Нет на нашей древней Земле такого глухого уголка, где не торжествовала бы жизнь, жизнь фантастически разнообразная по размерам, формам, цвету, по звукам и запахам. С чего все это началось? Началась ли эволюция всех живых существ с одной-единственной углеродной молекулы или с разных, независимо образовавшихся молекул? Продолжается ли образование таких молекул на Земле до сих пор? Никто не может ответить на эти вопросы. Но впервые в истории сейчас накоплен достаточный запас сведений по биологии, химии, физике и геологии для серьезного обсуждения вопроса о происхождении жизни.

Большинство современных биохимиков и геологов убеждены, что жизнь на Земле началась несколько миллиардов лет назад с появления в первобытных морях нашей планеты одной или нескольких молекул, содержащих углерод и напоминающих нуклеиновую кислоту в соединении с чем-то вроде белка и способных к самовоспроизведению. Появление такой молекулы (или молекул), как утверждают ученые, вовсе не требует вмешательства сверхъестественных сил. Оно вполне объяснимо с точки зрения физических законов и математических законов теории вероятностей.

Такие взгляды глубоко задевают некоторых религиозных людей. В Соединенных Штатах до сих пор насчитывается несколько миллионов протестантов-ортодоксов (больше всего их на Юге), которые не верят в эволюцию. Так, законы штата Теннесси продолжают запрещать преподавание эволюционного учения в школах и колледжах штата. Эти ортодоксы уверены, что примерно шесть тысяч лет назад бог создал все живые существа путем каких-то магических фокусов. Миллионы других верующих христиан — католиков и протестантов — принимают эволюционную теорию, но считают, что в один прекрасный момент на заре земной истории, несколько миллиардов лет назад, специальным актом творения господь бог заставил появиться на Земле первую живую молекулу.

Сегодня трудно найти хотя бы одного биохимика или геолога даже из числа искренне верующих людей, который хоть сколько-нибудь сомневался бы в разумности эволюционной теории. Может быть много разногласий в деталях, но не в главном. Когда живой организм изготовляет копию самого себя, то она получается почти всегда точной. В редких случаях какое-нибудь излучение в виде ультрафиолетовых лучей солнца, космических лучей или радиации радиоактивных веществ Земли поражает молекулу нуклеиновой кислоты и слегка изменяет порядок атомов в ней. Генетический код меняется и получается копия, имеющая небольшое случайное отличие от оригинала. Обычно это изменение вредно для организма. В этом случае мутант и все его потомство имеют меньше вероятности выжить и дать этому вредному изменению распространиться. Если же происшедшее изменение благоприятно сказывается на организме, то у мутанта и его потомства шансы выжить будут выше, чем в среднем.

Таким путем «естественный отбор» приводит к медленным изменениям, происходящим длительное время. Возникает новый «вид». Эволюция — это просто процесс, с помощью которого случай (беспорядочные мутации) помогает законам природы создавать формы жизни, более приспособленные для борьбы за существование.

Если этот союз природы и случая может создавать новые виды, то почему он не мог создать первую «живую» молекулу? От признания такого предположения жизнь не станет ни менее чудесной, ни менее загадочной.

Вернемся мысленно к тем изначальным глухим временам, на три или четыре миллиарда лет назад, когда ни одно живое существо не бродило по лицу Земли и не бороздило ее вод. Как появилась «первая» живая молекула? Простер ли бог свою длань и своими перстами соединил атомы углерода, кислорода, азота, водорода и серы в гигантскую молекулу, способную к самовоспроизводству? Пока что никто не может доказать, что этого не было. Но мы можем попытаться дать более достойное объяснение.

Возможно, что Мировой океан, в который попали споры живых молекул из Вселенной, оказался подходящей средой для их развития. Некоторые ученые поддерживали эту гипотезу. Сванте Аррениус, знаменитый шведский химик, написал в защиту подобных идей целую книгу под названием «Как делаются миры». В ней он отстаивает точку зрения, что жизнь на Земле могла зародиться из спор, которые в глубоко охлажденном состоянии пересекли пространство под давлением звездной радиации.

Похожая мысль о том, что живые споры были занесены на Землю метеоритами, возникла недавно при исследовании состава некоторых типов метеоритов, богатых углеродом.

В 1961 году группа американских ученых сообщила об обнаружении некоторых сложных углеводородов, очень похожих на земные органические вещества в образцах, взятых из метеоритов, хранящихся в Американском музее естественной истории. Позднее в том же году другая группа ученых США обнаружила в метеоритах какие-то микроскопические частицы, которые могут быть остатками простейших растений. Один ученый объявил, что ему удалось выделить из вещества метеорита живые микроорганизмы, но, по общему мнению специалистов, это всего лишь результат загрязнения метеорита при прохождении атмосферы Земли.

Биохимики готовы признать, что в метеоритах могут содержаться остатки погибших микроорганизмов. Но они склонны выражать сильное сомнение в способности живого организма выдержать жестокую радиацию при путешествии через космическое пространство как в виде свободных спор, так и в веществе метеоритов.

На менее серьезном уровне писателями-фантастами были придуманы многие формы разумной жизни, путешествующей через космические пространства и «засевающей» планеты, на которых физические и химические условия благоприятны для жизни. Томас Голд, английский астрофизик, высказал однажды предположение, что жизнь на Земле могла начаться с микробов, которые жили среди отбросов, оставшихся после посещения Земли звездными пришельцами несколько миллиардов лет назад!

Сейчас большинство биохимиков отвергают гипотезу о внеземном происхождении жизни. Их доводы сводятся не только и не столько к тому, что у этой гипотезы нет экспериментального подтверждения и что жизнь не может выдержать космическую радиацию на пути через пространство; их убеждения основаны на все укрепляющихся доказательствах того, что живые организмы могли просто спонтанно возникнуть на самой Земле.

«Спонтанное зарождение» в смысле постоянно наблюдающегося образования живого из неживого со времен Аристотеля до времен Пастера упорно отстаивали многие великие биологи. До признания эволюционной теории было широко распространено мнение, что всевозможные живые существа, даже мыши, рождаются спонтанно из продуктов распада живого вещества, из отбросов, из грязи. Во времена Пастера большинство химиков были уверены, что микробы самопроизвольно образуются в стоячей воде. Серией простых, но блестяще продуманных экспериментов Пастер раз и навсегда доказал, что это не так. Биологи, считавшие, что доказали спонтанное зарождение, просто недостаточно тщательно защищали свои пробирки от проникновения в них микробов. Сейчас ни один уважающий себя биохимик не думает, что хоть где-нибудь на Земле микроорганизмы возникают из неживой материи. Самое большее, что может произойти, это случайное появление примитивных «полуживых» молекул на поверхности моря, где их быстро поглотят живые микробы. Но и это кажется весьма маловероятным.

Тем не менее биохимики уверены, что спонтанное зарождение могло иметь место по крайней мере однажды три или четыре миллиарда лет назад, когда физические и химические условия на Земле резко отличались от нынешних. В несоленой воде океанов содержались, по-видимому, большие количества аммиака и углекислого газа. В атмосфере не было свободного кислорода, и не из чего было образоваться спасительному слою озона, который защищал бы Землю от мощного ультрафиолетового излучения Солнца. Благодаря этому излучению ряд простейших углеводородных молекул превратились в более сложные высокомолекулярные соединения. Источником энергии могли быть также тепло коры Земли, выделявшееся гораздо интенсивнее, чем сейчас, разряды молний у поверхности моря, излучение радиоактивных веществ и радиация космических лучей. Возможно, что за миллиард лет и больше в бушующих и пенящихся океанах могли сформироваться миллионы различных сложных молекул, содержащих углерод.

Авторы научно-популярных книг (и некоторые ученые) порой склонны излишне драматизировать внезапное появление единственной молекулы (может быть, молекулы нуклеиновой кислоты), положившей начало процессу саморазмножения, химического «Адама», с которого началась эволюция. Хотя мы и не можем категорически отвергать эту мысль, но скорее всего, что такого драматического момента все же не было. Суть в точности воспроизведения. Сперва могли появиться молекулы, способные к частичному воспроизводству грубо приближенных собственных копий; эти грубые копии в свою очередь размножались миллионами. Даже если бы мы подробно знали обо всем, что происходило тогда, за миллионы лет до появления следов живых существ, то мы не смогли бы все равно установить, в каком определенном году или даже тысячелетии это происходило, и сказать: «Вот в это время зародилась жизнь». Сложность могла нарастать постепенно и непрерывно, пока наконец не появились органические молекулы, сходные по своему строению с молекулами нуклеиновой кислоты в современных живых организмах.

Многие ученые под влиянием суеверного представления о божественном акте творения высмеивали мысль, что случайная комбинация органических молекул в первичной гидросфере может создать такую сложную структуру, как нуклеиновая кислота. К числу самых первых насмешников, обладающих большим даром красноречия, относился Фрэнсис Роберт Джэпп, шотландский химик XIX века. В его широко обсуждавшейся статье «Стереохимия и витализм», напечатанной в журнале «Нэйчур» в сентябре 1898 года, было дано прекрасное изложение работ Пастера по стереоизомерии наряду с яростной проповедью сверхъестественного происхождения первых асимметричных молекул.

«Стереоизомерия одного определенного типа,— утверждал Джэпп, — не могла возникнуть под воздействием слепых и симметричных сил природы».

«Только живой организм с асимметричными тканями, — провозглашал Джэпп, — или асимметричные продукты его жизнедеятельности, или живой разум, понимающий, что такое асимметрия, могли добиться такого результата. Только асимметрия рождает асимметрию... Если эти выводы справедливы, а я уверен в этом, то начальное возникновение соединений с односторонней асимметрией, которое встречается в живой природе, — тайна столь же глубокая, как возникновение самой жизни... Никакое случайное сцепление атомов, будь у них хоть целая вечность для того, чтобы сталкиваться, образуя всевозможные комбинации, не осуществит этого подвига — создания первого оптически активного соединения. Совпадение исключено, и любое чисто механическое объяснение этого явления, несомненно, окажется несостоятельным».

Статья Джэппа вызвала оживленную полемику среди читателей журнала «Нэйчур». Многие выдающиеся ученые и мыслители, включая Герберта Спенсера, Карла Пирсона и Джорджа Фитцджеральда (последний разработал математическую теорию сокращения Лоренца — Фитцджеральда в теории относительности), прислали письма с протестом, которые были опубликованы в «Нэйчур» вместе с многочисленными объяснениями Джэппа.

Аргументы профессора Джэппа были возрождены в 1947 году в широко известной книге Лекомта дю Нюи «Human Destiny» («Предназначение человека») и повторно изложены в 1949 году в его книге «The Road to Reason» («Путь к причине»). «Возражения против возможности случайного образования сложной органической асимметричной молекулы так сильны, — утверждает дю Нюи, — что это событие наверняка не могло обойтись без божественного вмешательства. Скорее уж можно ожидать, что обезьяна, барабаня по клавишам пишущей машинки, случайно напечатает пьесу Шекспира». Английский астроном Артур Стэнли Эддингтон выразил последнюю мысль более оригинально:

There once was a brainy baboon

Who always breathed down a bassoon

        For he said. «It appears

        That in billions of years

I shall certainly hit on a tune».

(«Играя на фаготе беспрестанно, —

Сказала умная обезьяна, —

Сомненья никакого нет,

Я, безусловно, сочиню

Хоть через миллиарды лет

Красивую мелодию».)

Вероятность того, что эддингтоновская обезьяна действительно в конце концов сыграет связную мелодию, всецело зависит от того, что понимать под словом «мелодия». Никто не ожидает, что шимпанзе, заляпав красками холст и размазав их, создаст репродукцию «Монны Лизы», но если в понятие «живопись» включить все современные произведения абстракционистов-экспрессионистов, то соответствующим образом обученному шимпанзе трудно будет не создать произведение живописи. Соответствующая семантическая трудность возникает и при попытке оценить вероятность случайного возникновения сложной органической молекулы. Какова же сложность этой «сложности»?

В 1952 году молодой американский химик Стэнли Миллер (ему в то время было только 23 года) действительно получил довольно сложные аминокислоты с помощью простой методики, созданной им для проверки теории, предложенной его учителем, известным химиком Гарольдом Юри. Он смешал в пробирке воду, аммиак, метан и водород в пропорциях, которые, по мнению профессора Юри, воспроизводили смесь элементов в первичной гидросфере и атмосфере. Пропуская электрический ток через эту смесь в течение целой недели, Миллер обнаружил в ней различные органические соединения, в том числе аминокислоты, которых там до опыта не было.

От этого эксперимента, правда, еще далеко до создания нуклеиновой кислоты или белка, но аминокислоты — это асимметричные кирпичики, из которых строятся белки. Если оценивать по методу Джэппа и дю Нюи шансы на получение положительного результата, то нечего было и надеяться создать даже примитивную аминокислоту за такой невероятно короткий срок, как одна неделя, имея дело с таким мизерным количеством веществ. Этот эксперимент оказался кардинальным в теории происхождения жизни. С тех пор он был повторен многими учеными, которые использовали различные смеси веществ и иные источники энергии.

В 1963 году Сирил Поннамперума, цейлонский биохимик, работающий в Радиационной лаборатории Лоуренса Калифорнийского университета, и его коллеги добились такого же успеха в попытке получить одну из основных компонент нуклеиновой кислоты. Пучок электронов высокой энергии пропускался через смесь водорода, аммиака, метана и водяного пара в течение примерно 45 минут. В смеси после этого были обнаружены следы аденина — одного из пяти нуклеотидов. В последнее время Сидней Фокс и Каору Харада из Флоридского университета сумели создать тринадцать различных видов аминокислот, используя не что иное, как нагрев (примерно до 1000 градусов Цельсия). После этих экспериментов ни один ученый уже не смеет отрицать возможность создания сложных органических соединений в результате случайного воздействия того или иного вида энергии на неорганическую химическую смесь.

В чем же заключалась ошибка Джэппа и дю Нюи? Дело в том, что они не учли в своих рассуждениях, что не только случай создавал эти спиральные химические соединения в первобытном океане, там действовали еще и законы природы — законы физики и химии. Рассыпьте по столу пакет гороха. Вряд ли горошины образуют при этом правильный узор, обладающий гексагональной симметрией. Однако мы знаем, что когда вода замерзает, миллионы ее молекул образуют правильные шестиугольные снежинки. Причиной тому электрические силы, притягивающие и отталкивающие молекулы между собой, которые действуют так, что поразительно правильные узоры становятся не только возможными, но и весьма вероятными.

Айзек Азимов объясняет это следующим образом. Предположим, мы взяли атомы кислорода (О) и водорода (Н) и комбинируем их друг с другом, составляя случайным образом трехатомные молекулы, считая возможными любые комбинации, например ННН, ННО, НОН, НОО и так далее. Из этой смеси мы извлекаем наудачу десять молекул. Каковы шансы на то, что все десять молекул будут иметь формулу ННО, то есть окажутся молекулами воды? По подсчетам Азимова получается один шанс на 60 000 000. Мы, однако, знаем, что, если бы такой эксперимент производился на самом деле, атомы не соединились бы случайно. Все образованные молекулы оказались бы молекулами воды, поскольку это единственная химически возможная трехатомная комбинация из водорода и кислорода. Чего не предусмотрели Джэпп и дю Нюи, так это действия законов природы. «Атомы, — как говорит Азимов, — не липкие шарики, которые, если их потрясти в сосуде, могут соединиться как попало. Они образуют только такие комбинации, которые допускают физические законы».

Дело в том, что наши знания об электрических силах, действовавших на атомы в «бульоне» из углеродных соединений при условиях, которые были на Земле до начала биологической эволюции, недостаточны для того, чтобы дать хоть сколько-нибудь достоверную оценку вероятности образования той или иной конкретной комбинации. Одни комбинации будут невозможны, другие исключительно вероятны. Крупнейшая ошибка дю Нюи была в том, что он пытался оценить вероятность возникновения «размножающейся молекулы» в предположении, что атомы соединяются по закону слепого случая. «Он должен был спросить себя, — пишет Азимов, — есть ли шансы на то, что такую молекулу будет строить зрячий случай, то есть случай, сочетающийся с законами химии и физики. Насколько мы знаем, условия в те доисторические времена могли быть таковы, что молекулам аминокислоты трудно было не образоваться, а образовавшись, трудно не соединиться в сложные цепи».

Мы знаем, что только неделя понадобилась случаю, чтобы создать асимметричные аминокислоты в пробирках Миллера. Вряд ли кто-либо будет теперь утверждать, что размножающиеся молекулы не могли возникнуть случайно, когда смеси химических элементов в земных океанах и атмосфере находились под воздействием источников энергии значительно мощнее теперешних, да еще в течение миллиардов лет. В таких условиях они должны были образовываться миллионами. Возможно, первые аминокислоты соединились и создали миллиарды разных белковых молекул, затем молекула нуклеиновой кислоты или что-нибудь похожее на нее замкнулась в белковую оболочку и получилось нечто способное к воспроизведению своего точного подобия всегда, когда под рукой находились нужные белки. И через несколько тысяч или миллионов лет (все это сроки чисто гипотетические) «первобытный бульон» уже мог кишеть примитивными полуживыми организмами. Вот тогда-то и началась великая эпоха эволюции.