В этой и следующей главах мы проследим за ходом развития многих замечательных геометрических парадоксов. Все они начинаются с разрезания фигуры на куски и заканчиваются составлением из этих кусков новой фигуры. При этом создается впечатление, что часть первоначальной фигуры (это может быть часть площади фигуры или один из нескольких изображенных на ней рисунков) бесследно исчезла. Когда же куски возвращаются на свои первоначальные места, исчезнувшая часть площади или рисунок таинственным образом возникают вновь.
Геометрический характер этих любопытных исчезновений и появлений оправдывает причисление этих парадоксов к разряду математических головоломок.
Парадокс с линиями
Все многочисленные парадоксы, которые мы здесь собираемся рассматривать, основаны на одном и том же принципе, который мы назовем «принципом скрытого перераспределения». Вот один очень старый и совсем элементарный парадокс, который сразу объясняет суть этого принципа.
Начертим на прямоугольном листе бумаги десять вертикальных линий одинаковой длины и проведем пунктиром диагональ, как показано на рис. 50.
Посмотрим на отрезки этих линий над диагональю и под ней; нетрудно заметить, что длина первых уменьшается, а вторых соответственно увеличивается.
Разрежем прямоугольник по пунктирной линии и сдвинем нижнюю часть влево вниз, как это показано на рис. 51.
Сосчитав число вертикальных линий, вы обнаружите, что теперь их стало девять. Какая линия исчезла и куда? Передвиньте левую часть в прежнее положение, и исчезнувшая линия появится снова.
Но какая линия стала на свое место и откуда она взялась?
Сначала эти вопросы кажутся загадочными, но после небольшого размышления становится ясным, что никакая отдельная линия при этом не исчезает и не появляется. Происходит же следующее: восемь этих приращений в точности равна длине каждой из первоначальных линий.
Возможно, суть парадокса выступит еще более явственно, если его иллюстрировать на камешках.
Возьмем пять кучек камешков по четыре камешка в кучке. Переместим один камешек из второй кучки в первую, два камешка из третьей во вторую, три из четвертой в третью и, наконец, все четыре камешка из пятой в четвертую. Рис. 52 поясняет наши действия.
После такой передвижки оказывается, что кучек стало только четыре. Невозможно ответить на вопрос, какая кучка исчезла, так как камешки были перераспределены так, что в каждой из четырех кучек прибавилось по камешку. В точности то же происходит и в парадоксе с линиями. Когда части листа сдвигаются по диагонали, отрезки разрезанных линий перераспределяются и каждая получающаяся при этом линия становится немного длиннее первоначальной.
Исчезновение лица
Перейдем к описанию способов, при помощи которых парадокс с линиями можно сделать более интересным и занимательным. Этого можно, например, достигнуть, заменив исчезновение и появление линий таким же исчезновением и появлением плоских фигур. Здесь особенно подойдут изображения карандашей, папирос, кирпичей, шляп с высокой тульей, стаканов с водой и других вертикально протяженных предметов, характер изображения которых до и после сдвига остается одинаковым. При некоторой художественной изобретательности можно брать и более сложные предметы. Посмотрите, например, на исчезающее лицо на рис. 53.
При сдвиге нижней полосы на верхней части рисунка влево все шляпы остаются незатронутыми, однако одно лицо полностью исчезает! (см. нижнюю часть рисунка). Бессмысленно спрашивать, какое именно лицо, так как при сдвиге четыре лица разделяются на две части. Эти части затем перераспределяются, причем каждое лицо получает несколько добавочных черт: одно, например, более длинный нос, другое — более вытянутый подбородок и т. д. Однако эти маленькие перераспределения остроумно скрыты, а исчезновение всего лица, конечно, поражает гораздо сильнее, чем исчезновение кусочка линии.
«Исчезающий воин»
В этой головоломке парадоксу с линиями придана круговая форма и прямолинейные отрезки заменены фигурами 13 воинов (рис. 54).
Большая стрела указывает при этом на северо-восток С. В. Если же рисунок разрезать по окружности, а затем внутреннюю часть начать поворачивать против часовой стрелки, то фигуры сначала разделятся на части, затем соединятся вновь, но уже по-иному, и когда большая стрела укажет на северо-запад С.З., на рисунке будет 12 воинов (рис. 55).
При вращении круга в обратном направлении до положения, когда большая стрела встанет опять на СВ., исчезнувший воин появится снова.
Если рис. 54 рассмотреть повнимательнее, то можно заметить, что два воина в левой нижней части рисунка расположены по-особенному: они находятся друг против друга, тогда как все остальные размещены цепочкой. Эти две фигуры соответствуют крайним линиям в парадоксе с отрезками. Исходя из требований рисунка, у каждой из этих фигур должна отсутствовать часть ноги, и чтобы в повернутом положении колеса этот недостаток был менее заметен, лучше было изобразить их рядом.
Вращая колесо далее, можно получить четырнадцать, пятнадцать и т. д. воинов, однако с увеличением их числа становится все более явственным, что каждая из фигур сильно тощает, давая материал для других фигур.
Отметим еще, что воины изображены на рисунке с гораздо большей изобретательностью, чем это может показаться с первого взгляда. Так, например, чтобы фигуры оставались в вертикальном положении во всех местах глобуса, нужно в одном случае иметь вместо левой ноги правую, а в другом, наоборот, вместо правой ноги левую.
Пропавший кролик
Парадокс вертикальных линий можно, очевидно, показывать и на более сложных объектах, например человеческих лицах, фигурах животных и т. д. На рис. 56 показан один вариант.
Когда после разрезании по толстой линии меняют местами прямоугольники А а В, один кролик исчезает, оставляя вместо себя пасхальное яйцо. Если вместо перестановки прямоугольников А и В разрезать правую половину рисунка по пунктирной линии и поменять местами правые части, число кроликов увеличится до 12, однако при этом один кролик теряет уши и появляются другие смешные детали.