Трудно переоценить ту роль, которую логика играет не только в математике, но и всюду, где применяются дедуктивные умозаключения. Каково же было всеобщее удивление, когда выяснилось, что в самой логике в изобилии встречаются, казалось бы, безупречные рассуждения, которые тем не менее приводят к явному противоречию. Использовать такое рассуждение — все равно что сначала доказать равенство 2 + 2 = 4, а потом привести не менее убедительное доказательство неравенства 2 + 2 не равно 4. В каком случае логика «не срабатывает»? Не таятся ли роковые пробелы в самом процессе дедуктивного мышления?

Гигантские успехи современной логики и теории множеств — прямой результат усилий, приложенных к разрешению классических парадоксов. Не один год безуспешно бился над решением такого рода проблем Бертран Рассел, прежде чем в соавторстве с Альфредом Нортом Уайтхедом написал фундаментальный труд Principia Mathematica («Основания математики»), в котором излагались единые основы современной логики и математики.

Парадоксы не только ставят вопросы, но и отвечают на них.

Среди вопросов, на которые парадоксы дают ответ в этой главе, назовем следующие:

1) Существуют ли ситуации, в которых логически невозможно правильно предсказать будущее событие?

2) Почему в теории множеств обычно запрещается строить множества, которые могут содержать себя в качестве элементов?

3) Почему, когда мы говорим о языке, необходимо проводить различие между языком, о котором мы говорим (нашим объектным языком), и языком, на котором мы говорим (нашим метаязыком)?

Для парадоксов, отвечающих на эти вопросы, характерны косвенные признаки порочного круга в рассуждениях или ссылки на себя. В логике ссылка на себя либо приводит к крушению теории, либо обогащает ее и придает ей особый интерес. Проблема состоит в том, чтобы найти такие формулировки наших теорий, которые допускают их обогащение, но исключают все возможности, приводящие к противоречию. Придумывание парадоксов — верный способ проверки того, насколько правильно установлены пределы применимости наших логических идей.

Не следует думать, будто все парадоксы современной логики разрешены. В действительности дело обстоит далеко не так. Иммануил Кант однажды опрометчиво заметил, будто логика достигла столь полного развития, что о ней невозможно сказать ничего нового. Но логика, известная во времена Канта, составляет лишь незначительную и наиболее элементарную часть современной логики. В ней существуют гораздо более глубокие слои, по поводу которых продолжаются дискуссии между самыми выдающимися логиками современности, слои, в которых парадоксальные вопросы еще не получили ответов и многие вопросы еще предстоит сформулировать.

Парадокс лжеца

По преданию, Эпименид утверждал, что все критяне лжецы. Верно ли это утверждение, если учесть, что сам Эпименид родом с острова Крит?

Эпименид — легендарный греческий поэт, живший на Крите в VI в. до н. э. Он-то и был первым Рипом ван Винкелем: по преданию, Эпименид проспал 57 лет.

Приписываемое ему утверждение логически противоречиво, если предположить, что лжецы всегда лгут, а нелжецы всегда говорят правду. При таком предположении утверждение «Все критяне лжецы» не может быть истинным, ибо тогда Эпименид был бы лжецом и, следовательно, то, что он утверждает, было бы ложью. Но приписываемое Эпимениду утверждение не может быть и ложным, ибо это означало бы, что критяне говорят только правду и, следовательно, то, что сказал Эпименид, также истинно.

Древних греков очень занимало, каким образом, казалось бы, вполне осмысленное утверждение не может быть ни истинным, ни ложным без того, чтобы при этом не возникло противоречия. Философ-стоик Хризипп написал шесть трактатов о парадоксе лжеца, ни один из которых не сохранился до нашего времени. Парадокс лжеца преждевременно свел в могилу греческого поэта Филета Косского, который был настолько тощ, что, по преданию, подкладывал в сандалии свинец, чтобы его не унес ветер. В Новом Завете апостол Павел повторяет парадокс лжеца в послании к Титу (гл. 1„стих 12–13):

Из них же самих один стихотворец сказал: «Критяне всегда лжецы, злые звери, утробы ленивые».

Свидетельство это справедливо…

Неизвестно, знал ли апостол Павел о парадоксе, содержащемся в этих утверждениях.

Почему эта форма парадокса лжеца, в которой утверждение сообщает нам нечто о себе, отличается большей ясностью? Потому, что она исключает всякую неоднозначность по поводу того, всегда ли лжец лжет, а говорящий правду изрекает истину.

Мы столкнулись с известным парадоксом лжеца. Простейший вариант — утверждение, гласящее: «Это утверждение ложно». Истинно ли оно? Если оно истинно, то оно ложно! Ложно ли оно? Если оно ложно, то оно истинно! Такого рода противоречивые утверждения встречаются гораздо чаще, чем вы думаете.

--

Существует бесчисленное множество вариантов парадокса лжеца. Бертран Рассел утверждал, что, по его мнению, философ Джордж Эдвард Мур солгал единственный раз в жизни: когда кто-то спросил Мура, всегда ли он говорит правду, Мур, подумав, ответил: «Нет».

На вариантах парадокса лжеца строится фабула некоторых рассказов. Мне особенно нравится один из них — «Рассказ под присягой» лорда Дансэни.

Он приведен в недавно вышедшем сборнике его малоизвестных произведений «Дух слоя Хэвисайда и другие фантастические истории». В этом рассказе Дансэни встречает человека, который торжественно клянется, что то, о чем он собирается рассказать, «все правда и ничего, кроме правды».

По словам собеседника Дансэни, ему однажды повстречался Дьявол, с которым он заключил сделку.

Игравший Прежде хуже всех членов своего клуба в гольф, он по условиям сделки обретал способность с одного удара попадать в лунку. После того как он несколько раз подряд попал в лунку с одного удара, все решили, что он как-то жульничает, и исключили его из клуба. В конце рассказа Дансэни спрашивает у своего собеседника, что по условиям сделки получил взамен дьявол. «Он навсегда лишил меня способности говорить правду», — гласил ответ.

«Пуговицы» и надписи на стенах

Одно время были в моде значки в виде огромных пуговиц с надписью «Долой пуговицы».

Не приходилось ли вам встречать надпись на стенах «Долой надписи на стенах!»?

Почему эти надписи противоречивы? Да потому, что каждая из них противоречит тому, к чему призывает. Нетрудно привести множество других аналогичных примеров: объявление «Уничтожайте объявления!», надпись «Не читайте того, что здесь написано»; холостяк, заявляющий, что женится только на такой женщине, у которой хватит ума не выходить за него замуж; комический персонаж, утверждающий, что он решительно отказывается вступать в любой клуб, который сочтет возможным принять его в свои члены, наклейка с надписью «Сообщите нам, если эта наклейка отвалится при перевозке».

Ближе к парадоксу лжеца такие противоречивые утверждения, как «Всякое знание сомнительно» или утверждение Джорджа Бернарда Шоу «Единственное золотое правило состоит в том, что золотых правил не существует».

Не спала Мэри всего две ночки, Сочиняла лимерики всего в две строчки.

Этот лимерик, автор которого неизвестен, сам по себе не парадоксален, но при чтении его напрашивается продолжение:

Не спал Джонни всего одну ночку.

В чем здесь парадокс? В том, что вы невольно достраиваете еще одну строку: «Сочинял лимерики всего в одну строчку»? Или вам кажется парадоксальной сама мысль о лимерике, состоящем менее чем из пяти строк?

Юмористические руководства по стилистике и правописанию неоднократно облекались в парадоксальную форму. Например, редактор английской газеты «Санди Тайме» Говард Эванс рекомендует пишущей братии придерживаться следующих десяти правил:

Не употребляйте частицу «не» перед словами, начинающимися с «не», если это не необходимо.

Следите за согласованием определений и определяемого существительных.

Употребляя деепричастный оборот, деепричастие должно относиться к тому же лицу или предмету, к которому относится определяемый им глагол.

Не ставьте лишних, запятых.

Сказуемые должно согласовываться с подлежащими.

Об этих скомканных фразах.

Старайтесь не по мере возможности отделять частицу «не» от того глагола, к которому она относится.

Н е когда н и путайте частицы «не» и «ни».

Закончив писать, внимательно прочитайте написанное, чтобы проверить, не ли вы какое-нибудь слово.

По сообщению агентства ЮПИ от 24 апреля 1970 г., кандидатам на выборах в конгресс от штата Орегон было разрешено поместить на избирательном бюллетене от своего имени лозунг в 12 слов. Френк Хэтч из г. Юджин, баллотировавшийся в конгресс от демократической партии, выступил на выборах под лозунгом: «Тому, кто мыслит лозунгами в двенадцать слов, не место в этом бюллетене».

В 1909 г. известный английский экономист Альфред Маршалл утверждал в одной из своих работ: «Любая короткая фраза об экономике внутренне лжива».

Треба Джонсон из г. Новый Ханаан, штат Коннектикут, рассказала мне о том, как однажды она тянула куриную дужку со своим маленьким сыном. Он выиграл и спросил: «Мама, а какое желание ты задумала?» Миссис Джонсон ответила: «Я хотела, чтобы выиграл ты». Выиграла ли миссис Джонсон?

Выиграла бы она, если бы большая часть куриной дужки досталась ей?

А что было бы, если бы римский папа, который, согласно догматам католицизма, непогрешим в вопросах веры, провозгласил бы с амвона непогрешимость всех римских пап, какие только существовали, существуют и будут существовать?

В одном журнале среди рекламных объявлений мне довелось видеть следующее: «Хотите научиться читать? Мы обучаем читать заочно и в сжатые сроки.

Обращайтесь по адресу…».

Ссылка на себя производит комическое впечатление, даже если она не парадоксальна. В предметном указателе к американскому изданию книги Пола Р. Халмоша «Конечномерные векторные пространства» имеется ссылка: «Хохшильд, Дж. П., 19в». Фамилия Хохшильда не упоминается в книге Халмоша нигде, кроме этой ссылки, помещенной на странице 198.

Рэймонд Смаллиан опубликовал книгу о логических задачах и парадоксах под названием «Как же называется эта книга?». Через два года вышла новая книга Рэймонда Смаллиана о парадоксах в повседневной жизни под названием «Эта книга никак не называется».

Дуглас Хофштадтер посвятил парадоксам, связанным со ссылкой на себя, специальную статью со множеством новых примеров в январском номере журнала Scientific American за 1981 г.

Прямое и противоположное утверждения

Сколько слов в предложении, которое вы видите на рисунке? Правильно, пять. Значит, это утверждение ложно. Следовательно, противоположное утверждение должно быть истинно. Верно?

Неверно! Противоположное утверждение содержит ровно шесть слов. Как разрешить столь странный парадокс?

Вот еще несколько парадоксов, связанных со значением истинности некоторых утверждений. Авторы этих парадоксов неизвестны.

Перед вами три ложных утверждения. Не могли бы вы указать их?

1) 2 + 2 = 4

2) 3 х 6 = 17

3) 8:4 = 2

4) 13 — 6 = 5

5) 5 + 4 = 9

Ответ: ложны только утверждения 2 и 4. Следовательно, утверждение о том, что перед вами три ложных утверждения, ложно, и его можно считать третьим ложным утверждением. Вы согласны?

Сумасшедший компьютер

Много лет назад в один компьютер, предназначенный для проверки истинности утверждений, ввели парадокс лжеца — «Это предложение ложно».

Бедный компьютер сошел с ума, но так и не смог решить, истинно введенное в него утверждение или ложно.

Компьютер. Истинно — ложно — истинно — ложно — истинно — ложно.

Первая в мире ЭВМ, предназначенная только для решения логических задач на определение значений истинности, была построена в 1947 г. студентами-дипломниками Гарвардского университета Уильямом Буркхартом и Теодором Кэлином. Когда они предложили своей машине решить парадокс лжеца, та вошла в колебательный режим, издавая при этом (по словам Кэлина) «невероятный шум».

В научно-фантастическом рассказе Гордона Диксона «Дурацкие штучки», опубликованном в августовском номере журнала Astounding Science Fiction за 1951 г., группа ученых спасают свою жизнь тем, что отвлекают ЭВМ, вводя в нее команду: «Ты должна отвергнуть утверждение, которое я сейчас ввожу в тебя, потому, что все мои утверждения ложны».

Бесконечный спуск

Несчастный компьютер оказался в таком же затруднительном положении, как человек, которого просят ответить на вопрос: «Что появилось раньше — яйцо или курица?»

Курица? Нет, ибо она должна была бы вылупиться из яйца. Яйцо?

Нет, ибо его должна была бы снести курица.

Старый вопрос о том, что появилось на свет раньше— яйцо или курица, по-видимому, можно считать наиболее известным примером того, что логики называют бесконечным спуском. Концентрат овсяной каши в США обычно продают в коробках, на которых изображен человек, держащий в руках коробку овсяной каши, на которой изображен… и т. д., как в бесконечной последовательности вложенных друг в друга китайских резных шаров из слоновой кости.

В парикмахерской, где зеркала расставлены друг против друга, вы можете увидеть начальный отрезок бесконечного спуска отражений.

Писатели неоднократно использовали бесконечный спуск в фантастических произведениях. Один из персонажей романа Олдоса Хаксли «Контрапункт» Филип Кварлз пишет роман о романисте, который пишет роман о романисте, который и т. д. Бесконечные спуски встречаются в романе Андре Жида «Фальшивомонетчики», в пьесе Э. Э. Каммингса «Он» и в таких рассказах, как, например, «Записная книжка» Нормана Мэйлера, в котором молодой писатель решает написать рассказ, который написал Мэйлер.

Математик Август Де Морган написал шуточное стихотворение, первые четыре строки которого перефразируют более раннее шуточное четверостишие Джонатана Свифта:

Блох больших кусают блошки, Блошек тех — малютки-крошки, Нет конца тем паразитам, Как говорят, ad infinitum. Блоха большая в свой черед Кусает ту, на ком живет, Та — блох потолще, шире в талии, И нет конца им, и так далее…

Возможно, что на два давно возникших вопроса, связанных с бесконечным спуском, мы никогда не получим ответа. Первый вопрос относится к бесконечному спуску в сторону бесконечности: включает ли наша расширяющаяся Вселенная в себя «все на свете» или является составной частью некой большей, пока не известной нам системы? Второй вопрос относится к бесконечному спуску в противоположном направлении: является ли электрон неделимой частицей или обладает какой-то внутренней структурой, то есть состоит ли из еще меньших частиц? Физики считают, что многие элементарные частицы представляют собой различные комбинации кварков. Существуют ли еще меньшие частицы, из которых состоят кварки?

Некоторые физики полагают, что шкала структур простирается неограниченно далеко в обе стороны. Вселенная Вселенных напоминает вложенные один в другую гигантские китайские резные шары, среди которых нет ни самого большого, ни самого маленького, подобно тому как не существует самой малой дроби и самого большого целого положительного числа.

Парадокс Платона и Сократа

Поразмыслим над тем, что здесь нарисовано. Критянин говорит о критянах. Предложение, утверждающее нечто о себе. Пуговица, на которой написано о пуговице.

Все эти утверждения содержат ссылку на себя. Может быть, в этом причина всех трудностей?

Нет. Еще древние греки знали, что исключение ссылок на себя не избавляет от парадоксов. Вот один диалог, подтверждающий это.

Платон. Следующее высказывание Сократа будет ложным.

Сократ. То, что сказал Платон, истинно.

Логики упростили парадокс Платона и Сократа, сведя его к двум утверждениям, которые вы видите на рисунке. Какое бы значение истинности вы ни приписали любому из них, оно будет противоречить другому утверждению. Ни одно из утверждений не содержит ссылки на себя, но, взятые вместе, эти два утверждения воспроизводят парадокс лжеца.

Этот вариант парадокса лжеца, широко обсуждавшийся средневековыми логиками, интересен тем, что приводит к важному выводу: источник затруднений в парадоксах с неопределенным значением истинности кроется не в ссылке на себя, а лежит глубже. Если утверждение А истинно, то утверждение В ложно, а коль скоро утверждение В ложно, то утверждение А должно быть ложным. Но если А ложно, то В истинно, а коль скоро В истинно, то А должно быть истинным.

Мы вернулись к исходной позиции и можем все повторить с самого начала, подобно двум полицейским из кинокомедии, крадущимся друг за другом вдоль стен огромного здания. Ни одно из утверждений А и В ничего не говорит о себе, но стоит взять их вместе, как одно утверждение изменяет значение истинности другого утверждения на противоположное, поэтому ни об одном из них мы не можем сказать, истинно оно или ложно.

Своих друзей вы можете развлечь следующим вариантом парадокса Платона и Сократа, предложенным английским математиком П. Э. Б. Журденом, — так называемой карточкой Журдена.

Напишите на одной стороне чистой карточки

УТВЕРЖДЕНИЕ НА ОБРАТНОЙ СТОРОНЕ ЭТОЙ КАРТОЧКИ ИСТИННО

а на обратной стороне —

УТВЕРЖДЕНИЕ НА ОБРАТНОЙ СТОРОНЕ ЭТОЙ КАРТОЧКИ ЛОЖНО.

Многие люди долго вертят в руках карточку Журдена то так, то эдак, прежде чем осознают, что оказались вовлеченными в бесконечный спуск, в котором каждое утверждение попеременно становится то истинным, то ложным.

Алиса и Черный Король

Парадокс Платона и Сократа включает в себя два бесконечных спуска, подобно парадоксу Алисы и Черного Короля из сказки Льюиса Кэрролла «Алиса в Зазеркалье».

Алиса. Черный Король мне снится. Но он спит и видит во сне, будто я сплю и вижу во сне, что он спит и видит меня во сне…

Видно, я никогда не доберусь до конца.

Эпизод, в котором Алиса встречает Черного Короля, происходит в четвертой главе сказки Льюиса Кэрролла «Алиса в Зазеркалье». Король спит и, по словам Твидлди, видит во сне Алису. «Ты ему просто снишься, — говорит Твидлди возмущенной Алисе. — Если этот вот Король вдруг проснется, ты сразу же — фьють! — потухнешь, как свеча!»

Но диалог Алисы и Твидлди снится Алисе. Кто же кому снится: Король Алисе или Алиса Королю?

Что явь и что сон?

Такого рода «сны во сне» приводят к глубоким философским проблемам реальности. «Если бы мы не облекали их в юмористическую форму, — заметил однажды Бертран Рассел, — то нам пришлось бы признать, что они слишком болезненны».

В парадоксе с курицей и яйцом бесконечная последовательность кур и яиц уходит назад по времени, но в парадоксе Алисы и Черного Короля бесконечный спуск совершается по кругу. Наглядной иллюстрацией парадокса бесконечного спуска, совершаемого по кругу, может служить известный рисунок Морица Эшера «Рисующие руки».

Дуглас Хофштадтер в своей книге «Гёдель, Эшер, Бах: вечное золотое переплетение» называет такие парадоксы «странными петлями». В его книге приведено множество поразительных примеров странных петель в физике, математике, изобразительном искусстве, литературе и философии.

Крокодил и младенец

Греческие философы любили рассказывать притчу о крокодиле, выхватившем младенца из рук матери.

Крокодил . Съем ли я твоего младенца? Если ты ответишь правильно, я верну тебе его целым и невредимым.

Мать. О горе мне! Ты съешь моего мальчика.

Крокодил (в смущении). Как мне поступить? Если я отдам тебе младенца, то твой ответ будет неверным. Следовательно, я должен съесть малютку. Отличная идея! Я не отдам тебе его!

Мать. Но ты должен вернуть мне его. Ведь если ты съешь моего мальчика, значит, я ответила правильно и ты должен отдать мне его.

Несчастный крокодил настолько растерялся, что упустил мальчишку. Мать подхватила ненаглядное чадо и была такова.

Крокодил. Жаль! Вот если бы она сказала, что я отдам ей ребенка, то у меня было бы чем полакомиться на обед.

Крокодил оказался перед неразрешимой проблемой: он должен съесть младенца и в то же время вернуть его матери.

Мать оказалась очень умной женщиной. Ведь если бы она сказала, что крокодил собирается вернуть ей младенца, то крокодил мог бы действительно вернуть его или съесть, не впадая при этом в противоречие.

Если бы крокодил вернул младенца матери, то ее утверждение стало бы истинным и крокодил сдержал бы свое слово. С другой стороны, если крокодил достаточно коварен, то он мог бы съесть младенца. Тогда утверждение матери стало бы ложным, и крокодил мог бы считать себя свободным от данного им обещания вернуть матери младенца.

Парадокс Дон Кихота

В романе Сервантеса «Дон Кихот» рассказывается об одном острове, на котором действует удивительный закон. Каждого, проходящего по мосту через реку, судьи подвергают опросу.

Судья. Куда и зачем ты идешь? Тех, кто скажет правду, судьи пропускают, а тех, кто солжет, без всякого снисхождения отправляют на стоящую тут же виселицу и казнят.

Однажды некий человек заявил под присягой, что идет затем, чтобы его вздернули на виселице.

Судьи пришли в не меньшее замешательство, чем крокодил. Если они не повесят этого человека, то это будет означать, что он солгал, и его надлежит повесить.

Если же они повесят его, то он не солгал и его необходимо пропустить.

Чтобы разрешить свои сомнения, судьи отправили человека к губернатору. После долгих размышлений губернатор объявил свое решение.

Губернатор. Любое мое решение нарушило бы закон, поэтому я предпочитаю быть милосердным. Отпустите этого человека. Пусть идет себе с миром!

Парадокс с повешением приведен в главе 51 второй книги романа Сервантеса «Дон Кихот». Слуга Дон Кихота Санчо Панса становится губернатором острова и при вступлении на свой высокий пост клянется соблюдать все законы. Владелец одного поместья на острове издал закон, по которому всякий, проходящий по некоему мосту, должен объявить под присягой, куда и зачем он следует. Того, кто скажет правду, по закону надлежит пропускать, а того, кто солжет, — отправлять на стоящую неподалеку виселицу. Когда к Санчо Пансо приводят человека, утверждающего, будто он пришел за тем, чтобы быть повешенным, новоявленный губернатор решает казусное дело, сообразуясь с милосердием и здравым смыслом.

Суть парадокса Дон Кихота, обладающего несомненным сходством с парадоксом крокодила и младенца, несколько затемняет неоднозначность утверждения, высказанного тем человеком, который перешел мост. О чем идет речь: о намерении или о будущем событии? Если речь идет о намерении быть повешенным, то человек мог сказать правду (то есть действительно мог хотеть, чтобы его повесили). В этом случае судьи не могли бы отправить его на виселицу, и никакого противоречия при этом бы не возникало.

Если высказанное утверждение понимать во втором смысле, то любое решение судей противоречит закону.

Парадокс брадобрея

Знаменитый парадокс брадобрея был предложен Бертраном Расселом. Прочитайте внимательно объявление, вывешенное владельцем парикмахерской. Кто бреет брадобрея?

Если брадобрей бреется сам, то он принадлежит множеству тех жителей города, кто бреется сам.

Но в объявлении утверждается, что наш брадобрей никогда не бреет тех, кто входит в это множество. Следовательно, наш брадобрей не может брить самого себя.

Если же брадобрея бреет кто-нибудь другой, то он принадлежит к числу тех, кто не бреется сам.

Но в объявлении сказано, что он бреет всех, кто не бреется сам.

Следовательно, никто другой не может брить нашего брадобрея.

Похоже, что его не может брить никто!

Бертран Рассел предложил парадокс брадобрея, чтобы облечь в более наглядную форму знаменитый парадокс, обнаруженный им в теории множеств. Некие математические конструкции приводят к множествам, которые включают себя в качестве одного из своих членов. Например, множество, содержащее все, что не является яблоком, само не является яблоком и, следовательно, должно содержать себя в качестве одного из членов. Рассмотрим теперь множество всех множеств, не содержащих себя в качестве одного из членов. Содержит ли оно себя? Как бы вы ни ответили на этот вопрос, вам не удастся избежать противоречия.

С этим парадоксом связан один из наиболее драматических моментов в истории логики. Знаменитый немецкий логик Готлоб Фреге завершил второй том своих «Оснований арифметики», над которым работал всю жизнь. В этом фундаментальном труде Фреге изложил непротиворечивую теорию множеств, которая могла бы послужить основанием для всей математики. Рукопись находилась уже в типографии, когда Фреге получил от Рассела письмо (дело происходило в 1902 г.), в котором Рассел сообщал об открытом им парадоксе. Теория множеств, развитая Фреге, допускала образование множества всех множеств, которые не содержат себя. Но, как явствовало из письма Рассела, это, казалось бы, не таившее никаких опасностей множество было внутренне противоречивым. Фреге не оставалось ничего другого, как дописать к своему труду краткое приложение, которое начиналось словами:

«Вряд ли что-нибудь может быть более нежелательным для ученого, чем обнаружить, что основания едва завершенной работы рухнули. Письмо, полученное мной от Бертрана Рассела, поставило меня именно в такое положение…».

Использованное Фреге слово «нежелательное» неоднократно приводилось как наиболее яркий пример глубокого непонимания в истории математики.

Мы рассмотрим еще несколько парадоксов того же типа, что и парадокс брадобрея, и упомянем о различных подходах к их разрешению. Одно из возможных решений парадокса Рассела состоит в признании того, что определение «множество всех множеств, которые не содержат себя» не задает этого множества.

Более радикальное решение состоит в том, чтобы запретить в теории множеств рассматривать множества, содержащие себя.

Астролог, робот и каталог

Что вы скажете об астрологе, составляющем гороскопы тем и только тем астрологам, которые не составляют себе гороскопов сами? Кто составляет гороскоп такому астрологу?

Что вы скажете о роботе, ремонтирующем те и только те роботы, которые не ремонтируют себя сами? Кто ремонтирует такой робот?

А что вы скажете о каталоге, содержащем сведения о тех и только тех каталогах, которые не включают ссылок на самих себя? В каком каталоге можно найти ссылку на такой каталог?

Все это — различные варианты парадокса Рассела.

В каждом случае множество S по определению содержит те и только те объекты, которые не находятся в определенном отношении R к себе. Парадокс становится очевидным при попытке ответить на вопрос, принадлежит ли множество S самому себе. Приведем еще три классические вариации на эту тему.

1. Парадокс Греллинга назван в честь открывшего его немецкого математика Курта Греллинга. Разделим все прилагательные на два множества: самодескриптивные, обладающие тем свойством, которое они выражают, и несамодескриптивные. Такие прилагательные, как «многосложное», «русское» и «видимое», принадлежат к числу самодескриптивных, а такие прилагательные, как «односложное», «немецкое» и «невидимое», — к числу несамодескриптивных. К какому из двух множеств принадлежит прилагательное «несамодескриптивнсе»?

2. Парадокс Берри назван в честь библиотекаря Оксфордского университета Дж. Дж. Берри, который сообщил его Расселу. В парадоксе Берри речь идет о «наименьшем целом числе, которое не может быть задано менее чем тринадцатью словами». Выражение, взятое в кавычки, содержит 12 слов. Какому множеству принадлежит определяемое им выражение: множеству целых чисел, которые на русском языке задаются менее чем 13 словами, или множеству целых чисел, задаваемых на русском языке 13 и более словами? Любой из двух ответов приводит к противоречию.

3. Философ Макс Блэк сформулировал парадокс Берри примерно так. В этой книге упоминаются различные целые числа. Сосредоточим наше внимание на наименьшем целом числе, которое ни прямо, ни косвенно не упоминается в этой книге. Существует ли такое число?

Скучные или интересные?

Одни люди интересные, другие скучные.

Футболист. Я лучший нападающий США.

Музыкант. Я умею играть на гитаре ногами.

М-р Скучмен. Я ничего не умею.

Мы составили два списка. В один внесли всех скучных людей, в другой — всех интересных людей.

Где-то в списке скучных людей числится самый скучный человек в мире.

Но именно этим он и интересен, поэтому мы должны вычеркнуть его из списка скучных людей и занести в список интересных людей.

М-р Скучмен. Благодарю вас. Но теперь в списке скучных людей где-то затерялся самый скучный человек среди оставшихся, который этим и интересен. Так постепенно каждый скучный человек станет интересным. Станет ли, как вы думаете?

Этот забавный парадокс представляет собой вариант «доказательства» того, что каждое положительное целое число чем-то интересно. Впервые оно было опубликовано Эрвином Ф. Бекенбахом в заметке «Интересные целые числа» в апрельском номере журнала American Mathematical Monthly за 1945 г.

Верно ли такое «доказательство» и не таит ли оно в себе логической ошибки? Не перейдет ли снова в разряд скучных человек, чье имя было первым включено в список интересных людей и вычеркнуто из списка скучных людей после того, как список интересных людей пополнится вторым среди самых скучных людей? Можно ли придать какой-то смысл утверждению о том, что каждый человек интересен, поскольку он является самым скучным из людей, образующих определенные множества, подобно тому как каждое целое число является наименьшим числом в определенных множествах чисел? Если все люди (или числа) интересны, то не утрачивает ли от этого смысл прилагательное «интересный»?

Семантика и теория множеств

Парадоксы, связанные со значениями истинности, называются семантическими, парадоксы, связанные с множествами каких-то объектов, — теоретико-множественными. Оба типа парадоксов тесно связаны.

Соответствие между семантическими и теоретико-множественными парадоксами проистекает из того, что любое истинное или ложное утверждение можно представить в виде некоего утверждения о множествах и наоборот. Например, утверждение «Все яблоки красные» означает, что множество всех яблок содержится в множестве всех красных предметов. На языке высказываний, относительно которых можно утверждать, что они истинны или ложны, это переводится так: «Если верно, что х — яблоко, то верно, что х красного цвета».

Рассмотрим утверждение парадокса лжеца «Это утверждение ложно». В переводе на теоретико-множественный язык оно звучит так: «Это утверждение есть элемент множества всех ложных утверждений».

Если «это» утверждение действительно принадлежит множеству всех ложных утверждений, то то, о чем оно говорит, — правда и, следовательно, оно не может принадлежать множеству всех ложных утверждений.

Если же утверждение парадокса лжеца не принадлежит множеству ложных утверждений, то то, о чем оно говорит, — неправда и, следовательно, оно должно принадлежать множеству всех ложных утверждений.

У каждого семантического парадокса существует теоретико-множественный аналог, а у каждого теоретико-множественного парадокса существует семантический аналог.

Метаязыки

Чтобы разрешить семантические парадоксы, используют специальный прием — так называемые метаязыки. Утверждения об окружающем мире, например «Яблоки красные» или «Яблоки синие», делаются на объектном языке. Утверждения об истинностных значениях следует делать на метаязыке.

В этом примере никакого парадокса нет и не может быть, так как утверждение А , записанное, по предположению, на метаязыке, относится к значению истинности утверждения В , записанного на объектном языке.

А каким образом мы могли бы говорить о значениях истинности утверждений, записанных на метаязыке? Для этого нам пришлось бы подняться на еще одну ступень и ввести метаязык. Каждая ступень бесконечной лестницы является метаязыком по отношению к предыдущей ступени (расположенной ниже) и объектным языком по отношению к следующей ступени (расположенной выше).

Понятие «метаязык» было введено польским математиком Альфредом Тарским. На нижней ступени лестницы находятся утверждения об объектах, например «У Марса две луны». Такие слова, как «истина» и «ложь», не входят в язык низшей ступени. Чтобы говорить об истинности или ложности утверждений, высказанных на языке низшей степени, мы должны воспользоваться метаязыком — следующей, более высокой ступенью лестницы. Метаязык включает в себя весь объектный язык, но не исчерпывается им. Метаязык «богаче» объектного языка, поскольку позволяет говорить об истинности и ложности утверждений, записанных на объектном языке. Любимый пример Тарского: «Снег белый» — утверждение из объектного языка, «Утверждение «Снег белый» истинно» — утверждение из метаязыка.

Можно ли говорить об истинности или ложности утверждений из метаязыка? Можно, но лишь поднявшись на третью ступень лестницы и говоря на более высоком метаязыке, позволяющем высказывать утверждения об истинности или ложности утверждений всех языков более низких ступеней.

Каждая ступень лестницы является объектным языком по отношению к ступени, расположенной непосредственно над ней. Каждая ступень, за исключением самой нижней, является метаязыком по отношению к ступени, расположенной непосредственно под ней. Лестница простирается вверх сколь угодно далеко.

Примеры утверждений на языках первых четырех ступеней.

A. Сумма внутренних углов любого треугольника равна 180°.

B. Утверждение А истинно.

C. Утверждение В истинно.

D. Утверждение С истинно.

Язык на уровне А позволяет формулировать теоремы о геометрических объектах. Геометрический текст, содержащий доказательства теорем, написан на метаязыке уровня В. Книги по теории доказательств написаны на языке уровня С. К счастью, математикам редко приходится подниматься выше уровня С.

Теоретическая нескончаемость, или бесконечность, лестницы в занимательной форме рассмотрена в статье Льюиса Кэрролла «Что черепаха сказала Ахиллу»

Теория типов

Бесконечная иерархия, аналогичная лестнице метаязыков, позволяет избавиться от теоретико-множественных парадоксов. Ни одно множество не может быть членом самого себя или любого множества более низкого типа. Брадобрей, астролог, робот и каталог просто не существуют.

У лестницы метаязыков Тарского существует теоретико-множественный аналог — теория типов Бертрана Рассела. Не вдаваясь в технические подробности, можно сказать, что эта теория, устанавливая среди множеств иерархию по типам, исключает высказывания о принадлежности или непринадлежности множества самому себе. Тем самым исключаются противоречивые множества. Они просто-напросто вычеркиваются из системы. Если вы неукоснительно следуете правилам теории типов, то у вас нет разумного способа определить эти множества, чреватые противоречиями. Ситуация, возникающая при этом в теории множеств, аналогична той, с которой мы сталкиваемся в семантике, когда утверждаем, что такие утверждения, как парадокс лжеца, просто «не являются утверждениями», поскольку не соответствуют правилам построения «законных» утверждений.

Не один год понадобился Бертрану Расселу, чтобы разработать теорию типов. Вот что он пишет в книге «Мое философское развитие»:

Закончив «Принципы математики», я предпринял решительную попытку найти решение парадоксов. Их существование я рассматривал почти как личный вызов и, если потребовалось бы, посвятил бы всю оставшуюся жизнь попыткам разрешить их. Однако по двум причинам такая приверженность идее избавления от парадоксов казалась мне нежелательной. Во-первых, вся проблема представлялась мне тривиальной… Во-вторых, сколько я ни пытался, мне не удавалось ни на шаг продвинуться в ее решении. Почти все 1903 и 1904 гг. ушли на борьбу с парадоксами, но без сколько-нибудь ощутимых признаков успеха.

Предсказание свами [5]

Может ли снами видеть будущее в своем хрустальном шаре? Предсказание будущего приводит к необычному логическому парадоксу нового типа.

Однажды Свами поспорил со своей десятилетней дочерью Сью.

Сью. Ты большой обманщик, папа. На самом деле ты не можешь предсказывать будущего.

Свами. Нет, могу!

Сью. Нет, не можешь, и я могу доказать это.

Сью написала несколько слов на листке бумаги, сложила его и подсунула под хрустальный шар.

Сью. Я описала некое событие, которое либо произойдет, либо не произойдет до 3 часов дня. Если ты сумеешь предсказать, произойдет ли это событие, то можешь не покупать машину, которую ты обещал подарить мне за успешное окончание школы.

Сью. Вот чистая карточка. Если ты считаешь, что событие произойдет, то напиши на ней ДА. Если, по-твоему, оно не произойдет, напиши на карточке НЕТ. Но если твое предсказание окажется неверным, то ты покупаешь мне машину сейчас, не дожидаясь, пока я окончу школу. Идет?

Свами . Идет!

Свами написал что-то на карточке. Ровно в 3 часе Сью извлекла листок бумаги из-под хрустального шара и, развернув, прочитала вслух то, что было написано на нем: «До 3 часов ты напишешь на карточке НЕТ».

Свами. Это нечестно с твоей стороны. Я написал на карточке ДА, поэтому я ошибся. На если бы я написал НЕТ, то все равно бы ошибся. Что бы я ни написал на карточке, мое предсказание в любом случае оказалось бы неверным.

Сью. Папочка, мне очень нравятся спортивные машины красного цвета я чтобы кресла были с откидными спинками.

В первоначальном варианте этого парадокса речь шла о компьютере, отвечавшем на все вопросы только «да» или «нет», когда к нему обращаются с просьбой предсказать, будет ли его следующий ответ отрицательным. Ясно, что выдать правильное предсказание логически невозможно. В предельно простом варианте парадокс свами возникнет, если обратиться к кому-нибудь с вопросом: "Будет ли следующее произнесенное вами слово словом «нет»? Отвечайте, пожалуйста, только «да» или «нет»".

Отличается ли парадокс с предсказанием свами от парадокса лжеца, или мы, по существу, имеем дело с одним и тем же парадоксом? Предположим, что человек, к которому мы обратимся с нашим несколько необычным вопросом, ответит: «Нет». Что, собственно, означает такой ответ? В развернутом виде односложное «нет» эквивалентно утверждению "Неверно, что я сейчас скажу: «Неверно»". В свою очередь такое утверждение эквивалентно утверждению «Это утверждение ложно». Таким образом, парадокс свами представляет собой нечто большее, чем замаскированный вариант парадокса лжеца»

Заметим, что подобно тому, как утверждение «Это утверждение истинно» не приводит к парадоксу, вопрос "Будет ли следующее произнесенное вами слово словом «да»?" также не приводит к парадоксу.

Независимо от того, что ответит на него спрошенный нами человек — «да» или «нет», — никакого противоречия не возникнет. В варианте парадокса лжеца с крокодилом и младенцем это соответствует тому что если бы-мать сказала: «Ты вернешь моего сына», то крокодил мог бы и съесть, и вернуть дитя, не впадая при этом в противоречие.

Полная неожиданность

Принцесса. Папочка, ты король и все можешь. Позволь мне выйти замуж за Майкла.

Король. Дитя мое, я отдам тебя за Майкла, если он убьет тигра, который находится за одной из этих пяти дверей. Майклу придется открыть одну за другой все двери подряд, начиная с первой.

За какой именно дверью прячется тигр, Майклу заранее не должно быть известно. Об этом он узнает, лишь когда откроет ее. Тигр за дверью должен быть для него полной неожиданностью.

Встав перед дверями, Майкл принялся рассуждать следующим образом.

Майкл. Если я открою четыре двери и ни за одной из них не окажется тигра, то я буду знать, что тигр прячется за пятой дверью. Но король сказал, что мне не должно быть известно заранее, за какой дверью находится тигр. Следовательно, тигр не может находиться за пятой дверью.

Mайкл. Поставим на пятой двери крест. Тогда тигр должен находиться за одной из первых четырех дверей. Если открыв три двери, я не обнаружу ни за одной из них тигра, то тигр заведомо будет находиться за четвертой дверью. Но тогда ни о какой неожиданности не может быть и речи, поэтому на четвертой двери также можно поставить крест.

Продолжая рассуждать в таком же духе, Майкл доказал, что тигр не может находиться ни за третьей, ни за второй, ни за первой дверью, и был вне себя от радости.

Майкл. Итак, никакого тигра ни за одной из дверей нет. Ведь если бы он был, то для меня это не было бы неожиданностью вопреки утверждению короля, а короли никогда не бросают слов на ветер.

Доказав, что никакого тигра нет и в помине, Майкл принялся храбро открывать двери. Но стоило ему распахнуть вторую дверь, как из-за нее выпрыгнул тигр. Для Майкла это было полной неожиданностью. Король сдержал свое слово. Логики до сих пор продолжают спорить относительно того, где именно в рассуждения Майкла вкралась ошибка.

Парадокс с неожиданным появлением тигра рассказывают по-разному. Когда о нем впервые заговорили в начале 40-х годов, речь шла о профессоре, пообещавшем своим студентам устроить в один из дней на следующей неделе «неожиданный экзамен».

Профессор, всегда державший свое слово, уверял, что студенты не смогут заранее определить, на какой из дней назначена проверка, и узнают о предстоящем им испытании только в день экзамена. Студенты «доказали» сначала, что экзамен не может быть назначен на последний день недели, затем — на предпоследний и т. д. на каждый из остальных дней недели.

Выясняется, однако, что профессор, не нарушив своего обещания о полной неожиданности проверки, назначил экзамен, например, на среду.

В статье философа У. В. Куайна из Гарвардского университета, опубликованной в 1953 г., речь шла о судье, приговорившем подсудимого к неожиданной казни через повешение. Подробный анализ этого парадокса и некоторые библиографические ссылки можно найти в главе «Казнь врасплох и связанный с ней логический парадокс» моей книги «Математические досуги» (М.: Мир, 1972, с. 95—109).

Большинство людей склонно считать первый шаг в рассуждениях Майкла (утверждение о том, что тигр не может находиться за последней дверью) правильным. Но коль скоро мы согласимся с этим выводом, то нам не останется ничего другого, как признать правильность и всех остальных рассуждений Майкла: ведь если тигр не может находиться за последней дверью, то аналогичные рассуждения позволяют исключить случай, когда тигр находится за предпоследней, предпредпоследней и т. д. дверью.

Но на самом первом шаге своих рассуждений Майкл все же допустил ошибку. Предположим, что он распахнул все двери, кроме последней. Может ли он сделать логически безупречный вывод о том, что за последней дверью тигра нет? Не может, потому что, придя к такому заключению, Майкл мог бы открыть последнюю дверь и совершенно неожиданно для себя обнаружить за ней тигра! Следовательно, парадокс остается в силе и в том случае, если осталась неоткрытой одна-единственная дверь.

Предположим, что некий мистер Смит, всегда говорящий, как вам хорошо известно, только правду, вручает вам коробку и говорит: «Откройте ее, и вы неожиданно обнаружите внутри яйцо». Можете ли вы, рассуждая логически, прийти к какому-нибудь заключению относительно того, находится ли внутри коробки яйцо, или его там нет? Если Смит сказал правду, то внутри коробки должно быть яйцо, но, поскольку вы знаете об этом, для вас не будет неожиданностью обнаружить яйцо в коробке. Следовательно, утверждение Смита ложно. С другой стороны, если это противоречие подтолкнет вас к выводу о том, что в коробке нет яйца (в этом случае утверждение Смита ложно), и вы, открыв коробку, неожиданно обнаружите в ней яйцо, то утверждение Смита истинно.

Логики сходятся на том, что хотя король знает о том, что держит данное им слово, Майклу об этом ничего не известно. Следовательно, он не может, рассуждая логически, прийти к выводу, чтя за любой дверью, в том числе и последней, нет тигра.

Парадокс Ньюкома

Из глубин космического пространства на Землю высадился инопланетянин Омега.

У Омеги было с собой самое совершенное оборудование для изучения деятельности головного мозга людей, позволявшее ему с точностью определять, какую из двух альтернатив выберет каждый из испытуемых.

Омега обследовал большое число людей, используя для теста два ящика. В ящике А , прозрачном, лежал чек на 1000 долларов.

В ящике В , непрозрачном, либо не было ничего, либо лежал чек на 1 000 000 долларов.

Каждому испытуемому Омега говорил следующее.

Омега. Перед вами две возможности. Во-первых, вы можете выбрать оба ящика и взять себе те деньги, которые в них находятся.

Если бы я знал, что вы поступите именно так, то оставил бы ящик В пустым. В этом случае вы получите только 1000 долларов.

Омега. Во-вторых, вы можете выбрать только ящик В . Если бы я знал, что вы поступите именно так, то положил бы в ящик В 1 000 000 долларов и он целиком достался бы вам.

Этот мужчина решил выбрать только ящик В . Рассуждал он следующим образом.

Мужчина. Я видел, как Омега провел не одну сотню тестов.

Каждый раз он правильно предсказывал, какую из альтернатив выберет испытуемый. Каждый, кто выбирал оба ящика, получал всего лишь 1000 долларов. Выберу-ка я лучше только ящик В и стану миллионером.

Эта женщина решила выбрать оба ящика. Рассуждала она следующим образом.

Женщина. Омега уже определил, какую из альтернатив я выберу, и вышел из комнаты. Содержимое ящика теперь не изменится. Если он пуст, то пустым и останется, а если в нем миллион, то этот миллион никуда не денется.

Выберу-ка я оба ящика и возьму все денежки, какие в них лежат.

Чье решение, по-вашему, правильно? Оба рассуждения — мужчины и женщины — не могут быть правильными. Какое из них неправильно и в чем? Это новый парадокс, и даже специалисты не знают пока, как его решить.

Это последний и наиболее поразительный из парадоксов, связанных с предсказанием, которые обсуждают современные философы. Придумал его физик Уильям Ньюком, в честь которого он и был назван парадоксом Ньюкома. Впервые его опубликовал и проанализировал философ из Гарвардского университета Роберт Нозик. Работа Нозика опиралась на такие разделы современной математики, как «теория игр» и «теория решений».

Решение мужчины выбрать ящик В понять нетрудно. Рассуждения женщины станут понятнее, если мы вспомним, что Омега вышел из комнаты и, следовательно, не может изменить содержимое ящика В.

Если ящик В пуст, то так и останется пустым. Если в нем чек на миллион долларов, то этот чек никуда не исчезнет. Рассмотрим оба случая.

Если в ящике В находится чек на миллион долларов и женщина выбирает только ящик В, то она получает миллион долларов. Но если она выбирает оба ящика, то получает миллион плюс тысячу долларов.

Если ящик В пуст и женщина выбирает только ящик В, то она не получает ничего. Если же она выбирает оба ящика, то получает 1000 долларов.

Следовательно, в любом случае женщина, выбрав оба ящика, станет богаче по крайней мере на 1000 долларов.

Парадокс Ньюкома служит своего рода лакмусовой бумажкой для проверки, верит или не верит человек в свободу воли. Воможные реакции на парадокс подразделяются (почти поровну) на два типа: те, кто верит в свободу воли, выбирают два ящика; сторонники детерминизма предпочитают выбирать только ящик В. Имеются и такие, кто считает парадокс Ньюкома противоречивым независимо от того, полностью или не полностью предопределено будущее.

Подробный обзор различных, нередко противоположных, взглядов на парадокс Ньюкома приведен в разделе «Математические игры» журнала Scientific American мной (июль 1973) и профессором Нозиком (март 1974).