Парадокс шахматной доски
В близкой связи с парадоксами, рассмотренными в предыдущей главе, находится другой класс парадоксов, в котором «принципом скрытого перераспределения» объясняется таинственное исчезновение или появление площадей. Один из самых старых и самых простых примеров парадоксов этого рода приведен на рис. 57.
Шахматная доска разрезается наискось, как это изображено на левой половине рисунка, а затем часть В сдвигается влево вниз, как это показано на правой половине рисунка. Если треугольник, выступающий в правом верхнем углу, отрезать ножницами и поместить на свободное место, имеющее вид треугольника в левом нижнем углу рисунка, то получится прямоугольник в 7x9 квадратных единиц.
Первоначальная площадь равнялась 64 квадратным единицам, теперь же она равна 63. Куда исчезла одна недостающая квадратная единица?
Ответ состоит в том, что наша диагональная линия проходит несколько ниже левого нижнего угла клетки, находящейся в правом верхнем углу доски.
Благодаря этому отрезанный треугольник имеет высоту, равную не 1, а 1 1/7. И, таким образом, высота равна не 9, а 9 1/7 единицам. Увеличение высоты на 1/7 единицы почти незаметно, но, будучи принято в расчет, оно приводит к требуемой площади прямоугольника в 64 квадратные единицы.
Парадокс становится еще более поразительным, если вместо шахматной доски взять просто квадратный лист бумаги без клеток, так как в нашем случае при внимательном изучении обнаруживается неаккуратное смыкание клеток вдоль линии разреза.
Связь нашего парадокса с парадоксом вертикальных линий, рассмотренным в предыдущей главе, становится ясной, если проследить за клетками у линии разреза. При продвижении вдоль линии разреза вверх обнаруживается, что над линией части разрезанных клеток (на рисунке они затемнены) постепенно уменьшаются, а под линией постепенно увеличиваются. На шахматной доске было пятнадцать затемненных клеток, а на прямоугольнике, получившемся после перестановки частей, их стало только четырнадцать. Кажущееся исчезновение одной затемненной клетки есть просто другая форма рассмотренного выше парадокса. Когда мы отрезаем и затем перемешаем маленький треугольничек, мы фактически разрезаем часть А шахматной доски на два куска, которые затем меняются местами вдоль диагонали.
Для головоломки важны только клетки, прилежащие к линии разреза, остальные же никакого значения не имеют, играя роль оформления. Однако присутствие их меняет характер парадокса. Вместо исчезновения одной из нескольких маленьких клеток (или несколько более сложной фигуры, скажем, игральной карты, человеческого лица и т. п., которую можно было начертить внутри каждой клетки) мы сталкиваемся здесь с изменением площади большой геометрической фигуры.
Парадокс с площадью
Вот еще один парадокс с площадью. Меняя положение частей А и С, как показано на рис. 58, можно превратить прямоугольник площадью в 30 квадратных единиц в два меньших прямоугольника с общей площадью в 32 квадратные единицы, получая, таким образом, «выигрыш» в две квадратные единицы. Как и в предыдущем парадоксе, здесь играют роль только клетки, примыкающие к линии разреза. Остальные нужны лишь как оформление.
В этом парадоксе существуют два существенно различных способа разрезывания фигуры на части.
Можно начать с большого прямоугольника размером 3x10 единиц (верхняя часть рис. 58), аккуратно проводя в нем диагональ, тогда два меньших прямоугольника (нижняя часть рис. 58) будут на 1/5 единицы короче своих кажущихся размеров.
Но можно также начать с фигуры, составленной из двух аккуратно начерченных меньших прямоугольников размером 2x6 и 4x5 единиц; тогда отрезки, соединяющие точку X с точкой У и точку У с точкой Z, не будут составлять прямую линию. И только потому, что образуемый ими тупой угол с вершиной в точке У весьма близок к развернутому, ломаная ХУZ кажется прямой линией. Поэтому фигура, составленная из частей малых прямоугольников, не будет в действительности прямоугольником, так как эти части будут слегка перекрываться вдоль диагонали. Парадокс с шахматной доской, так же как и большая часть других парадоксов, которые мы собираемся рассмотреть в этой главе, тоже могут быть представлены в двух вариантах. В одном из них парадокс получается за счет незначительного уменьшения или увеличения высоты (или ширины) фигур, в другом — за счет прироста или потери площади вдоль диагонали, вызываемых либо перекрыванием фигур, как в только что рассмотренном случае, либо появлением пустых мест, с чем мы вскоре встретимся.
Меняя размеры фигур и наклон диагонали, этому парадоксу можно придать самое различное оформление. Можно добиться потери или прироста площади в 1 квадратную единицу или в 2, 3, 4, 5 единиц и т. д.
Конечно, чем дальше вы зайдете, тем легче будет обнаружить, куда деваются недостающие квадраты.
Вариант с квадратом
В одном изящном варианте исходные прямоугольники размером 3x8 и 5x8 единиц, будучи приставлены друг к другу, образуют обычную шахматную доску в 8X8 клеток. Эти прямоугольники разрезаются на части, которые после перераспределения образуют новый большой прямоугольник с кажущимся приростом площади в одну квадратную единицу (рис. 59).
Суть парадокса состоит в следующем. При аккуратном построении чертежа квадрата строгой диагонали большого прямоугольника не получается. Вместо нее появляется ромбовидная фигура, настолько вытянутая что стороны ее кажутся почти слившимися. С другой стороны, при аккуратном проведении диагонали большого прямоугольник; высота верхнего из двух прямоугольников, составляющих квадрат, будет чуть больше, чем это должно быть, а нижний прямоугольник — чуть шире. Заметим, что неаккуратное смыкание частей фигуры при втором способе разрезывания больше бросается в глаза, чем неточности вдоль диагонали в первом; поэтому первый способ предпочтительнее. Как и в ранее встречавшихся примерах, внутри клеток, рассеченных диагональю, можно рисовать кружочки, физиономии или какие-нибудь фигурки; при перестановке составных частей прямоугольников этих фигурок будет становиться одной больше или меньше.
Числа Фибоначчи
Оказывается, что длины сторон четырех частей, составляющих фигуры (рис. 59 и 60), являются членами ряда Фибоначчи, т. е. ряда чисел, начинающегося с двух единиц: 1, 1, каждое из которых, начиная с третьего, есть сумма двух предшествующих. Наш ряд имеет вид 1, 1, 2, 3, 5, 8, 13, 21, 34…
Расположение частей, иа которые был разрезан квадрат, в виде прямоугольника иллюстрирует одно из свойств ряда Фибоначчи, а именно следующее: при возведении в квадрат любого члена этого ряда получается произведение двух соседних членов ряда плюс или минус единица. В нашем примере сторона квадрата равна 8, а площадь равна 64. Восьмерка в ряду Фибоначчи расположена между 5 и 13. Так как числа 5 и 13 становятся длинами сторон прямоугольника, то площадь его должна быть равной 65, что дает прирост площади в одну единицу.
Благодаря этому свойству ряда можно построить квадрат, стороной которого является любое число Фибоначчи, большее единицы, а затем разрезать его в соответствии с двумя предшествующими числами этого ряда.
Если, например, взять квадрат в 13x13 единиц, то три его стороны следует разделить на отрезки длиной в 5 и 8 единиц, а затем разрезать, как показано на рис. 60. Площадь этого квадрата равна 169 квадратным единицам. Стороны прямоугольника, образованного частями квадратов, будут 21 и 8, что дает площадь в 168 квадратных единиц. Здесь благодаря перекрыванию частей вдоль диагонали одна квадратная единица не прибавляется, а теряется.
Если взять квадрат со стороной 5, то тоже произойдет потеря одной квадратной единицы. Можно сформулировать и общее правило: приняв за сторону квадрата какое-нибудь число из «первой» подпоследовательности расположенных через одно чисел Фибоначчи (3, 8…) и составив из частей этого квадрата прямоугольник, мы получим вдоль его диагонали просвет и как следствие кажущийся прирост площади на одну единицу. Взяв же за сторону квадрата какое-нибудь число из «второй» подпоследовательности (2, 5, 13…), мы получим вдоль диагонали прямоугольника перекрывание площадей и потерю одной квадратной единицы площади.
Чем дальше мы продвигаемся по ряду чисел Фибоначчи, тем менее заметными становятся перекрывания или просветы. И наоборот, чем ниже мы спускаемся по ряду, тем они становятся более существенными.
Можно построить парадокс даже на квадрате со стороной в две единицы. Но тогда в прямоугольнике 3x1 получается столь очевидное перекрывание, что эффект парадокса полностью теряется.
Используя для парадокса другие ряды Фибоначчи, можно получить бесчисленное множество вариантов. Так, например, квадраты, основанные на ряде 2, 4, 6, 10, 16, 26 и т. д., приводят к потерям или приростам площади в 4 квадратные единицы. Величину этих потерь или приростов можно узнать, вычисляя для данного ряда разности между квадратом любого его члена и произведением двух его соседних членов слева и справа. Ряд 3, 4, 7, 11, 18, 29 и т. д. дает прирост или потерю в пять квадратных единиц. Т. де Мулидар привел рисунок квадрата, основанного на ряде 1, 4, 5, 9, 14 и т. д. Сторона этого квадрата взята равной 9, и после преобразования его в прямоугольник теряется 11 квадратных единиц. Ряд 2, 5, 7, 12, 19… также дает потерю или прирост в 11 квадратных единиц. В обоих случаях перекрывания (или просветы) вдоль диагонали оказываются настолько большими, что их сразу можно заметить.
Обозначив какие-нибудь три последовательных числа Фибоначчи через А, В и С, а через X — потерю или прирост площади, мы получим следующие две формулы:
А + В = С
В 2 = АС ± Х
Если подставить вместо X желаемый прирост или потерю, а вместо В число, которое принято за длину стороны квадрата, то можно построить квадратное уравнение, из которого найдутся два других числа Фибоначчи, хотя это, конечно, не обязательно будут рациональные числа. Оказывается, например, что, деля квадрат на фигуры с рациональными длинами сторон, нельзя получить прирост или потерю в две или три квадратные единицы. С помощью иррациональных чисел это, конечно, можно достигнуть. Так, ряд Фибоначчи 21/2, 2·21/2, 3·21/2, 5·21/2 дает прирост или потерю в две квадратные единицы, а ряд 31/2, 2·31/2, 3·31/2, 5·31/2 приводит к приросту или потере в три квадратные единицы.
Вариант с прямоугольником
Существует много способов, которыми прямоугольник можно разрезать на небольшое число частей, а затем сложить их в виде другого прямоугольника большей или меньшей площади. На рис. 61 изображен парадокс, также основанный на ряде Фибоначчи.
Подобно только что рассмотренному случаю с квадратом, выбор какого-нибудь числа Фибоначчи из «второй» подпоследовательности в качестве ширины первого прямоугольника (в рассматриваемом случае 13) приводит к увеличению площади второго прямоугольника на одну квадратную единицу.
Если же за ширину первого прямоугольника принять какое-нибудь число Фибоначчи из «дополнительной» подпоследовательности, то во втором прямоугольнике площадь уменьшится на одну единицу. Потери и приросты площади объясняются небольшими перекрываниями или просветами вдоль диагонального разреза второго прямоугольника. Другой вариант такого прямоугольника, показанный на рис. 62, при построении второго прямоугольника приводит к увеличению площади на две квадратные единицы.
Если заштрихованную часть площяди второго прямоугольника поместить над незаштрихованной частью, два диагональных разреза сольются в одну большую диагональ. Переставляя теперь части А и В (как на рис. 61), мы получим второй прямоугольник большей площади.
Еще один вариант парадокса
При суммировании площадей частей перестановка треугольников В и С в верхней части рис. 63 приводит к кажущейся потере одной квадратной единицы.
Как читатель заметит, это происходит за счет площадей заштрихованных частей: на верхней части рисунка имеется 15 заштрихованных квадратиков, на нижней — 16. Заменяя заштрихованные куски двумя покрывающими их фигурами специального вида, мы приходим к новой, поразительной форме парадокса. Теперь перед нами прямоугольник, который можно разрезать на 5 частей, а затем, меняя их местами, составить новый прямоугольник, причем, несмотря на то, что его линейные размеры остаются прежними, внутри появляется отверстие площадью в одну квадратную единицу (рис. 64).
Возможность преобразования одной фигуры в другую, тех же внешних размеров, но с отверстием внутри периметра, основана на следующем. Если взять точку X точно в трех единицах от основания и в пяти единицах от боковой стороны прямоугольника, то диагональ через нее проходить не будет. Однако ломаная, соединяющая точку X с противоположными вершинами прямоугольника, будет так мало отклоняться от диагонали, что это будет почти незаметно.
После перестановки треугольников В и С на нижней половине рисунка части фигуры будут слегка перекрываться вдоль диагонали.
С другой стороны, если в верхней части рисунка рассматривать линию, соединяющую противоположные вершины прямоугольника, как точно проведенную диагональ, то линия XW будет чуть длиннее трех единиц. И как следствие этого второй прямоугольник будет несколько выше, чем кажется. В первом случае недостающую единицу площади можно считать распределенной с угла на угол и образующей перекрывание вдоль диагоналей. Во втором случае недостающий квадратик распределен по ширине прямоугольника. Как мы уже знаем из предыдущего, все парадоксы такого рода можно отнести к одному из этих двух вариантов построения. В обоих случаях неточности фигур настолько незначительны, что они оказываются совершенно незаметными.
Наиболее изящной формой этого парадокса являются квадраты, которые после перераспределения частей и образования отверстия остаются квадратами.
Такие квадраты известны в бесчисленных вариантах и с отверстиями в любое число квадратных единиц. Некоторые, наиболее интересные из них изображены на рис. 65 и 66.
Можно указать на простую формулу, связывающую размер отверстия с пропорциями большого треугольника. Три размера, о которых пойдет речь, мы обозначим через А, В к С (рис. 67).
Площадь отверстия в квадратных единицах равна разности между произведением А на С и ближайшим к нему кратным размера В. Так, в последнем примере произведение А и С равно 25. Ближайшее кратное размера В к 25 есть 24, поэтому отверстие получается в одну квадратную единицу. Это правило действует независимо от того, проведена ли настоящая диагональ или же точка X на рис. 67 нанесена аккуратно на пересечении линий квадратной сетки.
Если диагональ, как это и должно быть, вычерчивается как строго прямая линия или если точка X берется точно в одной из вершин квадратной сетки, то никакого парадокса не получается. В этих случаях формула дает отверстие размером в нуль квадратных единиц, обозначая этим, конечно, что отверстия нет вообще.
Вариант с треугольником
Вернемся к первому примеру парадокса (см. рис. 64). Заметим, что большой треугольник А не меняет своего положения, в то время как остальные части перемещаются. Поскольку этот треугольник не играет существенной роли в парадоксе, его можно вообще отбросить, оставляя только правый треугольник, разрезанный на четыре части. Эти части можно затем перераспределить, получая при этом прямоугольный треугольник с отверстием (рис. 68), будто бы равный исходному.
Составляя два таких прямоугольных треугольника катетами, можно построить много вариантов равнобедренных треугольников, подобных изображенному на рис. 69.
Так же как и в ранее рассмотренных парадоксах, эти треугольники можно строить двумя способами: либо проводить их боковые стороны строго прямолинейно, тогда точка X не попадет на пересечение линий квадратной сетки, либо помещать точку X точно в пересечение, тогда боковые стороны будут слегка выпуклыми или вогнутыми. Последний способ, кажется, лучше маскирует неточности чертежа. Парадокс покажется еще более удивительным, если на частях, составляющих треугольник, нанести линии квадратной сетки, подчеркивая этим самым, что части изготовлялись с необходимой аккуратностью.
Придавая нашим равнобедренным треугольникам различные размеры, можно добиться прироста или потери любого четного числа квадратных единиц.
Несколько типичных примеров дано на рис. 70, 71 и 72.
Составляя основаниями два равнобедренных треугольника любого из этих типов, можно построить самые различные варианты ромбического вида; однако они не добавят ничего существенно нового к нашему парадоксу.
Квадраты из Четырех частей
Все рассмотренные нами до сих пор виды парадоксов с изменением площади близко связаны между собой по способу построения. Однако существуют парадоксы, полученные и совершенно отличными методами. Можно, например, разрезать квадрат на четыре части одинаковой формы и размера (рис. 73), а затем составить их по-новому так, как показано на рис. 74. При этом получается квадрат, размеры которого кажутся не изменившимися и в то же время с отверстием в середине.
Подобным же образом можно разрезать прямоугольник с любым соотношением длин сторон. Любопытно, что точка А, в которой пересекаются две которого кажутся не изменившимися и в то же время с отверстием в середине.
Подобным же образом можно разрезать прямоугольник с любым соотношением длин сторон. Любопытно, что точка А, в которой пересекаются две взаимно перпендикулярные линии разреза, может при этом находиться в любом месте внутри прямоугольника. В каждом случае при перераспределении частей появляется отверстие, причем размер его зависит от величины угла, образованного линиями разреза со сторонами прямоугольника.
Этот парадокс отличается сравнительной простотой, однако он много теряет благодаря тому, что даже при поверхностном изучении видно, что стороны второго прямоугольника должны быть немного больше, чем стороны первого.
Более сложный способ разрезания квадрата на четыре части, при котором получается внутреннее отверстие, изображен на рис. 75.
Он основан на парадоксе с шахматной доской, которым открывается настоящая глава. Заметим, что при перераспределении частей две из них нужно перевернуть обратной стороной кверху. Заметим также, что при отбрасывании части А мы получаем прямоугольный треугольник, составленный из трех частей, внутри которого можно образовать отверстие.
Квадраты из трех частей
Существует ли способ разрезывания квадрата на три части, которые можно составить по-новому так, чтобы получился квадрат с отверстием внутри? Ответ будет положительным. Одно изящное решение основано на применении парадокса, рассмотренного в предыдущей главе (стр. 78).
Вместо того чтобы специальным образом располагать картинки уступами, а разрез производить прямолинейно (горизонтально), картинки размещают на одной прямой, а разрез делают уступами. Результат получается поразительный: не только пропадает картинка, но на месте ее исчезновения появляется отверстие.
Квадраты из двух частей
Можно ли сделать то же самое при двух частях?
Я не думаю, что в этом случае можно каким-нибудь методом получить внутреннее отверстие в квадрате за счет незаметного увеличения его высоты или ширины. Однако было показано, что парадокс с отверстием в квадрате, разрезаемом на две части, можно построить на принципе, который применяется в парадоксе с исчезающим воином. В этом случае вместо размещения фигурок по спирали или ступенькой их размещают строго по окружности, тогда как разрез делают спиральным или ступенчатым; в последнем случае он имеет вид зубчатого колеса с зубцами различных размеров. При вращении этого колеса одна фигурка исчезает и вместо нее появляется отверстие.
Неподвижная и вращающиеся части аккуратно пригнаны друг к другу только в положении, когда появляется отверстие. В исходном же положении видны небольшие просветы у каждого зубца, если разрез был ступенчатым, или один непрерывный круговой просвет при разрезе, идущем по спирали.
Если исходный прямоугольник не является квадратом, его можно разрезать на две части, а затем получить внутри отверстие при совсем мало заметном изменении его внешних размеров. На рис. 76 показан один вариант.
Обе части при этом тождественны как по форме, так и по размерам. Проще всего демонстрировать этот парадокс следующим образом: вырезать части из картона, сложить их в виде прямоугольника без отверстия, положить на лист бумаги и обвести карандашом по периметру. Складывая теперь части по-иному, можно видеть, что они по-прежнему не выходят за проведенную линию, хотя посредине прямоугольника образовалось отверстие.
К нашим двум частям можно, конечно, добавить третью, изготовленную в виде полосы, которая, будучи приложена к одной из сторон прямоугольника, превращает его в квадрат; таким образом мы получаем еще один способ разрезания квадрата на три части, дающий внутреннее отверстие.
Криволинейные и трехмерные варианты
Приведенные нами примеры ясно показывают, что область парадоксов с изменением площади еще только начинает разрабатываться. Существуют ли какие-нибудь криволинейные фигуры, например круги или эллипсы, которые можно разрезать на части, а затем составить по-иному так, чтобы при этом без заметного искажения фигуры получались внутренние отверстия?
Существуют ли трехмерные фигуры, специфичные именно для трех измерений, т. е. не являющиеся тривиальным следствием двумерных фигур? Ведь ясно, что к любой плоской фигуре, с которой мы встречались в этой главе, можно «добавить измерение», вырезая ее попросту из достаточно толстого картона, высота которого равна «длине третьего измерения»).
Можно ли куб или, скажем, пирамиду разрезать не очень сложным способом на части так, чтобы, составляя их по-новому, получить заметные пустоты внутри?
Ответ будет таков: если не ограничивать число частей, то такие пространственные фигуры указать совсем нетрудно. Достаточно ясно это в случае куба.
Здесь внутренняя пустота может быть получена, однако вопрос о наименьшем числе частей, с которыми этого можно достигнуть, более сложен. Его заведомо можно изготовить из шести частей; не исключено, что этого можно добиться и с меньшим числом.
Такой куб можно эффектно демонстрировать следующим образом: вынуть его из ящичка, сделанного точно по кубу, разобрать на части, обнаружив при этом внутри шарик, снова сложить части в сплошной куб и показать, что он (без шарика) по-прежнему плотно заполняет ящик. Мы выскажем предположение, что должно существовать много таких фигур, как плоских, так и пространственных, к тому же отличающихся простотой и изяществом формы. Будущие исследователи этой любопытной области будут иметь удовольствие открыть их.