит метеорологическая машина Земли, безвозвратно затрачивая на это солнечную энергию.

Различие между настоящим и будущим многие физики связывают с необратимостью тепловых явлений. Этот результат, содержащийся в трудах Максвелла, Больцмана, Гиббса и Эйнштейна, является "одним из величайших достижений науки вообще" (М. Борн). Именно отсюда пошли закон минимизации потенциальной энергии — основа всей инженерии и закон возрастания энтропии — главный закон Вселенной...

А поскольку, как сейчас считают, Вселенная (во всяком случае та Вселенная, которую мы в состоянии наблюдать) имела когда-то начало в виде взрыва некоей первоначальной ядерной капли (максимум потенциальной энергии), то будущее ее тоже ясно: энтропия стремится достичь максимума. Вблизи максимума все тела Вселенной должны оказаться на почти ровной "энергетической плоскости". Ничто никуда не сможет перетекать. Все процессы замедлятся, почти остановятся...

В той ленинградской гостиной чувствовалась грусть по поводу столь безнадежного будущего (пусть даже и отдаленного от нас невообразимыми сотнями миллиардов лет).

Во всем видимом мире все как будто стремится прочь от всего, и процессы развала, разлета, взрыва сейчас преобладают над силами кропотливого собирания. Вспомнили "демона Максвелла", который должен аккуратно раскладывать атомы: высокоэнергичные — в одну кучку, а "выдохшиеся" — в другую, чтобы постоянно поддерживать высокий средний уровень потенциальной энергии во Вселенной. А демона все нет, не нашли его астрофизики. Вялая попытка одного из участников разговора спасти Вселенную тем, что разлетающиеся миры должны когда-нибудь остановиться в своем разлете и полететь обратно для нового взрыва, а значит, и для нового подскока на высокий энергетический уровень, была жестоко подавлена. Уже подсчитал какой-то физик, что плотность материи во Вселенной меньше той, которая необходима для такого поворота. Правда, некоторые другие физики и астрономы считают, что во Вселенной есть некие скрытые массы, которые еще могут изменить дело. Но модель пульсирующей Вселенной может не столько убавить; сколько прибавить работы философам.

А обратившись к Земле, биологи и геологи с облегчением констатировали, что у них, к счастью, все не так, все иначе. Нет, на Земле не видно следов возрастающего развала, затухания процессов. И геологическая, и биологическая формы существования материи прогрессируют, изощряясь и как бы конкурируя в сложности, интенсивности процессов, в причудливости форм. И в геологии, и в биологии в отличие от астрофизики ученые имеют дело с законом возрастания сложности и, может быть, с возрастанием размаха процессов.

И тогда один из присутствующих, молодой геолог, произнес: структурная энтропия. Потом, я слышал, эта идея была им развита и даже опубликована. Но тогда это было неожиданно, а потому особенно интересно.

...А что, если существует параллельно с энтропией энергии энтропия структуры, направленная во времени в противоположном первой направлении? В теории информации тоже есть понятие энтропии. Она описывается теми же формулами, что и энергетическая, и это не случайно. Понятие информационной энтропии во Вселенной как бы противоположно по знаку энергетической и в этом смысле совпадает со структурной. Вначале в ядерной безликой капле структурная энтропия была равна бесконечности — полное отсутствие структуры и формы. Но со временем параллельно возрастанию энергетической энтропии структурная стала убывать. Появились новые тела-планеты. На планетах зародилась кора, горы, тронулись циклы внутрипланетных процессов. Рассеянные в огромной массе редкие атомы стали наперекор закону диффузии, рассеяния собираться в мощные скопления — месторождения полезных ископаемых. Жизнь явилась венцом геологической эволюции, она сохранила и умножила способность планетной формы движения материи к накоплению информации, сложности.

— Выходит, конец состоит в полном отсутствии процесса при абсолютном совершенстве формы? — спросил кто-то. Все представили себе причудливые формы построек межпланетных, межзвездных цивилизаций, прозрачные кристаллы, застывшие навеки в холодной Вселенной, лишенной перепада Уровней энергии, и всем стало еще грустнее.

Но расфантазировавшийся в тот вечер молодой геолог предусмотрел другой конец своей истории.

— Что знаем мы о начале всего? — спросил он. — То, что капля, от которой все пошло, была неустойчивой. Ведь она почему-то взорвалась. Суть же самого процесса не в том, что уменьшается могущая быть использованной энергия, а в том, что, чем дальше, тем более эффективный в смысле накопления информации и усложнения структуры результат достигается при все меньших энергетических затратах. В этом согласны и биологи и геологи. Мне кажется, на этом основании можно даже дать прогноз дальнейшего развития нашей цивилизации, основная черта которой — потребление неимоверного количества энергии. Такой путь развития не может продолжаться бесконечно. Он и невозможен (из-за ограниченности энергетических ресурсов), и опасен (можно перегреть Землю энергетическими отбросами), и не нужен (КПД наших машин все еще до смешного ничтожен).

— А насчет конца... Я верю в законы симметрии. Что знаем мы о другом конце ниточки причин-следствий? Может быть, полная энергетическая энтропия при полном отсутствии энтропии структурной столь же неустойчивое состояние? Не забудьте, самые высшие формы материи наверняка будут не только более разумными, но и более могущественными, чем мы. И поворот событий в другом направлении станет для них чем-то вроде главной цели. Ведь даже мы на нынешнем уровне нашего развития умеем освобождать энергию, заключенную во многих природных структурах...

Оставив ленинградскую гостиную и столь отдаленное будущее — предсказать его, вероятно, невозможно в силу принципа неопределенности, — попробуем разобраться в главном.

Итак, между прошлым и будущим в нашем мире есть определенная разница. В масштабе Вселенной — это однонаправленное возрастание энтропии, развал, разбазаривание энергии. На Земле многие процессы идут иначе. Здесь системы усложняются со временем, накапливая информацию. И все это выглядит так, будто у природы есть цель. О процессе увеличения богатства форм говорят геологи. Биологи говорят о кефализации (цефализации), неуклонном эволюционном прогрессе живого, направленном как бы к цели, достижению уровня разума. Анализируя историю развития техники, ученые неоднократно поражались тому, что направленное развитие техники, ее прогресс иногда до деталей совпадает с линией эволюционного развития какой-нибудь ветви живого мира.

Например, история развития авиации оказалась прекрасной моделью, позволившей видному палеонтологу В. Н. Яковлеву понять наконец эволюцию древнейших позвоночных животных, наших возможных предков — панцирных рыб. Их панцири оказались "несущими плоскостями", и их аэродинамический профиль совершенствовался так же, как совершенствовались самолеты до второй мировой войны.

Такие параллели интересны тем, что тоже позволяют перейти к прогнозу. Но прогнозировать можно и по биологической эволюции — технику, и обратно: по технике — дальнейшую, еще не состоявшуюся биологическую эволюцию... Теперь попробуем определить позиции: наш технический прогресс осуществляется с какой-то целью (так по крайней мере мы думаем), а биологический — "сам по себе". Что-то здесь не вяжется. Либо наше представление о целенаправленности прогресса цивилизации неверно и он ничем не отличается от случайно-вероятностного прогресса проб и ошибок дарвинской эволюции, либо мы должны допустить, что и в основе эволюции природы есть что-то вроде цели.

Как ни странно, и эта проблема, прежде чем овладеть умами геологов и биологов, остро и давно обсуждалась и историками и физиками. Некоторые западные историки, не отрицая факта прогресса в истории, отказывались признать, что прогресс закономерен. С этой точки зрения наш прогресс ничем не отличается от случайностно-вероятностного прогресса живого мира (так, как это представлял себе классический дарвинизм).

Наиболее близко к пониманию этого парадокса подошли классики диалектического и исторического материализма. "Столкновения бесчисленных отдельных стремлений и отдельных действий приводят в области истории к состоянию, совершенно аналогичному тому, которое господствует в лишенной сознания природе. Действия имеют известную желаемую цель; но результаты, на деле вытекающие из этих действий, вовсе нежелательны". Это написал Ф. Энгельс в 1886 году. И добавлял, что за поступками личностей всегда есть скрытая причина, движущие силы более высокого ранга. Раскрытие этих движущих сил, общих законов и позволит человечеству в конце концов стать настоящим хозяином своей судьбы.

Выражаясь современным научным языком, законы, управляющие прогрессивным развитием неживой материи, материи, организованной биологически, и материи, организованной социально, имеют общую диалектико-материалистическую основу, но соотносятся между собой как три разных уровня организации вещества. На каждом из этих уровней системность, сложность всех движущих факторов прогресса неизмеримо, скачкообразно возрастает. А потому нельзя движением электронов, перескакивающих с одной орбиты на другую в атомах гемоглобина крови Раскольникова, объяснить его преступление и наказание, хотя сказать, что никакой связи нет между тем и другим, тоже нельзя.

 

Что любит и чего не любит природа?

"Природа боится пустоты", — говорили древние. Потом оказалось, что это не так, вернее, не совсем так: например, трубка над столбиком ртути в барометре остается пустой. Но в общем вещество и энергия действительно как бы стремятся рассасываться, переходить из насыщенных ими областей пространства в "пустые" (если этому не мешают какие-то другие силы). Тонкая мембрана между насыщенным раствором соли и пресной водой испытывает сильнейшее давление со стороны раствора: осмотическое давление... Но осмотическое давление можно уравновесить противоположно направленной силой. И вот главные процессы жизненного обмена основаны на явлении "обратного осмоса". Живое борется с косными уравнительными законами природы и концентрирует в себе только нужные вещества.

Сразу после сильного землетрясения рой вторичных толчков, как облако после взрыва, окутывает точку эпицентра. Но идет время, и волна вторичных толчков идет от центра в "пустые" области сейсмического пространства, искривляясь на разломах и других неоднородностях. При этом процесс в целом затихает. Сгусток энергии рассасывается почти полностью.

Во всем этом и во многом другом чувствуется что-то общее в основе. И когда заколебался принцип "природа боится пустоты" как не отражающий самой сути явления, на смену ему пришел принцип "наименьшего действия".

Рождение этого принципа знаменовалось растроганными охами и ахами по поводу "мудрости" и "рачительности" провидения, осуществляющего во всем сущем режим строжайшей экономии. Например, в Пруссии, где этот принцип впервые получил огласку и поддержку, он явно находился в гармонии с идеалом уютного бюргерства.

Мопертюи, огласивший этот принцип в ближайшем окружении Фридриха II, был столь жестоко осмеян Вольтером, что разразился скандал, привлекший внимание всей культурной Европы. Мопертюи потребовал: или я, или он. И просвещенный монарх, любивший посмеяться шуткам Вольтера, сделал выбор в полном согласии с принципом наименьшего действия. Вольтера очень вежливо и с почестями выпроводили.

Принцип наименьшего действия без телеологических восторгов был сформулирован в 1743 году Леонардом Эйлером. В согласии с ним тела, если на них не действует посторонняя сила, дойдут "до цели" наикратчайшим путем, а если действует, "выберут" свой путь так, что ахают математики: им рассчитать столь точно самый "выгодный путь" в усложненных условиях часто оказывается не по силам. Принцип наименьшего действия предопределяет и "цель", к которой стремится тело. В каждой данной системе оно стремится занять место с минимальнейшим из возможных уровнем потенциальной энергии.

В системе, изучаемой физической географией, геоморфологией, этот минимум соответствует положению самого низкого центра тяжести. И вот каждая низина на Земле непрерывно заполняется, а каждый хребет — разрушается, и так было бы до тех пор (если бы эта "геоморфологическая" система не находилась сама в рамках более широкой "тектонической" системы), пока вея поверхность не выровнялась бы. Надо сказать, полное равновесие этой системы (круглая Земля, покрытая ровной трехкилометровой толщей океана) достижимо в какие-нибудь миллионы лет (доли процента от всей жизни-планеты).

В "геоморфологической" системе в целом торжествует "уравниловка", необратимое рассеяние вещества. Что же мешает этой системе успокоиться навечно?

Мы уже говорили об этом: мешает то, что в каменной пучине нашей планеты действует иная, "тектоническая" система, где уровня с наименьшей потенциальной энергией ищут две противоборствующие силы. Тепло земных недр стремится из раскаленных глубинных слоев наружу, наверх. Сила же тяжести увлекает вещество вниз. Пока продолжается эта борьба, планета будет "жить". Одно равновесие будет нарушать другое. И в циклах все новых повторений, как отдаленный результат процесса, растут под гул землетрясений горы, выделяются континенты из океанического однообразия, создаются скопления почти чистых веществ — руд и месторождений полезных ископаемых, развивается биосфера. Накопление информации и структуры возможно там, где наинизшего для себя уровня потенциальной энергии ищет не одна, а две системы или больше.

Но убирает ли такое рассуждение оттенок загадочности в том, что развитие целого ряда систем вокруг нас (а одна из них — все живое) идет как будто целенаправленно?

"Если даже природа и обладает чем-то подобным цели, находящей свое выражение в принципе наименьшего действия, то, во всяком случае, это не может идти ни в какое сравнение с целью предпринимателя. Представление о том, что в законах природы выражена цель или стремление к экономии, есть антропоморфная нелепость, пережиток той эпохи, когда в естествознании господствовало метафизическое мышление". Так писал Макс Борн.

И когда мы говорим о целенаправленном развитии, скажем, железорудных месторождении в докембрийскую эпоху или о таком развитии приматов, которое как будто имело поставленную цель, мы подразумеваем: такое развитие было оптимальным выходом системы из сложных положений, в каких она оказывалась на пересечении многих процессов, каждый из которых стремился к своему состоянию равновесия.

Прибегая опять-таки к антропоморфным неточностям, можно сказать, что "система высшего ранга" в ситуации, сложившейся в какую-то эпоху, нашла энергетически самый оптимальный путь для примирения противоположных стремлений к равновесию. И в результате появились железорудные месторождения или человек, великий нарушитель всех равновесий.

Нетрудно быть пророком и предсказать: если человек научится сам находиться в состоянии равновесия с естественной природой и созданной им "природой вещей", он может действительно стать хозяином бытия, природой, себя познавшей. Но отсюда не следует, что в том состояла цель природы, чтобы создать человека и через него осознать себя (а так иногда в понятном восторге перед мощью разума пытаются рассуждать). Сказать так будет такой же ошибкой, как, наблюдая сложный и красивый кристалл, подумать: он был целью процесса, а не результатом оптимального сочетания и длительной устойчивости двух процессов: выпадения из раствора молекул вещества на грани нерастворимости и последующего взаимодействия этих молекул. Эволюция живого и появление человека — явления закономерные, но философского успокоения в самом этом факте нет. То, что результат оказался столь блестящим, — факт все же удивительный. Возможно, во Вселенной, имеющей в целом определенный возраст, мы одни из первых такие умные, а потому нам с еще большим уважением нужно относиться к миллиардам лет эволюции, трудившейся над нашим созданием.

Возвращаясь к проблеме прогноза, мы можем теперь сформулировать главное. Конечно, сильное землетрясение не есть "цель" какого бы то ни было процесса, но оно и не следствие всей свиты предшествующих ему прогностических предвестников.

Сильное землетрясение есть просто эпизод (причем не главный) в некоем едином, цельном, хотя и сложном явлении, имеющем протяженность как в пространстве, так и во времени. По данным выдающегося деятеля сейсмологии В. И. Кейлис-Борока, самые сильные землетрясения с магнитудой М = 8,5 — проявления каких-то планетарных процессов, они готовятся на пространстве в десяток миллионов квадратных километров, и начало готовящегося процесса улавливается порой за 15 лет до катастрофы! Оказывается, почти всегда перед сильным толчком в сейсмическом регионе "проигрывается" репетиция будущей трагедии. В течение какого-то года (какого именно, зависит от силы будущего толчка: чем сильнее, тем более заблаговременно) в регионе через землетрясения более низких энергий (на один — три порядка ниже главного толчка) выделяется примерно столько же сейсмической энергии, сколько освободится потом в главном толчке. Потом резкий спад, затишье, которое позволяет уже сделать более точный прогноз. И после затишья удар!

Рис. 11. 'Выход' сейсмической энергии в районах сильнейших землетрясений (по В. И. Кейлис-Бороку): а — перед Хаитским землетрясением 10 июля 1949 года и после него. Область подготовки землетрясения — весь Памир, Гиндукуш, Тянь-Шань; б — перед землетрясением в Эгейском море 26 июня 1926 года и после него. Область подготовки землетрясения — Восточное Средиземноморье; в — перед Ассамским землетрясением 15 августа 1950 года. Область подготовки — Гималаи. Стрелка с цифрой — момент землетрясения с магниту-дой главного толчка. Во всех трех случаях перед сильнейшими землетрясениями предупреждение (за 5-15 лет) в виде волны повышенного выхода энергии через землетрясения, на три порядка менее сильные, чем прогнозируемый толчок. Во всех трех случаях после такого всплеска следует быстрое падение, затишье, непосредственно предваряющее толчок

Такая волнообразная структура процесса пробуждает надежды на возможность заблаговременного (за годы!) предсказания сильного землетрясения. И это не будет ни мистическим пророчеством, ни механистической, детерминистской, вопреки принципу неопределенности, дерзкой вылазкой на другой конец цепочки причин-следствий. Просто процесс, с которым мы имеем дело, столь велик и медлен по сравнению с нашими мерками, что у нас есть время распознать его начало. Землетрясение как процесс начинается за годы до катастрофы!

Но долгосрочный прогноз — это всегда оценка вероятности близящейся катастрофы. Дальше нужен краткосрочный прогноз. И он-то должен быть абсолютным, жесткодетерминированным прогнозом.

Краткосрочный абсолютный прогноз не миф... Это достойная цель. Все ближе к этому идеалу прогноз цунами — огромных волн в океане, порождаемых землетрясениями на морском дне. В принципе возможен стопроцентной точности краткосрочный (за десятки минут, часы) прогноз цунами. Казалось бы, абсолютная точность предвидения исключена эффектом неопределенности, вносящим свои поправки в причинно-следственную цепочку событий. Но тут особый случай. Когда вы видите вырвавшееся из дула пушки плотное облако, вы со стопроцентной вероятностью успеете предсказать, что скоро ваши барабанные перепонки подвергнутся неприятному испытанию. Современная физика связывает принцип причинности со скоростью передачи сигнала. Здесь же два сигнала, идущие с разной скоростью.

Такая же лазейка из тисков между причинностью и неопределенностью есть и в случае с цунами. Скорость распространения этих волн 800 километров в час. Скорость сейсмических волн от землетрясений (первопричины цунами) в десятки раз больше. Можно к тому же установить в океане систему заякоренных приборов, которая точно отметит время прохода, направление и энергию волны. А радио (скорость радиосигнала в десятки тысяч раз выше скорости сейсмической волны и в сотни тысяч раз выше скорости волны цунами) заблаговременно принесет весть о неминуемой катастрофе на берега, отмеченные судьбой на этот раз.

Подобная снисходительность природы может простираться и на процесс зарождения, подготовки и реализации сейсмической катастрофы, если изучить фазы процесса и считать их моментами прихода сигналов разной степени оперативности, из которых сам толчок — один из последних и, может быть, не главный сигнал о землетрясении как о большом геотектоническом процессе,.

Принцип же наименьшего действия послужит нам гарантией, что природа не обманет и не будет изощряться в "придумывании" другой, неведомой нам последовательности событий и пойдет прежним, удобнейшим для этой системы путем.

 

К новому единству

Изгнав в свое время Мефистофеля чистого умозрения и отдавшись практике, опыту, наука поступила правильно: свидетельство тому — ее взлет в XIX и XX веках. Значит ли это, что так пойдет и дальше? Что наше мышление все более будет обусловлено конкретными результатами и любой общефилософский взгляд в будущее (а порой и просто попытку широкого теоретического обобщения) можно отбрасывать, как не имеющий практического значения?

Были и есть в науке деятели, радеющие за простую реальность прибора и полученного результата, против "абстрактности" всяких там полей, сил и прочих теоретизмов. Одного из таких ученых (их называют позитивистами) спародировал Макс Борн в 1953 году. Представьте себе, говорил Борн, пулемет, ведущий огонь. Вот он убивает человека. И тут появляется позитивист и начинает говорить в своем духе: "Пули, мол, никто не видел, а убийство... о, я этого не знаю, достаточно знать феномены выстрела и ранения. Все, что лежит между ними, есть игра теоретической фантазии: летящая пуля есть некая dummy (манекен, муляж, — Л. Г.), которая была изобретена для того, чтобы связать оба явления посредством законов механики".

Что же такое реальность в науке? Реальны ли протоны и электроны, которых никто не видел и которые в принципе можно описать как волну?

"Мы представляем себе, — пишет Борн, — римлян времен Цезаря или китайцев времен Конфуция как реальных, хотя мы не имеем никакой возможности это представление проверить таким же образом, как этого требует Дингль для молекул..."

Эти давние споры мне вспоминались, когда я слышал сейсмологов, требующих не увлекаться теоретизированием, видящих задачу только в получении все лучшего материала. Приходилось слышать (и не только в сейсмологии) слова "теоретик", "гипотеза", употребляемые почти как оскорбление — позиция, удобная тем, что до поры до времени она неуязвима: скептик не брался за прогноз, значит, и не виноват в ошибке. А виноват энтузиаст, взявшийся за прогноз (хотя и знал, что может ошибиться).

Сейсмограф и его параметры — это реальность, а все остальное — фантазия? Тогда для чего сейсмограф? И тут мы оказываемся перед странным обстоятельством. Сколь часто, зная плохо и неточно детали, наука верно схватывала суть явления в теории, в целом. Вегенер плохо знал геологию, а геология тогда плохо знала Землю, да и все почти детали придуманного Вегенером механизма дрейфа материков подверглась экспериментальной переоценке. А идея в целом осталась. Она в каком-то смысле оказалась ближе к реальности, чем факты, которыми Вегенер оперировал для создания и подтверждения теории (например, представления, о расплавленной подкоровой массе).

Леверье, высчитавший орбиту Нептуна, тут же по этим вычислениям обнаруженного, серьезно ошибался в исходных данных для своих вычислений. Но путь обобщения, найденный им, обеспечил успех даже при этих исходных ошибках.

Полной аналогии с разрывом коры при землетрясении, разрывом, происходящим в сплошной среде, подготовленным напряжениями на огромном пространстве, мы в нашей обыденной жизни не найдем. В этом смысле очаг землетрясений для нас всегда окажется "не совсем реальным". Но теории, описывающие очаг, без сомнения, все ближе подходят к реальности и когда-нибудь подойдут ближе, чем самое развитое "вещественное" представление, полученное лабораторным путем.

Значит, может быть реальностью и то, что нельзя пощупать... Довольно долго сейсмологи нашей экспедиции (да и не только нашей) пытались поймать причинно-следственную связь, ведущую к прогнозу, в буквальном смысле слова с поличным. По трем-четырем толчкам, давшим как будто пониженное значение отношений скоростей сейсмических волн, пытались построить прогностическую кривую. Все усилия оказывались напрасными. В Гармском районе каждый день происходят десятки землетрясений, и при великом разнообразии природных условий и процессов, идущих в районе, три-четыре точки на кривой требуют введения стольких оговорок, поправок, дополнительных проверок, что уже просто ничего не значат. И тут доверительность, уважительность к природе не просто симпатичное свойство характера, но и лучший деловой путь к истине.

Явление не может себя не обнаружить (необходимость, детерминизм!) в статистике как будто случайного разброса всех значений отношений скоростей, какие только есть в нашем распоряжении. Мысль А. Николаева о ненасильственном, ненавязчивом подходе к объекту исследования (брать от него то, что он в настоящее время может дать) кажется глубоко философской, диалектической. Подвижная грань (отношения дополнительности между вероятностным и детерминистским подходом) обеспечивает максимально возможную на сегодня точность сейсмического прогноза, позволяет победить хорошо знакомый страх перед ответственностью предсказания.

Необходимость и случайность в сумме образуют нечто охватываемое словом "возможность". В последнее время многие исследователи очень много внимания уделяют именно понятию возможного в этом мире. И действительно, как было бы заманчиво разграничить раз и навсегда возможное и невозможное. Скольких лишних непроизводительных усилий это позволило бы избежать!

Академик Г. И. Наан несколько лет назад высказал мысль, что наша Вселенная, состоящая из частиц и античастиц, могла возникнуть из... вакуума при полном соблюдении всех законов сохранения. "Ничто действительно не может породить нечто, но оно может породить нечто и антинечто". Я не могу не отметить, что почти в тех же выражениях 160 лет тому назад представил рождение материи "Мефистофель натурфилософского умозрения" Л. Окен, исходя просто из общих соображений симметрии. Уже появилось название для будущей науки о симметрии всего сущего — симметрика. И энтузиасты этой науки из химии, биологии, геонаук и даже социологии и науковедения занялись работой, подобной той, которую проделали когда-то Д. И. Менделеев и Н. И. Вавилов: они графят листы бумаги, отмечая формы и антиформы, выделяя пустые, незаполненные клетки, еще ждущие заполнения. Все возможное в природе должно в ней появиться. "Диссиметрия творит явления", — сказал когда-то великий физик П. Кюри.

Учение о внутренних системных и симметрийных закономерностях иногда оказывается во внешнем противоречии с "генетическим принципом рассмотрения" (выражение И. Гёте). Именно Гёте когда-то обвинял натурфилософов в "наглом навязывании природе" ненаблюдаемых законов, но именно он же не смог не признать некоторых блестящих результатов этого "наглого навязывания".

Вот уже пятьдесят лет, как находятся в противостоянии случайностно-вероятностная эволюция проб и ошибок Ч. Дарвина и "эволюция на основе закономерностей" (номогенез), сформулированная академиком Л. С. Бергом. Сейчас эти два учения как бы поделили между собой историю живого мира. Первоначальная эволюция молекул, преджизни (когда не могло быть и речи о борьбе за существование) вся основана на номогенетических закономерностях (законы химических взаимодействий в растворах, кристаллографические и другие физико-химические процессы). Эволюция на основе изменчивости и случайных мутаций с последующим отбором пока держит главенство в объяснении остальной истории живого мира. Но видимо, нельзя сомневаться в диалектическом единстве, взаимной дополнительности этих двух форм эволюции.

Такие же взаимоотношения вероятностного и жесткого детерминизма есть в геонауках вообще и в проблеме геопрогноза в частности.

Кристаллографы давно уже заметили черты симметрии и асимметрии в строении земного шара. Если катать глобус по столу, то точке, в которой глобус касается стола "сушей", будет соответствовать "океаническая" противоположная точка глобуса, и наоборот. Этой антисимметричной картине кристаллографы подобрали аналогию в мире кристаллов и на этом основании с недоверием относятся к теориям мобилизма, в которых и материки, и океаны "движутся как хотят". Истина, возможно, опять лежит где-то посредине. Под законом антисимметрии океанов и континентов, видимо, кроется что-то иное, и само горизонтальное передвижение больших плит литосферы, возможно, связано с постоянным стремлением нашей планеты к этому почему-то для нее удобному состоянию. Современная антисимметрия материков и океанов — это только слабое подражание потрясающей антисимметрии Земли во времена палеозойской Пангеи (вся суша была единым островом в Мировом океане) и, видимо, в более давние, докембрийские эпохи. В этом случае к борьбе двух противоборствующих тектонических сил — вертикального воздымания и вертикального же опускания вещества — может добавляться еще и закономерность, родственная структурным законам обобщенной кристаллографии.

Ослабив когда-то интерес к познанию мира в целом, раздробившись, наука кое-что потеряла, цельный взгляд на мир, например. Но место, оставленное Мефистофелем умозрения, не может оставаться пустым. Отсюда пробуждение нового интереса к "пограничным" наукам, философии естествознания, общим законам симметрии и развития, к теории систем, вырастающей из кибернетики. В науках о Земле общий системный подход к общему предмету исследования (задаче геопрогноза) может взять на себя снова древняя география.

В отличие от прочей природы мы не можем существовать и творить без осознанной цели. Новые большие обобщения, новые теории, новый прогноз, имеющий значение для всех наук, а значит, и для всей нашей деятельности, в повестке дня. Эти открываемые общие законы, этот прогноз необходимы, ибо прогноз в человеческом обществе имеет обратную силу. Познание грядущей "судьбы" не расслабит нас пассивным ожиданием, а принудит к действию для творческого — заблаговременного вмешательства в ход грядущих событий.

Но мне не удастся закончить книгу на этой оптимистической ноте. В канун Нового года, в субботу 28 декабря 1974 года, все сейсмостанции Гармского полигона отметили сильнейшее землетрясение. Где-то близко: разность времени прихода продольной и поперечной волн была около 62 секунд. Простой пересчет показывает, что это соответствует примерно 500-600 километрам пробега сейсмических волн в коре и мантии. Примерная оценка показала: М = 7, землетрясение катастрофическое, эпицентр — в Пакистане, близ одного из разломов-рельсов, по которым движется сюда, к Гарму, индийская плита. 30 декабря радио принесло известие: разрушен населенный район, погибло более 4700 человек, около 15 тысяч ранено. Катастрофа не была предсказана. Или была: необъяснимое понижение одной из прогностических кривых мы отметили еще в ноябре, но не смогли "локализовать", указать место, над которым нависла угроза...

... Так написал я в канун нового 1975 года. Конечно, я не мог тогда предвидеть, что через полтора года нечто подобное произойдет еще раз. Дважды ударят весной 1976 года сильные толчки в Кызылкуме. Землетрясение в 9 баллов произойдет в пункте, отмеченном на карте сейсмоопасности как... 5-балльная зона! Так будет обстоять дело с прогнозом места катастрофы (таким прогнозом и является карта сейсмической опасности).

А прогноз сроков? Весной 1976 года признаки приближающегося землетрясения отметят вдали от Кызылкума, на территории Таджикистана. Землетрясения будут ждать, но не там, где оно произойдет на самом деле. (Об этом мне расскажут мои прежние коллеги-сейсмологи.) Зона подготовки сильного толчка и, значит, появления "предвестников" огромна, гораздо больше зоны разрушений, и это еще одна проблема, требующая решения.

Так, сама действительность дописывает конец этой книги. Для решения проблемы прогноза сделано многое. Но эффективного геопрогноза нет. И большая, настоящая книга о геопрогнозе еще не написана.

В заключение я хотел бы поблагодарить тех, кто помогал мне на разных этапах работы над этой книгой идеей, советом, критическими замечаниями, поддержкой. Большое им спасибо, географу Д. Д. Квасову, геологам П. Н. Кропоткину, С. В. Мейену, В. К. Кучаю, Н. А. Фогельман, геофизикам А. В. Николаеву, Е. А. Артюшкову, Т. Г. Раутиан, В. С. Пономареву, Б. Г. Рулеву, Ю. М. Тейтельбауму, В. И. Халтурину, О. В. Соболевой, Л. Ю. Вермишевой, философу В. В. Казютинскому.

Гарм — Москва 1974-1976

 

Десять лет спустя

Послесловие автора к переизданию

В отличие от беллетристики научно-популярная литература имеет свойство устаревать. Как изменилась проблема геопрогноза за последние десять лет?

Книге повезло: она написана на гребне революции в науках о Земле, который пришелся как раз на начало 70-х. С тех пор шло развитие вширь и вглубь, но по тем же направлениям. И сейчас (я пишу в дни, предшествующие Международному геологическому конгрессу 1984 года в Москве) первый, общий взгляд не обнаружит заметных перемен, скажем, в круге общегеологических планетарных идей. По-прежнему тон задает новый мобилизм — глобальная тектоника плит. Она, правда, потеряла долю острой новизны, обросла подробностями, обрела черты монументальности и даже ортодоксальности, за что вынуждена в свою очередь терпеть нападки вечно спешащих "новаторов", а также попытки переименовать ее (чуть-чуть видоизменив) и в переименованном виде присвоить. Но добросовестные враги плитотектоники — и старые и новые — теперь признают, что революция в науках о Земле, переход этих наук из разряда узкоакадемических в число широко известных и массово-популярных, рост технической вооруженности этих наук — все это происходило в огромной мере из-за простоты, увлекательности, всеохватности идей глобальной тектоники, заменить которую пока явно нечем. Да и нет необходимости. Больше того, если вдруг найдется такая ошибка в построениях плитотектонистов, которая враз перечеркнет саму идею (во что я не верю), для наук о Земле это было бы черным днем.

Самое яркое и верное здесь направление, как мне по-прежнему кажется, — это стыковка, дальнейшее соединение новой плитотектоники со старой мудростью геологии платформ и геосинклиналей, о чем в этой книге было сказано немало. Член-корреспондент АН СССР В. Е. Хаин в канун геологического конгресса указывает на то, что древние праматерики раскалывались на меньшие в истории Земли неоднократно и очередной раскол был похож на предыдущий. Это говорит не только о цикличности (а значит, и о долговременной предсказуемости) самых главных процессов на Земле, но еще и о том, что материкам, литосферным плитам вовсе не безразлично, где раскалываться. Тут есть предпочтительные, хорошо опробованные швы. По краям нынешних континентов они трассируются особыми континентальными породами — гранулитами. Именно по гранулитовым линиям (они тянутся, например, вдоль противолежащих побережий Америки и Африки, Индии и Антарктиды) дважды раскалывались гигантские материки протерозоя и палеозоя — Пангея-1 и Пангея-2 и раскалывается ныне Восточная Африка. И наоборот, наиболее древние зеленокаменные толщи (с которых когда-то начался рост континентальной литосферы) почти всегда оказываются в центрах, ядрах континентов. Здесь литосфера особенно прочна и вероятность стать материковой окраиной, берегом — наименьшая.

Попытавшись реконструировать первоначальный вид Земли, В. Е. Хаин получил поверхность, состоящую из гигантских гранулитовых колец с зеленокаменными выступами посередине. Такой, по предположениям космогонистов, была Земля по окончании бомбардировки ее последними астероидами прото-планетного облака. Выходит, самый рисунок главных геологических структур, границ суши и океанов задан еще в период становления нашей планеты.

Незыблемое в подвижном... Так опровергается одно из главных обвинений, предъявляемых к плитотектонике, обвинение в неуважении к установленным геологической традицией законам.

С другой стороны, есть признаки, что изменятся некоторые первоначально постулированные аксиомы самой плитотектоники, например представление о литосфере как воплощении жесткости и о астеносфере — как чуть ли не жидкости. Есть сведения, что "жесткая литосфера" кое-где сидит на мели: ее корни сцеплены с мезосферой — тоже "жестким" подастеносферным слоем.

Есть указания и на то, что внутри литосферных плит нет такой уж жесткости — видимо, возможно проскальзывание по другим слоям (например, по нижней поверхности земной коры — поверхности Мохоровичича). Допускают и горизонтальное перетекание вещества земной коры в ее пределах, на небольших глубинах в 10-15 километров.

А сейсмический прогноз? К списку предвестников почти ничего не прибавилось. Но есть перемены в составе "фаворитов".

В начале 70-х казалось, что успех прогноза будет в основном обеспечен наблюдениями над изменением скоростей сейсмических волн в зоне готовящегося толчка. Сейчас на первом месте — долгосрочный прогноз "по затишьям", подобный тому, что разрабатывался в Гарме В. Пономаревым и Ю. Тейтель-баумом. Еще в 1923 году энтузиаст-одиночка сейсмолог Има-мура, заметив странное молчание недр в районе Токио, пытался бить тревогу. Никто его не послушал, и 140 тысяч жертв были платой за несерьезное отношение к "чудаку-ученому", которому больше всех надо...

Затишья во времени и пространстве (на площади пустые, свободные от толчков пятна носят сейчас название сейсмических брешей) послужили главным критерием удачных долгосрочных прогнозов, начатых на Камчатке двадцать лет назад. Так же были сделаны удачные прогнозы двух сильных землетрясений в Мексике в 1978 году, многих землетрясений в КНР (но с немалым процентом ложных тревог). В КНР, где после катастрофического Тяньшанского землетрясения 1976 года прогнозом, кажется, занялись очень широко, судя по сообщениям китайских ученых, хорошо себя оправдывает также прогноз по колебаниям уровня грунтовых вод (медленное падение уровня за годы до толчка, ускоренное за месяц и резкий подъем за несколько суток). Параллельно с этими изменениями (и видимо, благодаря им) меняется вокруг готовящегося эпицентра сила тяжести. Сейчас, в отличие от времени написания книги, в печати полно прогнозов по самым разным районам Земли. В основном это прогнозы на основе затиший и брешей, и я рад, что присутствовал в Гарме при становлении этого предвестника как научного метода.

Все меньше удовлетворяет ученых старый подход к сейсмотектоническим явлениям, заимствованый когда-то из механики сплошных сред. Геологическая среда — особая, несплошная, скорее дискретная, состоящая из неоднородностей, по выражению академика М. А. Садовского, "кусковатая". До последнего времени молчаливо подразумевалось, что это пассивный проводник сейсмических волн, работающий по простым линейным законам. Но все так только в первом, грубом приближении, которое устарело. Герой этой книги, теперь профессор, А. В. Николаев говорит, что Земля столь же похожа на пассивный проводник сейсмического сигнала, как нервное волокно на пассивный проводник нервного импульса.

Геологическая среда — "живая", она меняется во времени. Ее изменения перед сильным толчком и позволяют рассчитывать на прогноз. Она "нелинейна". Классические формулы, исходящие из предположения, что сейсмические лучи пронизывают сейсмическое пространство, не взаимодействуя между собой, дают лишь грубое приближение к истине. Волны взаимодействуют, и это сразу обнаружилось, как только в ход пошло сейсмовидение с помощью вибраторов. Десять лет назад были лишь первые опыты. Сейчас уже есть (и тут огромная заслуга Николаева) мощные отечественные вибраторы, освещающие "подземный космос" строго когерентным, монохроматическим (как лазеры) сейсмическим "светом".

Сейсмическая волна рисует картину подземного царства, как свет рисует нам изображение пейзажа — отражаясь и преломляясь. Но сейсмический "пейзаж" нарисован и "светящимися красками". И дело тут не только в фонарях-землетрясениях, вспыхивающих в пространстве сейсмоактивных зон. Любая область внутри литосферы "светит" мерцающим "светом" от мириад слабых тресков и скрипов (микросейсм) в такт лунным и солнечным приливам в твердой земле, под действием медленных физических и химических процессов, усиливаясь на крупных неоднородностях типа газонефтяных или рудных месторождений. Развитие техники делает возможным использование этой "сейсмолюминесценции" земных недр для уточнения их структуры, для поисков полезных ископаемых, для выявления перенапряженных зон — будущих очагов катастрофических землетрясений. Уже есть удачная работа азербайджанского сейсмолога Икрама Керимова — самый настоящий прогноз сильного толчка по предваряющей вспышке микросейсм из зоны будущего очага...

Идея А. Николаева об активной сейсмической среде явно перекликается с воззрениями другого героя этой книги, В. Пономарева, который всегда с подозрением относился к представлениям об активных внешних тектонических силах и пассивной среде. По Пономареву, каждый объем горных пород — это бомба, начиненная энергией напряжений, накопленных в геологическом прошлом, которая готова проявиться при простом снятии нагрузки сверху (при размыве и эрозии), напряжений от соседства сцементированных вместе, но разнородных по упругим и прочностным характеристикам, по коэффициенту теплового расширения и прочим свойствам минералов. Эти напряжения готовы проявиться при любом изменении температуры, напряженного состояния, проникновении растворов и флюидов. Сейчас эти, когда-то экзотические идеи В. Пономарева широко известны, они проливают новый свет на многие важные проблемы, например на проблему планетарного избыточного сжатия верхних слоев земной коры по горизонтали.

Десять лет назад объемная сейсмическая голография только снилась аспиранту Пете Троицкому. Сегодня кандидат физико-математических наук П. Троицкий — автор проведенной под руководством А. Николаева и норвежского сейсмолога Э. Хусеби работы по голографическому просвечиванию недр под Норвежской сейсмической системой (Норсар). В литосферном пространстве сейсмическая голография обнаружила вертикальные столбы, уходящие куда-то вниз (прослежены до глубины 212 километров). Возможно, это магматические канаты, подводящие мантийное вещество к Норвежскому грабену, который в прошлом был активным, вроде Байкальского рифта, нынче как будто пребывает в покое...

Десять лет назад, набрасывая эту книгу, как бы срез в истории развития геопрогноза через 1974 год, я кое в чем забежал вперед, например в рассказе об идеях А. Николаева 1 В. Пономарева, о работе П. Троицкого, чувствуя в этих идеях и работах перспективу. Многое было только в замысле, в мечтах, еще не вошло в стадию практической работы. Я горд тем, что сбывается сейчас этот мой небольшой литературный прогноз.

18 июля 1984 года