Все под контролем: Кто и как следит за тобой

Гарфинкель Симеон

3

Абсолютная идентификация

 

 

Ошибки в базах данных, кража личности, нелегальная иммиграция и нераскрытые преступления стали распространенными явлениями в нашей жизни, поэтому многие политики обращают свои надежды к достижениям в области технологий биометрической идентификации. Сторонники этих технологий утверждают, что их использование позволит создать режим абсолютной идентификации, при котором каждая личность может быть уникально идентифицирована по одним лишь уникальным признакам собственного тела.

Абсолютная идентификация как политическая цель – вещь вполне достижимая. Действительно, все большее число ученых, инженеров и политиков рассматривают идентификацию человека по антропометрическим признакам не как техническую, а как политическую проблему. Если этого потребуют интересы общества, мы можем уникальным образом зарегистрировать каждого жителя Соединенных Штатов, Европы, Азии и, возможно, всей планеты. После этого мы сможем очень легко идентифицировать личность в банке, учебном заведении, на работе и на дороге. Абсолютная идентификация поможет избавиться от взаимного несоответствия компьютерных записей, кражи личности и неоднозначности, с которыми мы постоянно сталкиваемся в повседневной жизни. Когда на смену анонимности придет абсолютная идентификация, мы сможем построить общество, каждый член которого гарантированно сможет получить положенные ему привилегии и будет полностью ответствен за все свои действия.

Абсолютная идентификация – очень соблазнительная идея. Но, к сожалению, порочная. Чтобы понять, почему, нам необходимо разобраться в недостатках самой технологии.

 

Про идентификацию детей

Три тысячи лет назад в Иерусалиме перед царем Соломоном предстали две женщины. У обеих недавно родились дети, а затем, когда один ребенок умер, обе стали утверждать, что оставшийся ребенок принадлежит именно ей. Соломону необходимо было справедливо разрешить спор в пользу настоящей матери.

Сегодня дилемма Соломона решается тривиально. Если только женщины не являлись однояйцовыми близнецами, у них были разные наборы генов. Настоящая мать легко определяется после анализа образцов крови ребенка и обеих женщин. Такие генетические экспертизы проводятся сегодня регулярно для установления отцовства при решении дел об алиментах.

Но в распоряжении Соломона не было достижений современной биологии. Вместо этого Соломон приказал принести свой меч. Соломон сказал, что, если женщины не смогут разрешить спор самостоятельно, ребенок будет разделен на две части. Соломон знал, что настоящая мать скорее согласится на несправедливость, чем допустит смерть своего ребенка. Поэтому, когда мгновение спустя одна из женщин торопливо отказалась от младенца, Соломон точно знал, что другая женщина лжет.

Двадцать пять столетий спустя исследователь Хоайо де Баррос [Joro de Barros] описывал несколько способов идентификации маленьких детей. В опубликованной в 1563 году книге «Сочинения об Азии» [Decadas da Asia] де Баррос описывал, как китайские торговцы «паспортизировали» детей, делая отпечатки их ладоней и ступней при помощи бумаги и чернил. Это были не просто какие-то бумаги, это была часть торговли. После такой фиксации признаков детей уже было сложно перепутать, что было особенно важно во времена, когда люди являлись предметом купли-продажи.

Царь Соломон мог бы установить аналогичную систему регистрации всех новорожденных в Израиле. Древние израильтяне уже знали пергамент и чернила, поэтому у них было все необходимое для реализации этого проекта. Знали древние израильтяне и об уникальности отпечатков пальцев: археологи обнаружили недавно при раскопках в Израиле наборы глиняной посуды, на каждом предмете отчетливо видны отпечатки больших пальцев. Предположительно гончар использовал свой отпечаток пальца как персональное клеймо. Однако идея создания общенациональной системы идентификации не пришла в голову Соломону и его придворным, так как проблема идентификации взрослых не стояла до настоящего времени.

Много примеров ошибочной идентификации можно найти в литературе: «Принц и нищий» Марка Твена, истории о двойниках, многие пьесы Шекспира. Эти истории дошли до наших дней и не потеряли точности описания, потому что такого рода ошибки были редкостью. Вплоть до промышленной революции в мире не было реальной нужды в формальной системе точной идентификации. В Европе фамилии не использовались вплоть до Средневековья! Большинство людей рождались и всю жизнь проживали в одном месте, где все знали друг друга, а появление чужака не могло остаться незамеченным.

 

Антропометрические признаки

Ряд событий второй половины XIX века заставил правительства искать лучшие пути для идентификации проживающего на территории их стран населения. Одной из причин стало развитие крупных городов, где жители ежедневно имели дело с незнакомцами. Возможность идентифицировать друг друга была жизненно необходимой, ибо давала возможность избежать обмана. Другой причиной стала легкость перемещений, повлекшая за собой наплыв иммигрантов, ищущих лучшей жизни. Очень скоро ксенофобия законодателей привела к принятию в Европе и США жестких иммиграционных законов, призванных сократить приток иностранцев. А это, в свою очередь, потребовало создания системы точной идентификации, которая позволяла бы властям отличать граждан от неграждан. Третьей причиной стала новая концепция реабилитации преступников, предоставлявшая возможность людям, совершившим ранее преступления, реабилитироваться и встать на путь исправления. Система идентификации нужна была и для отделения рецидивистов от совершивших преступление впервые.

Проблема идентификации осужденных привлекла внимание парижского антрополога Альфонса Бертильона [Alphonse Bertillion] (1853–1914). Как можно идентифицировать карманника, попавшегося впервые, если при каждом аресте преступник называет разные имена? Каким образом можно добиться постоянной идентификации без сотрудничества с самим человеком?

Бертильон заметил, что, даже если человек назовется другим именем, сменит прическу, наберет вес, некоторые части его тела останутся неизменными. Он создал систему антропологического опознавания, базирующуюся на этих неизменных признаках. Система была очень прямолинейной, а именно:

• когда человека арестовывали за преступление, один из помощников Бертильона производил точные измерения головы, рук, ступней и ушей подозреваемого. Фиксировалось наличие шрамов, родимых пятен, другие отличительные телесные признаки. Эта информация вместе с именем подозреваемого заносилась в специальные карты, которые затем хранились в центральном полицейском участке;

• вместо того чтобы располагать карты по именам, Бертильон предложил систему индексации по признакам. Карточки людей с размерами головы выше среднего помещались в одну группу, со средним размером – в другую, а с маленьким размером – в третью. Каждая из этих групп разбивалась на три подгруппы в зависимости от длины среднего пальца арестованного. Дальнейшая дифференциация шла по всем шести предложенным Бертильоном признакам. В результате получилось 3x3x3x3x3x3=729 различных групп;

• когда полицейский составлял карту на очередного задержанного, он должен был просмотреть группу близких по признакам карт, и, если находилась карта, данные которой совпадали с данными задержанного, это означало, что человек уже подвергался аресту, и позволяло установить, не пытается ли задержанный назваться другим именем.

Система Бертильона стала вехой в развитии криминалистики. Человек мог быть арестован и описан в 1881 году одним полицейским и опознан три года спустя другим полицейским в результате обнаружения совпадения признаков после просмотра картотеки. Бертильон создал систему, позволяющую идентифицировать человека по записям, в то время как ранее это мог сделать только человек с хорошей зрительной памятью.

В течение шести лет Бертильон работал над улучшением своей системы и в 1879 году выпустил 95-страничную брошюру, представленную на Международном конгрессе по исполнению наказаний в Риме. В течение следующих десяти лет Бертильон наблюдал за процессом регистрации более чем 120 тысяч представителей преступного мира в Париже.

Сегодня многие из работ Бертильона кажутся примитивными и отдают расизмом. (Бертильон особенно интересовался возможностью различать цыган, так как немногие французы могли это сделать.) Но система работала. В течение десяти лет после ее официального принятия в декабре 1882 года парижская полиция выявила 4564 человека, назвавших полиции вымышленное имя, и все это благодаря антропометрическим измерениям. Система Бертильона дала возможность французским судьям выносить более жесткие приговоры рецидивистам. Буквально через несколько лет уровень преступности в Париже снизился. Бертильон объяснял это тем, что карманники сочли за лучшее мигрировать в места, где шанс их идентификации был ниже.

К 1896 году система Бертильона была принята двадцатью тюрьмами и семью полицейскими управлениями Соединенных Штатов. Однако очень скоро сторонники системы обнаружили, что область применения антропометрических измерений не ограничивается только идентификацией преступников. В американском издании книги Бертильона майор Р. Мак-Клафри [R. W. McClaughry], начальник Управления исполнения наказаний штата Иллинойс, подчеркнул основную цель любой системы точной идентификации: идентификация всего населения. Мак-Клафри обрисовал ее как надежное средство общественного контроля:

В соответствии с теорией системы и на благо всего общества, каждый человек должен быть подвергнут частичному описанию в возрасте 10 лет (в части описания формы ушей) и полному описанию при достижении им зрелости. Каждая страна должна иметь свою структуру, которая будет хранить описания всех жителей. Антропометрические измерения должны заменить паспортный контроль при пересечении границы, эти данные должны фигурировать при страховании жизни, выдаче разрешений и других документов, требующих идентификации личности. Это позволит мгновенно отыскать человека при первой необходимости, как для его блага, так и в интересах общества, в любом месте, даже если он изменит свою внешность и возьмет другое имя. Преступность будет искоренена, выборы станут честными, иммиграционные законы будут выполняться неукоснительно, многочисленные недоразумения и судебные ошибки станут невозможны, а ведение бизнеса чрезвычайно упростится. [28]

Век спустя американские законодатели все еще находятся в поисках системы идентификации, которая служила бы строгому исполнению иммиграционного законодательства, исключила бы обман потребителей и могла бы использоваться для идентификации после смерти. Конечно, мы не собираемся устраивать тотальный замер ушей и пальцев, но основная идея Бертильона находит отражение в современных системах биометрической и ДНК-идентификации, расширяющих возможности полномочных органов по мгновенному нахождению человека в любой момент с любой целью, где бы он ни находился.

 

Наука об отпечатках пальцев

Два чернокожих брата, однояйцовые близнецы, были обвинены в совершении ужасного убийства в штате Миссури. На месте преступления было обнаружено орудие убийства – окровавленный нож. Однако во время судебного разбирательства адвокат показал жюри присяжных, что на орудии преступления остались характерные отпечатки пальцев, принадлежащие убийце, но они не совпадают с отпечатками пальцев обвиняемых, а принадлежат другому человеку, находящемуся в зале суда. Суд был ошеломлен: обвинение предъявлено не тому человеку!

Это сюжет из «Простофили Вильсона», произведения Марка Твена, впервые опубликованного в 1893 году в Century Magazine.

Речь Вильсона, обращенная к присяжным, стала для многих американцев первым введением в науку об отпечатках пальцев:

Каждый человек сохраняет неизменными на всю жизнь, от колыбели до могилы, некоторые физические приметы, благодаря которым он может быть в любую минуту опознан, причем без малейшего сомнения. Эти приметы являются, так сказать, его подписью, его физиологическим автографом, и этот автограф не может быть ни подделан, ни изменен, ни спрятан, ни лишен четкости под влиянием времени. [30]

Наше понимание отпечатков пальцев мало изменилось к настоящему времени. Определяемые комбинацией генов и случайными процессами во время развития плода, отпечатки пальцев на протяжении всей жизни остаются такими же, как при рождении. Этот признак действительно уникален: число возможных вариантов настолько велико, что до сих пор не было случаев (и вряд ли когда-нибудь будут), чтобы у двух разных людей был одинаковый рисунок папиллярных линий.

Возможно, один из самых главных моментов заключается в том, что отпечатки пальцев неуничтожимы. Мне довелось убедиться в этом самостоятельно, когда я изучал курс химии в колледже Брин Мор. Я проводил серию опытов с безводной уксусной кислотой. Через несколько недель я заметил, что отпечатки моих пальцев стали почти гладкими, кислота практически вытравила их. Но уже буквально через месяц после окончания опытов отпечатки восстановились в том же виде, как будто и не исчезали.

Причина такой стойкости кроется в том, что рисунок папиллярных линий формируется глубинными слоями эпидермиса, и единственный способ изменить чьи-либо отпечатки заключается в полном удалении кожи с подушечек и заменой ее кожей с других участков тела. Эта болезненная и уродующая операция была использована в 1930-е годы несколькими гангстерами, но с тех пор не применялась.

Несмотря на то что люди давно знали об уникальности отпечатков пальцев, вплоть до конца XIX века ученые не проявляли внимания к возможности использования отпечатков пальцев для идентификации. В 1880 году Генри Фолдс [Henry Faulds] (1843–1930) опубликовал в научном журнале Nature статью. В статье он рассказывал, что, после того как он случайно оставил на чем-то отпечаток своих пальцев, ему в голову пришла мысль, что преступник тоже оставляет отпечатки на месте преступления. Это давало возможность, рассуждал Фолдс, после задержания подозреваемого сравнить его отпечатки пальцев с оставленными на месте преступления.

Но важность отпечатков пальцев для раскрытия преступлений была не только в том, что они уникальны, но и в том, что они остаются на месте преступления. В отличие от системы Бертильона нет необходимости фиксировать отпечатки пальцев всего населения, достаточно лишь сравнить обнаруженные отпечатки с отпечатками подозреваемого.

Английский чиновник в Индии Уильям Хершель [W. J. Hershel] после прочтения публикации Фолдса в Nature написал в журнал, что пользуется подобной техникой уже около двадцати лет. Но если Фолдс видел применение отпечатков пальцев лишь для идентификации преступников, то Хершель предложил более широкое использование отпечатков пальцев в качестве системы многоцелевой идентификации для установления личности. (Конечно, и здесь не обошлось без расизма: Хершель должен был поддерживать порядок колонии, но он не мог различать людей без снятия отпечатков пальцев.) Пять лет спустя фотограф из Сан-Франциско по имени Табор [Tabor] заинтересовался случайно оставленным отпечатком собственного испачканного чернилами пальца. После серии экспериментов он предложил использовать отпечатки пальцев как средство регистрации китайских эмигрантов, выглядевших для большинства жителей Сан-Франциско совершенно одинаково. Похожая идея – проставление отпечатков пальцев на железнодорожных билетах – была предложена в Цинциннати в 1885 году.

 

Повышение статуса идентификации

И Бертильон, и Хершель понимали, что технологии идентификации в современном обществе могут использоваться с двумя целями. С одной стороны, эти технологии востребованы правоохранительными органами. Имея в своем распоряжении реестр отпечатков пальцев, достаточно сравнить с ним отпечатки, взятые с места преступления, и установить таким образом, кому они принадлежат. Этот же реестр может быть использован и в более мирных целях, например для предотвращения мошенничеств и опознания умерших.

Правоохранительные органы давно настаивали на создании такого реестра, но вплоть до 1980-х годов сталкивались с неприятием этой идеи обществом. Единственный вопрос: почему? Сторонники непогрешимости отпечатков пальцев постоянно встречались с отрицательным отношением общественности к идее поголовного дактилоскопирования. В 1943 году, в самый разгар Второй мировой войны, увидела свет книга Гарольда Камминса [Harold Cummins] и Чарльза Мидлоу [Charles Midlo] «Отпечатки пальцев, ладоней и ступней» [Finger Prints, Palms and Soles]. Авторы писали:

Очевидно, что недалек уже тот день, когда не останется серьезных возражений против дактилоскопирования. Противников этой идеи стало меньше, однако многие еще продолжают рассматривать эту процедуру как своего рода клеймо, ибо она вызывает у них ассоциации с порядком оформления преступников в полиции. Есть надежда, что универсальная система регистрации отпечатков пальцев будет в конечном счете реализована. Все возражения возникают исключительно из-за неправильного понимания метода, «скомпрометированного» применением в криминалистике и уверенностью, что регистрация обязательно нарушит основные свободы. [32]

Почему же общество опасается массовой регистрации? Возможно, потому, что мы знаем: отпечатки пальцев не могут гарантировать отсутствие ошибок, а сам реестр может быть использован не по назначению. Вот несколько примеров, которые заставляют задуматься:

• идентификация по отпечаткам пальцев осуществляется людьми, а людям свойственно ошибаться;

• чьи-либо отпечатки пальцев могут оказаться на месте преступления по вполне законной причине. Присутствие идентифицируемых отпечатков создает презумпцию виновности;

• отпечатки могут быть случайно или преднамеренно перепутаны в полицейской лаборатории;

• хранимые в полиции файлы с отпечатками могут быть преднамеренно изменены с целью обвинения невиновного;

• экспертные заключения по анализу отпечатков могут быть перепутаны или специально изменены.

Чем больше мы доверяем технологиям идентификации, тем больше различных видов мошенничества получаем взамен, а возможность преднамеренного мошенничества мы не сможем исключить никогда. Именно по этой причине дактилоскопирование не может гарантировать идентификацию, оно лишь обеспечивает связь конкретного пальца с записью в файле. Измените файл, и вы измените идентификацию.

Но у монеты есть и обратная сторона: дактилоскопия как средство строгой идентификации может быть использована репрессивными и тоталитарными режимами. Люди, стоящие у руля в таких обществах, обеспечивают свою власть в том числе и благодаря тому, что любой противник существующего порядка может быть идентифицирован и будет постоянно находиться под угрозой расправы до тех пор, пока не покорится или не будет уничтожен. Пропускная система во времена апартеида в Южной Африке и идентификационные карточки, выдаваемые палестинцам на оккупированных Израилем территориях, являются типичными примерами таких систем идентификации. Недемократические режимы нуждаются в системах точной идентификации: если подвергнуть наказанию не того человека, это увеличит число противников режима и, что, вероятно, более важно, даст возможность уйти от ответственности истинному виновнику.

В Соединенных Штатах никогда не предпринимались попытки создания тотальной системы для регистрации отпечатков пальцев. Вместо этого штаты и Федеральное правительство фиксировали отпечатки пальцев только у арестованных и у людей определенных профессий. Эта информация хранилась на так называемых «десятипальцевых картах» [ten-print card] – по одному отпечатку каждого пальца рук. Карты классифицировались экспертами и хранились в специальных ящиках. Иногда полицейские управления создавали по две копии карты: одну для локального использования, вторая отсылалась в ФБР.

К концу XX века стремление к всеобщему дактилоскопированию стало ослабевать. Причина этого проста и кроется в принципиальном противоречии, которым обладает любой проект глобальной идентификации: чем больше снято отпечатков, тем сложнее идентифицировать кого-либо по одним лишь отпечаткам.

К 1987 году в ФБР хранилось 23 миллиона дактилоскопических карт с отпечатками преступников, а в одном только штате Калифорния этих карт было 7,5 миллиона. В действительности такой объем информации привел к тому, что систему стало можно использовать лишь для подтверждения идентификации: зная имя, следователь мог запросить конкретную дактилоскопическую карту и сравнить отпечатки. На практике оказалось невозможным лишь по набору отпечатков пальцев определить имя человека, которому они принадлежат. База отпечатков выросла настолько, что ее просто стало невозможно использовать с целью, ради которой она создавалась! В середине 1980-х годов один следователь из Сан-Франциско подсчитал, что если он будет работать по восемь часов в день без выходных, то ему понадобится 33 года, чтобы вручную просмотреть городскую дактилоскопическую картотеку, в которой хранилось 300 тысяч карт.

 

Автоматизированная система идентификации отпечатков пальцев

Но, несмотря на это, дактилоскопические методы все же используются. Это стало возможным в том числе и благодаря автоматизированной системе идентификации отпечатков пальцев, известной также как AFIS [Automated Fingerprint Identification System]. В 1980-х годах эта система полностью изменила роль и место дактилоскопии. Система совместила в себе относительно несложную компьютерную графику и специальные алгоритмы для анализа и поиска соответствий в изображениях отпечатков пальцев, а также использовала компьютеры с параллельными вычислениями для достижения ошеломляющих результатов в следственной науке.

Компьютеры сличают отпечатки совсем не так, как люди. Они не рассматривают изображение как сочетание дуг, петель и кривых, а преобразуют его в таблицу двумерных векторов.

Эти векторы, называемые «минутиями», описывают точки изображения, где отрезки линий начинаются, заканчиваются или раздваиваются. Каждая минутия имеет свои координаты на плоскости (х, у) и направление.

Обычно отпечаток пальца описывается 90 или более минутиями, сочетание которых уникально. Процедура поиска в AFIS заключается в сравнении набора минутий всех десяти пальцев, что составляет около 900 точек, со всеми хранимыми в базе данных записями. Такой поиск осуществляется специализированным компьютером, носящим название «сравнитель». В 1987 году скорость работы обычного сравнителя находилась в пределах от 500 до 600 отпечатков в секунду. Сегодня они работают в десятки раз быстрее, и база данных, содержащая миллион записей, просматривается приблизительно за 30 минут. Для ускорения процесса полиция может задействовать дополнительный сравнитель. Работая параллельно, каждое над своей частью базы данных, два устройства выполнят задачу за 15 минут. Современные системы могут объединять от пяти до десяти сравнителей, что сокращает среднее время поиска до нескольких минут.

AFIS дала полиции возможность сверять найденные отпечатки со всей базой данных. Система также позволяет вести поиск по фрагменту отпечатка, обнаруженного на месте преступления. Приведенный ниже отрывок из отчета Министерства юстиции 1987 года расхваливает удивительные достижения новой технологии:

Поиск отпечатка по базе данных AFIS полицейского управления Сан-Франциско стоил тысяч часов ручной работы в течение восьми лет. Отпечаток принадлежал убийце бывшей узницы концлагерей времен Второй мировой войны Мириам Сламович [Miriam Slamovich]. Женщина была убита выстрелом в упор в своем доме в 1978 году. Преступник оставил на месте преступления четкий отпечаток пальца, но, в отсутствие конкретных подозреваемых и других улик, шанс найти преступника путем традиционной ручной сверки отпечатка с базой данных был ничтожен. Несмотря на это, полицейские не прекращали расследование, и когда в 1985 году система AFIS была внедрена, она нашла нужный отпечаток за шесть минут. Убийца Сламович был взят под стражу в тот же день. [35]

В 1988 году я присутствовал на проходившей в Бостоне конференции по AFIS, где познакомился с детективом Кеном Мозесом [Ken Moses] из полицейского управления Сан-Франциско. Мозес рассказал мне, что в 1984 году, когда в их полицейском управлении была внедрена автоматизированная система распознавания отпечатков пальцев, число краж в городе снизилось на 26 %. И этому есть объяснение: в 40 % случаев краж на месте преступления остаются отпечатки пальцев, 28 % из них удается идентифицировать, а доказательство принадлежности отпечатков пальцев в 93 % случаев приводит к обвинительному приговору. К концу 1985 года в Сан-Франциско благодаря системе AFIS была доказана вина более 900 преступников.

AFIS позволила полиции Сан-Франциско сделать еще одну немыслимую ранее вещь: повернуть время вспять и успешно завершить расследование старых, нераскрытых преступлений. Начиная с дела об убийстве Сламович полиции удалось раскрыть 816 нераскрытых преступлений, в том числе 52 убийства. (За предыдущий год всего 58 преступлений было раскрыто при помощи анализа оставленных преступником отпечатков пальцев.)

Опыт Сан-Франциско стал распространяться. В Калифорнии дело «Ночного сталкера» [Night Stalker] также было раскрыто при помощи AFIS благодаря идентификации оставленных на угнанных машинах отпечатков пальцев. В течение нескольких месяцев после внедрения AFIS в Балтиморе, штат Мэриленд, было идентифицировано 525 человек, назвавших при аресте вымышленное имя. Быстрый успех AFIS был настолько ошеломляющим, что Министерство юстиции писало в своем отчете:

«AFIS оказала на повышение эффективности работы правоохранительных органов такое же влияние, как начало широкого использования компьютеров в уголовно-процессуальной практике в 1960-е годы». [37]

Поспешность внедрения AFIS привела к тому, что был упущен из виду один из ключевых вопросов, а именно вопрос о точности базовой технологии. Частично это произошло из-за того, что уникальность отпечатков пальцев уже давно была закреплена в американском законодательстве. Другой причиной стал тот факт, что в случае сомнений обнаруженное AFIS совпадение отпечатков могло быть проверено человеком визуально. Поскольку база данных AFIS строилась путем сканирования дактилоскопических карт, уже имевшихся в распоряжении полиции, система была внедрена повсеместно без учета мнения общественности. Сами же правоохранительные органы при внедрении системы были озабочены гораздо более прагматичными вопросами: определение юрисдикции систем AFIS, используемых городами, штатами и Федеральным правительством; обеспечение совместимости форматов хранения данных системами AFIS разных производителей и, конечно, постоянное пополнение базы данных цифровых отпечатков.

 

Автоматизированная система идентификации отпечатков пальцев

Этот терминал используется для просмотра результатов компьютерного поиска в базе данных, содержащей оцифрованные изображения отпечатков пальцев. Система AFIS анализирует изображение и строит список характеристических точек – точек, в которых начинаются, заканчиваются или раздваиваются отрезки папиллярных линий. Полученная в результате матрица служит в дальнейшем ключом поиска по базе данных. Поиск осуществляется очень быстро и очень точно: требуется всего около одной минуты для просмотра базы данных, содержащей миллион изображений, для нахождения совпадающего с образцом отпечатка. Показанная система разработана специализирующимся на распознавании отпечатков подразделением фирмы NEC Technologies, которая создала свое биометрическое приложение около 30 лет назад и продолжает занимать лидирующее место на этом рынке. Сегодня технологии биометрической тификации фирмы NEC используются более чем в 300 различных приложениях в 14 странах. Существуют специализированные системы для использования в здравоохранении, при лицензировании, социальном обеспечении и области безопасности. Многие города и штаты активно разворачивают подобные системы, стремясь построить глобальную базу данных, содержащую отпечатки пальцев каждого гражданина, независимо от того, привлекался он к уголовной ответственности или нет. Такая база данных, по словам сторонников, могла бы оказать существенную помощь как в раскрытии преступлений, так и в идентификации умерших или потерявшихся людей. [Фотография любезно предоставлена фирмой NEC Technologies]

С гораздо большим числом противоречий пришлось столкнуться при внедрении систем идентификации на базе ДНК. Эту технологию часто не совсем корректно называют «дактилоскопией ДНК» [DNA fingerprinting].

 

Идентификация по ДНК

Дезоксирибонуклеиновая кислота, более известная под названием ДНК, – молекула, которая одновременно разделяет и объединяет нас. При помощи ДНК наследственные признаки передаются следующим поколениям, сходство ДНК характерно для семей и кланов, ДНК – виртуальное связующее звено всех наций. При этом именно различие в ДНК делает каждого человека уникальным. Сходство ДНК связывает нас с обоими родителями, но ее уникальность делает нас отличными от них.

Идентификация по ДНК основана на анализе цепочек генов и является почти безупречной. Сегодня у нее три основных применения:

• установление отцовства;

•определение принадлежности крови и семенной жидкости, оставленных на месте преступления;

• идентификация человеческих останков.

Поскольку ДНК наследует признаки родителей поровну, ее относительно легко использовать для определения отцовства: все, что необходимо, – это образцы небольшого количества клеток, взятых от ребенка, матери и предполагаемого отца. В последние десять лет анализ ДНК все чаще стал применяться и в судебных делах. Такая экспертиза идеальна для случаев, когда на месте преступления не обнаружено отпечатков пальцев, поскольку для ее проведения достаточно небольшого количества генетического материала: капли крови, слюны, семенной жидкости, волоска или частички кожи. Как сказал доктор Майкл Бэйрд [Michael Baird] из лаборатории Lifecodes Lab: «Если на вашей рубашке обнаружится пятнышко крови, совпадающее с кровью жертвы, высока вероятность, что убийца – вы».

Все чаще анализ ДНК применяется для идентификации человеческих останков. Поскольку молекула ДНК чрезвычайно стабильна, необходимый для анализа материал может быть получен из останков через годы или даже через тысячи лет после смерти человека. Исходя из этих соображений американские военные заносят в специальную базу данных информацию о ДНК каждого военнослужащего. Соединенным Штатам больше никогда не придется хоронить останки неизвестного солдата. Тем временем характер споров, постоянно ведущихся по поводу анализа ДНК, постепенно изменился. Сразу после появления этой технологии ученые, юристы и защитники гражданских свобод высказывали сомнения относительно ее научной обоснованности и эффективности. Сегодня анализ ДНК повсеместно признан абсолютно точным, и мы боремся за общественное признание этой точности.

 

Становление науки: анализ ДНК в 1986–1996 годах

Основой для анализа ДНК является геном человека. Каждый из нас несет в себе уникальный генетический код, состоящий из более чем трех миллиардов оснований нуклеиновых кислот: аденина (А), гуанина (G), цитозина (С) и тимина (Т). Каждая клетка человеческого тела содержит копию генетического кода этого человека, являющегося уникальным для каждого жителя планеты. В отличие от отпечатков пальцев, генетический код невозможно изменить путем операции или отрезания рук.

Несмотря на всю мощь технологий идентификации ДНК, им присущи некоторые фундаментальные проблемы. Первая проблема заключается в том, что, в отличие от отпечатков пальцев, ДНК не во всех случаях является уникальной: однояйцовые близнецы по определению имеют один и тот же набор хромосом. И таких близнецов достаточно много: в Северной Америке в среднем на 83,4 рода приходится один случай появления на свет близнецов, при этом 28,2 % имеют одинаковые ДНК, так как развиваются из одной клетки. Таким образом, приблизительно 0,338 % населения являются однояйцовыми близнецами, т. е. три человека из тысячи. Принятие ДНК как единственного средства идентификации в масштабе страны немедленно приведет к тому, что с ее точки зрения будет существовать миллион генетических двойников.

Вторая проблема систем идентификации на базе ДНК заключается в неполном использовании генома человека, состоящего из трех миллиардов оснований: геном слишком велик. Кроме того, использование для идентификации целого генома не имеет смысла, ибо ДНК двух отдельно взятых людей совпадают почти на 99 %. Вместо этого при экспертизе ДНК используется анализ участков этой молекулы, которые, судя по всему, не используются для каких-либо функций, их часто называют «мусорными участками» ДНК. Поскольку эти фрагменты генома не участвуют в жизнеобеспечении клеток или организма в целом, из поколения в поколение происходят их случайные изменения, или мутации. При производстве экспертизы ДНК идентичность представленных образцов определяется именно путем сравнения этих участков.

Если участки не совпадают, заключение экспертизы однозначно: образцы принадлежат разным людям. А если обнаружено совпадение? Если рассматриваемые участки на обоих образцах одинаковы, это в равной мере может означать как принадлежность их одному человеку, так и случайное совпадение генетических цепочек разных людей. И нет никакого способа узнать это наверняка. Конечно, обычная экспертиза ДНК различает всего лишь около тысячи различных наборов генов, таким образом, вероятность случайного совпадения – один шанс из тысячи. Чтобы как-то компенсировать эту неоднозначность, идентификационные лаборатории проводят серию из 4–5 тестов и комбинируют их результаты. Если для тестов используются различные участки генома и если эти участки не «структурированы» внутри семейства естественным образом, то применение серии тестов снижает шанс случайного совпадения от одного к тысяче до одного к миллиону или даже до одного к 500 миллионам. Однако мы все равно не можем полностью исключить возможность случайного совпадения и неверной идентификации. «Анализ ДНК – это не сравнение отпечатков пальцев, – говорит доктор Дэвид Бинг [David Bing], экс-директор Ассоциации по идентификации человека [Human Identification Trade Association]. – Вы никогда не можете быть уверены до конца. Тестов ДНК, на основании которых можно сказать, что данный человек уникален, не существует».

Третья проблема, харктерная для систем идентификации на базе ДНК, заключается в том, что для проведения теста требуется лабораторное оборудование и квалифицированные специалисты. Присяжные в «Простофиле Вильсоне» могли просто визуально сравнить отпечатки, обнаруженные на орудии преступления, с отпечатками подозреваемых. Но, поскольку анализ ДНК требует привлечения сторонних экспертов, здесь всегда найдется место для профессиональных разногласий. И конечно, не следует исключать возможность того, что образцы крови или семенной жидкости с места преступления могут быть подменены при транспортировке, как случайно, так и умышленно. (Результаты анализа ДНК, предъявленные в качестве доказательства в деле О. Дж. Симпсона [О. J. Simpson] в 1996 году, были опротестованы адвокатами совсем не по научным соображениям, а на основании заявления, что образцы были подменены полицейским-расистом, вознамерившимся засадить бывшего футболиста за решетку.)

 

Идентификация ДНК

Эти идентификационные тесты показывают применение результатов анализа ДНК для исключения присутствия подозреваемого на месте преступления и для подтверждения соответствия. Для осуществления этих тестов использовались образцы с места преступления и образцы крови подозреваемого. Далее ДНК разбивается на фрагменты различного размера путем ее обработки энзимами. Фрагменты помещаются в гель и подвергаются воздействию электрического поля, в результате чего происходит их сортировка по размеру. Фрагменты обрабатываются веществом-маркером, выявляющим определенные участки хромосом. Там, где маркер задержался, появляется черная линия или полоса. Если образец ДНК имеет фрагменты же размера, что и ДНК подозреваемого, делается вывод об их совпадении. Пример предоставлен Cellmark Diagnostics, одной из ведущих лаборарий, осуществляющей судебную идентификацию ДНК. [Фотография любезно предоставлена Cellmark Diagnostics, Inc., Германтаун, штат Мэриленд].

Анализ ДНК впервые вошел в судебную практику США в 1987 году, в то время мало кто из адвокатов в достаточной степени разбирался в этой науке, чтобы подавать такие протесты. Следствие представляло анализ ДНК суду и присяжным как устоявшуюся научную теорию, несмотря на то что идея была высказана всего около года назад. К 1991 году анализ ДНК использовался при расследовании тысяч уголовных преступлений. Но не обошлось и без проблем. В 1989 году при рассмотрении дела «Народ против Кастро» суд первой инстанции принял в качестве доказательства результаты анализа ДНК, руководствуясь тем, что анализ ДНК в общем признается учеными, однако Апелляционный суд отверг доказательства по причине допущенных со стороны лаборатории явных нарушений. В ноябре 1989 года Верховный суд штата Миннесота отверг результаты анализа ДНК в деле «Штат против Шварца» по причине низкого уровня контроля качества в лаборатории и того факта, что она не смогла предоставить данные выборки по населению, на основании которых основывалось статистическое заключение. Но в этом же году Специальный апелляционный суд штата Мэриленд постановил при рассмотрении дела «Кобей против Штата» признать результаты экспертизы ДНК в качестве доказательства, отметив при этом, что признание анализа ДНК «не является обязательным для всех уголовных расследований».

Внезапно создалась странная ситуация: как только обвинение пыталось использовать в качестве доказательства результаты анализа ДНК, расследование тут же переходило в другую плоскость – доказательство научной состоятельности самого метода анализа ДНК. Целый ряд статей и исследований отстаивал технологию, но все они были написаны людьми либо входящими в штат экспертных лабораторий, либо привлекаемыми к расследованию в качестве экспертов ФБР или прокуратурой штата. Никто из научного сообщества не мог высказать непредвзятое мнение, но все, кто имел отношение к этой науке, были в ней заинтересованы.

Чтобы положить конец спорам, в 1989 году Национальный совет по исследованиям [National Research Council, NRC] создал Комитет по технологиям ДНК в криминалистике [Committee on DNA Technology in Forensic Science], который должен был заняться изучением технологий идентификации на основе ДНК.

NRC входит в Национальную академию наук и является одной из самых престижных исследовательских организаций США, образцом объективности и научного опыта. Комитет признал корректность базовой научной теории. Однако требовалась стандартизация некоторых моментов, в частности используемых маркеров, для чего, в свою очередь, была необходима большая база с генетическими данными населения. И здесь комитет допустил большую ошибку. Пытаясь уладить статистические споры между экспертами-практиками по ДНК и группой, изучающей генетику, комитет рекомендовал использовать при экспертизе новый статистический подход, получивший название «принцип промежуточных ограничений». В основе принципа лежала математическая формула для расчета вероятности ошибочного совпадения, и она была более консервативна, нежели использовавшаяся к тому времени.

«Это создало юридический клинч», – объяснял мне Марк Столороу [Mark Stolorow], менеджер по криминалистике компании Cellmark Diagnostics. Проблема заключалась в том, что юридический принцип признания научных доказательств в суде, называемый «стандарт Фрая» [Frye standard], требовал, чтобы используемая при этом научная методика была тщательно изученной и общепринятой в научном сообществе. Но предложенный NRC принцип не был общепринятым, он был изобретен членами созданного NRC комитета.

В апреле 1993 года директор ФБР Уильям Сешенс [William Sessions] предложил NRC провести дополнительное исследование, чтобы устранить недоразумение. Несмотря на то что подобного рода пересмотр заключения не имел прецедентов, его необходимость была очевидна. Однако процесс затормозился. NRC созвал новый комитет 30 августа 1993 года, однако он не начинал свою работу до сентября 1994 года из-за неопределенности с финансированием. Новая версия отчета появилась лишь в 1996 году.

К моменту, когда NRC выпустил вторую и окончательную версию отчета, согласие уже было найдено. В ноябре 1995 года журнал Nature опубликовал статью, озаглавленную «Спорам об идентификации по ДНК положен конец». Подтверждением названия стал тот факт, что статья была написана в соавторстве самыми ярыми противниками в этом споре – Эриком Лэндером [Eric S. Lander] и Брюсом Бадоули [Bruce Budowle]. В этой статье Лэндер, ученый-генетик Центра по изучению генома при Институте Уайтхеда [Whitehead Institute Center for Genome Research], и Бадоули, руководитель Учебно-исследовательского криминалистического центра ФБР [FBI's Forensic Science Research and Training Center], согласились, что научная теория о ДНК обоснована. При условии, что лаборатории примут все меры по недопущению ошибок, анализ ДНК может считаться таким же точным способом, как и другие технологии идентификации.

 

Анализ ДНК сегодня

Очень сложно переоценить значение идентификации по ДНК. Сегодня эта методика коренным образом изменила процедуру определения отцовства при назначении алиментов. «Знаете, как эта процедура происходила раньше? – спросил меня доктор Дэвинг Бинг. – Ребенка представляли суду и спрашивали, похож ли он на отца».

Анализ ДНК также помогает людям, которые просто хотят знать, являются ли они кровными родственниками, полностью или частично, при этом их не интересует дальнейшее использование этой информации в суде. CBR Laboratories проводила несколько таких тестов для установления родства, рассказывает Бинг, в прошлом член совета директоров этой лаборатории. Для проведения теста необходимы образцы ДНК от обоих человек, желающих установить, являются ли они кровными родственниками, а также от максимального количества родственников с обеих сторон. Стоимость теста ($200 на человека) не слишком высокая цена за душевное спокойствие, которое он дает. Анализ может быть проведен в тайне от человека и без его согласия: образцы ДНК легко можно получить с кусочка ткани, которым человек пользовался. «Вообще говоря, мы не должны писать отчет, мы просто должны сделать анализ», – говорит Бинг. Для этого не требуется поручение суда, так как речь не идет о расследовании преступления, связанного с этими образцами. Результаты анализа дают ответы на очень важные вопросы. Лаборатория Бинга помогает ответить на эти вопросы любому, если его представляет юрист, врач, адвокат, социальный работник или частный детектив.

Сегодня безупречность доказательств на базе анализа ДНК используется для пересмотра обвинений, предъявленных до появления этой технологии. Действующий при юридической школе Кардозо университета Ешива проект «Невиновность» [The Innocence Project at Yeshiva University's Cardozo School of Law] специализируется на использовании в качестве доказательства анализа ДНК для инициации пересмотра дел и оправдания несправедливо осужденных. В отчете Национального института юстиции за 1996 год рассказывается о 28 прецедентах, когда несправедливо осужденного человека освобождали после подтверждения его невиновности при помощи анализа ДНК. В среднем осужденные провели в заключении около семи лет. Анализ ДНК использовался также для воссоединения похищенных во время «грязной войны» в Аргентине детей с их бабушками, дедушками и другими членами семьи.

Реабилитация возможна и после смерти. Сын доктора Сэма Шеппарда [Sam Sheppard] из Кливленда не терял надежды при помощи анализа ДНК доказать невиновность отца, обвиненного в 1954 году в убийстве жены, Мэрилин Шеппард [Marilyn Sheppard]. Сэм Шеппард провел в тюрьме десять лет и был оправдан после пересмотра дела в 1966 году, но у многих людей остались сомнения в его невиновности. Его сын Сэм Риз Шеппард [Sam Reese Sheppard] добился разрешения на эксгумацию тела отца, чтобы провести сравнительный анализ его ДНК с образцами крови и телесных жидкостей, обнаруженных на месте преступления. Анализ подтвердил, что обнаруженная на месте преступления кровь принадлежит не Шеппарду или егс жене, а другому человеку.

 

Банк данных ДНК

Утром 25 ноября 1991 года человек в маске вломился в дом молодоженов недалеко от Спрингфилда, штат Иллинойс, застрелил мужа, изнасиловал жену, после чего выстрелил в нее и оставил умирать. Удивительно, но женщина выжила. Следствие взяло для анализа семенную жидкость, оставленную преступником, и произвело сравнительный анализ по идентификации ДНК. Поиск производился в компьютерной базе данных, содержащей информацию о ДНК, но совпадений обнаружено не было. Поскольку женщина не могла опознать преступника визуально, полиция потеряла все нити, и следствие зашло в тупик.

В апреле полиция Спрингфилда при расследовании другого преступления взяла для анализа образцы ДНК мужчины, обвиняемого в изнасиловании семнадцатилетней девочки, и ввела информацию в компьютер. На этот раз компьютер обнаружил совпадение ДНК с образцами из ноябрьского дела. В конечном счете присяжные признали обвиняемого Артура Дейла Хики [Arthur Dale Hickey] виновным в убийстве первой степени и покушении на убийство, отягченными сексуальным насилием и вторжением в жилище. Хики был приговорен к смертной казни.

По данным ФБР, 67 % насильников совершают более одного нападения, причем в среднем обнаруживается 2,8 нападения, а 5,2 нападения не обнаруживается. Технология идентификации по ДНК позволяет раскрыть большинство этих случаев. В связи с этим Правительство США в законодательном порядке обязало все штаты регистрировать информацию о ДНК всех осужденных за половые преступления. Но законодатели многих штатов не ограничились лишь насильниками. В некоторых штатах все осужденные за преступления, связанные с насилием, должны сдать материал для идентификации ДНК. В других штатах процедуре «генетического дактилоскопирования» подвергаются все осужденные, даже за ненасильственные преступления. В некоторых штатах в базах данных хранится генетическая информация и о людях, всего лишь обвинявшихся в совершении преступлений.

«Генетические отпечатки» хранятся в базе данных ФБР, называемой «комбинированная система индексации ДНК» [Combined DNA Index System, CODIS]. Введенная в действие в 1994 году в соответствии с «Законом об идентификации ДНК» [DNA Identification Act] система представляет собой компьютерную сеть, используемую для получения профилей ДНК и поиска совпадений уполномоченными органами всех уровней: местного, уровня штата и федерального. Пилотный вариант программы функционировал с 1991 года.

Профили ДНК создаются как на базе улик, оставленных на месте преступления, так и на базе образцов, взятых от осужденных. Когда в CODIS заносится новый профиль, он автоматически проверяется на совпадение с уже имеющимися в базе профилями, относящимися к нераскрытым преступлениям. В случае обнаружения совпадения в лабораторию, поместившую новые данные, автоматически отсылается уведомление по электронной почте.

Однако наполнение базы данных стало проблемой. Летом 1997 года база CODIS содержала около 125 тысяч профилей ДНК преступников и около 20 тысяч профилей ДНК, относящихся к нераскрытым преступлениям. Остальные 400 тысяч описанных ДНК осужденных ждали своей очереди на ввод в компьютерную систему. К ноябрю 1998 года число необработанных записей в целом по США выросло до 450 тысяч. ФБР запросило ассигнования в размере 22,5 миллиона долларов для «освоения» этого задела.

Но самую большую базу данных ДНК создало Министерство обороны США. Целью создания военным ведомством реестра ДНК было опознание останков погибших военнослужащих. На 31 декабря 1995 года в хранилище образцов содержалось 1,15 миллиона образцов.

На web-сайте Министерства обороны можно найти следующую информацию о хранилище:

Кровь помещается в специальные карты, на лицевую сторону которых наносятся номер социального страхования военнослужащего, дата рождения и род войск. На обратной стороне карты размещаются отпечатки пальцев, штрих-код и подпись, подтверждающая правильность образца. Карты с образцами крови содержатся в хранилище образцов в специальной вакуумной упаковке при температуре -20 °C. Мазок из полости рта (соскоб с поверхности щеки) хранится в изопропиловом спирте при комнатной температуре. Во избежание путаницы или неверной маркировки образцов приняты специальные меры безопасности.

Похоже, что однажды этот банк ДНК будет использован не только для идентификации, так как Министерство обороны хранит не просто результаты отбора отдельных ДНК, а цельные клетки крови. В конечном счете военные создали крупнейшее в мире хранилище отлично сохраненного генетического материала, причем по каждому образцу министерство обладает подробной медицинской и другой информацией. По прошествии времени, когда база разрастется, ее хранители будут подвергаться постоянному давлению с целью получения образцов для научных исследований и, возможно, для криминальных расследований. Вполне вероятно, что этот проект, ожидает постепенное изменение целей хранения, так же как и другие проекты создания федеральных банков данных.

 

Компьютерная биометрия

Несмотря на свою высокую точность, ни дактилоскопия, ни анализ ДНК не подходят для идентификации личности в повседневной жизни. Вариант с отпечатками пальцев неприемлем: за более чем 100 лет его сторонники не смогли избавить использование этой технологии от ассоциаций с преступностью. Идентификация по ДНК также неприемлема, поскольку для идентификации требуется значительное время – минуты или даже часы. К счастью, последние 100 лет люди используют другой способ биометрической идентификации, почти такой же хороший, как отпечатки пальцев или анализ ДНК. Это фотография.

Сегодня наиболее распространенной формой идентификации является помещение фотографии на официальный документ. Повсюду в мире универсальным способом идентификации личности является паспорт. Во многих европейских странах паспорт дополняется идентификационной карточкой. В Соединенных Штатах водительское удостоверение с фотографией является самой распространенной формой идентификации как в частном, так и в государственном секторе.

Надежность водительских удостоверений зависит от двух факторов. Во-первых, штат должен быть уверен, что удостоверение выдано соответствующему лицу. Во-вторых, само по себе удостоверение должно быть хорошо защищено от подделки, т. е. выпущенное удостоверение невозможно изменить. (Удостоверения, которые легко подделать, просто провоцируют преступления, так как удостоверение может быть украдено, изменено и использовано затем в мошеннических целях.) Штаты все более и более успешно используют при изготовлении удостоверений экзотические материалы, что затрудняет их подделку. Но в общем они выполняют лишь простую функцию идентификации личности водителя. Самая большая проблема с водительскими удостоверениями в США заключается в том, что каждый штат выпускает свои удостоверения, и они очень различаются по оформлению. Кассиру в штате Массачусетс очень сложно установить, действительно ли предъявленное удостоверение выпущено в штате Монтана или это подделка.

Перейдем теперь к компьютеризованным системам идентификации. Все современные системы биометрической идентификации, так же как и рассмотренная выше AFIS, состоят из двух частей. Первая – это устройство, которое производит измерение какого-либо параметра человеческого тела и преобразует его в цифровую форму. Вторая – большая база данных, хранящая результаты биометрических измерений сотен, тысяч или даже миллионов людей. Во многих случаях онлайновая база данных может свести на нет проблему подделок: если фальшивый кусок пластика изготовить можно, то ввести фальшивую запись в правительственную базу данных несравнимо труднее.

За последние десять лет было разработано множество систем биометрической идентификации. Самая простая – создание онлайновой базы водительских удостоверений с фотографиями. Однако постоянно изобретаются и проверяются все более сложные системы. Вот примеры некоторых из них.

Рисунок сетчатки глаза. Сетчатка похожа по своей индивидуальности на отпечатки пальцев. Но вместо папиллярных линий в этой системе записывается и анализируется уникальный рисунок внутри глаза человека. В 1980-е годы были популярны системы, анализирующие картину, образуемую венами и артериями глаза. Однако, в отличие от отпечатков пальцев, рисунок сетчатки подвержен изменениям: у женщин во время беременности под воздействием гормонов плода в глазу могут образовываться новые сосуды, меняющие рисунок. Общепризнано, что эта система дискриминирует женщин, которым приходится объяснять при каждом несовпадении изображений сетчатки, что они беременны, почему они беременны и, возможно, что произошло с плодом.

 

Сканирование радужной оболочки

Из всех известных систем биометрической идентификации сканирование радужной оболочки является наиболее точным и стабильным. Тонкий узор на радужке формируется еще до рождения и остается неизменным на протяжении всей жизни (кроме случаев травм и хирургического вмешательства, конечно). Изображение узора радужной оболочки может быть получено с использованием видеокамеры высокого разрешения, и оно настолько уникально, что вероятность совпадения биометрических показателей радужки двух людей составляет один шанс из 10^78. (Для сравнения: население Земли составляет всего около 10^10.) Даже однояйцовые близнецы имеют различающиеся радужные оболочки. Однако следует помнить об одной вещи: сканирование радужки идентифицирует не человека, а лишь его радужную оболочку. Узнать по результатам сканирования имя человека можно только после поиска в компьютерной базе данных. Если база данных была взломана и модифицирована, сканирование радужной оболочки не даст правильной идентификации. [Фото любезно предоставлено IriScan, Inc.]

Рисунок радужной оболочки. Особенно популярны системы на базе радужной оболочки были в 1990-е годы. Радужная оболочка формируется еще во время внутриутробного развития, поэтому остается неизменной на протяжении всей жизни человека. Получить ее изображение можно с помощью стандартной видеокамеры, а не дорогостоящего и неудобного сканера, как в случае с сетчаткой. Одним из лидеров в этом секторе является компания IriScan, чьи технологии используются в тюрьмах, в автоматических кассовых машинах (банкоматах), а недавно стали использоваться и на станциях метро. British Telecom, являющаяся партнером этой фирмы, разработала высокоскоростной сканер радужной оболочки, который может получать изображение радужки человека, сидящего в машине, движущейся со скоростью 90 км/час. Сегодня такой сканер очень дорог, для него требуется специальная оптика, камера высокого разрешения и управляемый компьютером объектив с сервоприводом.

Но, поскольку технологии постоянно развиваются, а цены падают, эта технология, вероятно, вскоре станет более доступной.

Анализ почерка. Анализ почерка и собственноручной подписи является одной из первых биометрических систем в мире. Сегодня изображение подписи может быть оцифровано и сравнено с имеющимися образцами. Если подпись ставится на специальном электронном планшете, компьютер может также анализировать скорость перемещения пера и силу нажатия. Комбинируя эти три параметра (траекторию, скорость и силу нажатия) можно построить биометрическую модель, которую очень сложно подделать.

Отпечатки ладоней и их геометрия. При идентификации по отпечатку ладони и ее геометрии анализируется рисунок складок и относительная длина пальцев. Обе системы страдают нестабильностью по сравнению с анализом отпечатков пальцев, так как измеряемые параметры меняются со временем. С другой стороны, на них нет пятна «криминальности». Система идентификации по геометрии ладоней применялась для идентификации спортсменов на летних Олимпийских играх в Атланте в 1996 году.

Характеристики голоса. Системы голосового анализа пытаются идентифицировать говорящего путем сравнения произносимых им фраз с заранее записанными. Сегодня компьютерные системы распознавания голоса могут решать как задачу опознавания говорящего, т. е. определять, кто говорит, так и задачу распознавания речи, т. е. определять, что было сказано. В отличие от человека, современные компьютеры не могут идентифицировать говорящего и распознавать смысл сказанного одновременно, но с увеличением производительности они осилят и эту задачу. Маловероятно, что когда-нибудь компьютеры смогут опознавать человека по голосу со 100 %-ной точностью. Но и люди не могут этого. Иногда просто недостаточно информации для решения этой задачи.

Распознавание лица. Системы распознавания лица пытаются идентифицировать человека на базе визуального сходства. Для обеспечения работы современных систем необходимо, чтобы изображение лица занимало большую часть поля зрения видеокамеры компьютера, а фон соответствующим образом контролировался. В будущем такие системы должны будут распознавать лица в толпе, так же как это делает человек (и возможно, с той же степенью точности). Поскольку системы распознавания лица не носят на себе компрометирующего клейма, они не вызывают чувства опасности; в отличие от системы сканирования глаза, эти системы имеют шанс стать популярными в XXI столетии, что может привести к неожиданным результатам. «Люди, которым необходимо скрываться, опасаются систем распознавания лица, – говорит редактор журнала Identity World Стивен Шоу. – Эти системы не только вылавливают террористов, но могут опознавать и дипломатов, призраков и полицейских, работающих по легенде».

Термограмма лица. Идентификация по термограмме лица использует особенности расположения проходящих непосредственно под кожей кровеносных сосудов. Если внешний вид лица можно изменить с использованием косметики или новой прической, то кровеносную систему изменить сложнее. Поэтому считается, что термограмма лица более надежный способ идентификации, чем простое визуальное распознавание.

Идентификация по силуэту и особенностям походки. Это мое собственное название для очередной категории систем биометрической идентификации, но специалисты в этой области также его признают. Вы можете узнать своего друга издалека, даже если не видите его лица. Вы идентифицируете его на основе ряда параметров, включая размеры и пропорции, особенности походки и одежды. И вновь мы исходим из предположения, что, если человек может осуществлять идентификацию такого рода, можно попытаться обучить этому и компьютер.

Производительность. Также возможно идентифицировать человека на основе данных о его производительности при решении определенной задачи. Будучи старшекурсником MTI, я разработал компьютерную программу, которая могла идентифицировать человека по клавиатурному почерку – скорости печати и силе нажатия на клавиши при работе на клавиатуре. Во время своей работы в AT&T исследователь Томас Спитер [Thomas Speeter] разработал специальную плитку для пола, которая могла идентифицировать тех, кто по ней ходит. Некоторые системы защиты от несанкционированного доступа определяют факт вторжения в компьютер, основываясь на принципе, что стиль работы нарушителя отличается от стиля работы законных пользователей.

 

Распознавание лица

В отличие от других систем биометрической идентификации, распознавание лица носит пассивный характер: оно может осуществляться без ведома человека, позволяя производить идентификацию в лифте или при проходе через дверь. Сегодня биометрические системы идентификации все чаще используются для идентификации в банкоматах (ATM), в банках и бизнесе, требующем повышенных мер безопасности. Некоторые штаты рассматривают возможность применения систем распознавания лица в базах данных водительских удостоверений, чтобы иметь возможность выявлять лиц, получающих несколько удостоверений более чем на одно имя. [Иллюстрация любезно предоставлена Miros, Inc.]

Стиль написания. Все большее количество технологий используется для определения автора, будь то пьеса, новелла или музыкальный опус, на основе анализа особенностей стиля написания. В 1996 году Дональд Фостер [Donald Foster], специалист в области компьютеров из колледжа Вассар, проанализировал бестселлер «Основные цвета» [Primary Colors] и пришел к выводу, что «анонимный» автор на самом деле – Джо Кляйн [Дое Klein], обозреватель журнала Newsweek. [50]Donald Foster, «Primary Culprit», New York, 26 февраля 1996, p. 50–57.
(Достаточно интересный факт: Кляйн не признавался в авторстве книги, пока журналистам Washington Post не удалось тайно заполучить образцы почерка Кляйна и фрагменты рукописи книги, проанализированные затем Маурин Кейси Оуэне [Maureen Casey Owens], бывшим ведущим экспертом по документам криминалистической лаборатории полиции Чикаго [Chicago Police Crime Laboratory].) Аналогично Тед Качински [Ted Kaczinski] был идентифицирован как Unabomber лишь после того, как его брат опознал стиль письма и идеи в опубликованном манифесте.

Важно понимать, что ни одна из описанных здесь систем идентификации не прошла какого-либо научного обследования, как это было с идентификацией по ДНК в конце 1980-х – начале 1990-х годов. Вместо этого одиночки и компании тестировали эти технологии так же, как студенты проверяют готовность спагетти: бросают их на стенку и смотрят, не прилипли ли они. Если мы собираемся в будущем использовать биометрические системы в серьезных приложениях, они должны быть подвергнуты стандартизации гораздо более жесткой, чем используется сейчас. В противном случае мы получим огромное число неудачных или ошибочных идентификаций, что вызовет сомнения и недоверие и даже может привести к тому, что в тюрьму будет заключен человек, не сделавший ничего плохого.

 

Биометрия завтрашнего дня

С 1989 по 1995 год я жил в доме, замок на входной двери которого управлялся системой распознавания голоса. Замок давал мне свободу и власть. Свобода заключалась в возможности выходить из дома без боязни забыть ключи: поскольку мой голос всегда был со мной, я в любое время мог попасть обратно домой. А власть заключалась в возможности управлять доступом в мой дом с очень высокой точностью. Например, я мог зарегистрировать в системе голосовые характеристики подрядчика, который выполнял работу в моем доме, не опасаясь, что он передаст его кому-нибудь из своих служащих или сделает копию для себя. Мне не нужно было просить, чтобы кто-то вернул данный ему ключ, я просто стирал характеристику его голоса из памяти замка.

Но и здесь не обошлось без проблем. Через несколько месяцев я обнаружил, что замок не опознает мой голос при сильном ветре или шумном ливне. Я также заметил, что эта биометрическая система недемократична: некоторые люди никак не идентифицировались системой, в то время как другие распознавались ею с первого раза. (Есть сведения о подобных проблемах и в системах распознавания по отпечаткам пальцев.) В конечном итоге я создал «безголосовые коды», позволявшие людям входить без предварительного произнесения парольной фразы.

В грядущем столетии ситуации, подобные моей, будут широко распространены, ибо системы биометрической идентификации все шире заменяют собой ключи и идентификационные карточки. Биометрия будет применяться для управления дверями офисных зданий и защиты компьютерных файлов. Ваш компьютер сможет опознавать, вы ли сидите перед ним, либо по голосу, либо с помощью встроенной видеокамеры. Тому, что люди предпочитают биометрические системы, есть простое объяснение: отпадает необходимость в различного рода паролях, которые можно забыть, и идентификационных карточках, которые можно потерять. В то же время некоторые люди будут дискриминированы, если из-за их индивидуальных особенностей биометрические показатели не смогут быть правильно записаны или стабильно воспроизведены.

Представим себе университет 2020 года. В столовой студенты берут подносы, выбирают понравившиеся блюда и идут с ними в обеденный зал. Компьютерная система сканирует содержимое подносов, вычисляет стоимость обеда, после чего визуально идентифицирует студента по лицу и узнает, с чьего счета снять соответствующую сумму. В библиотеке другая система распознавания лиц давно уже заменила традиционные библиотечные карточки. Компьютер санкционирует вход студента в лабораторию после сканирования его лица – это особенно важно для лабораторий с материалами, которые могут быть использованы террористами. А когда студент садится перед компьютером, система автоматически пускает его и открывает доступ к его файлам.

В университете будущего не будет необходимости изготавливать для каждого студента идентификационную карточку: присоединенная к университетской сети интеллектуальная видеокамера замечательно справится с этой работой. Но университету, возможно, все-таки придется выпускать какие-либо идентификаторы для студентов, чтобы они могли подтвердить свою принадлежность к университету за его пределами. И конечно, университет примет все меры, чтобы не допустить вторжения посторонних в свою биометрическую базу данных.

Университетская система биометрической идентификации работает потому, что университет представляет собой замкнутую среду, а студенты находятся в ней добровольно. Поскольку студенты платят значительные суммы за получение образования, а университетские ресурсы, такие как библиотеки, спортивные залы и общежития, не являются ресурсами общего пользования, студенты сами заинтересованы в надежной их идентификации учреждением.

Многие магазины оборудованы видеокамерами, записывающими изображения всех входящих в них людей. (Часто эти камеры устроены таким образом, чтобы записывать и рост человека.) Очень скоро эти камеры, возможно, будут подключены к компьютерным сетям, что позволит идентифицировать человека по лицу и другим признакам. Компьютерная сеть магазина путем обращения к общедоступным записям сможет определить, не разыскивается ли данный человек компетентными органами. Обратившись к другим базам данных, она может установить, не замечен ли этот человек в агрессивном поведении, не задолжал ли он значительные суммы по своей кредитной карте, не обвинялся ли в магазинной краже. Поместите такую камеру снаружи здания, и вы получите автоматический замок, который закроет двери перед человеком с несоответствующей репутацией. Поскольку такого рода система не может быть идеальной, на одной чаше весов оказываются риски, которые возникнут, если ее не использовать, а на другой – судебные процессы, гражданская ответственность или просто ухудшение отношения клиентов к заведению, которые могут возникнуть в случае ошибочной идентификации. На практике можно попытаться запрограммировать компьютер таким образом, чтобы он оценивал риск по каждому конкретному покупателю.

Создание общенациональной базы данных, хранящей фотографии населения, не такая уж сложная задача, ибо большая часть этих данных уже общедоступна. В 1990-х годах в большинстве штатов стали оцифровывать фотографии с водительских удостоверений. Эти фотографии, частично уже находящиеся в общем доступе, будут все чаще продаваться частным компаниям, несмотря на то, что это запрещено законом. Процесс уже начался. В феврале 1999 года Управление общественного порядка Южной Каролины [South Carolina Public Safety Department] продало фотографии с 3,5 миллиона выданных в штате водительских удостоверений компании Image Data LLC, расположенной в Нэшуа, штат Нью-Хемпшир. Согласно опубликованной в Washington Post статье, стоимость сделки составила 5 тысяч долларов, или приблизительно один цент за семь фотографий.

Washington Post выступила также с разоблачением того факта, что Image Data LLC получила в 1998 году от американской Секретной службы грант в размере 1,46 миллиона долларов и техническое содействие. Компании было поручено создание общенациональной базы фотографий, которую предполагалось использовать для борьбы с мошенничествами с чеками и кредитными картами, а также для борьбы с терроризмом и верификации иммиграционного статуса.

Планы Image Data вызвали тревогу, поскольку фотографии создавали огромный потенциал для злоупотреблений. Например, если банковский программист имеет расистские убеждения, он может модифицировать программу кредитования таким образом, чтобы она учитывала цвет кожи заемщика в процессе принятия решения о выдаче кредита. Другой вариант – ошибка в компьютерной программе, особенно созданной по технологии нейронных сетей, может привести к тому, что система начнет непреднамеренно учитывать этот фактор, несмотря на то, что никто этого не планировал. Такие действия программы чрезвычайно сложно обнаружить с помощью обычных методов проверки.

Самое смешное, что есть гораздо более дешевый и простой способ использования фотографий для предотвращения мошенничества. Вместо того чтобы создавать базу данных с лицами, можно просто помещать фотографию владельца на кредитную карту и чековую книжку. Корпорация Polaroid разработала кредитную карту с фотографией еще в 1960-е годы, но большинство банков воспротивилось ее использованию. Одним из аргументов было то, что, хотя фотография снижает риск мошенничества, она увеличивает стоимость карты. Другим поводом для отказа стала необходимость иметь фотографию владельца до оформления карты, что не позволяло банкам вести направленную рекламу: для оформления карты с фотографией клиенту необходимо было лично прийти в банк.

Национальная база фотографий находится в процессе создания. Но обществу необходимо обсудить, для каких целей она будет использоваться, кто будет иметь к ней доступ и каким образом будет корректироваться ошибочная информация. Было бы неправильно предоставлять частному бизнесу неограниченный доступ к этой информации без какого-либо контроля.

 

Биометрическое пиратство

Когда Washington Post опубликовала информацию о предстоящей продаже фотографий с водительских удостоверений в Южной Каролине, это вызвало взрыв негодования. Штат сразу же попытался разорвать контракт, мотивируя это нарушением права граждан. Но судья штата отклонил данный аргумент, заявив, что законодательство не запрещает такую продажу.

В результате этого и других инцидентов некоторые штаты, возможно уже в ближайшее время, примут законы, запрещающие продажу фотографий с водительских удостоверений частному бизнесу. Но гораздо труднее не допустить использования бизнесменами собственных ресурсов для создания базы данных с фотографиями. Установленные возле кассовых аппаратов видеокамеры уже сейчас фиксируют изображение каждого, кто пользуется кредитной картой. Не представляет никакой сложности совместить эту информацию с именем владельца предъявляемой карты. Эта схема настолько проста, что не заставит себя долго ждать, если только такая практика не будет запрещена законодательно.

Профессор электротехнического факультета университета Торонто Стив Ман [Steve Mann] назвал фиксацию изображения человека без его согласия пиратством образа [likeness piracy]. Ман доходчиво объяснил разницу между пиратством образа и нарушением авторских прав [copyright infringement]: авторское право защищает лишь произведения в фиксированной форме. Нарушение авторского права подразумевает присвоение и использование определенного изображения, в то время как пиратство образа подразумевает присвоение и использование изображения человека в принципе.

В законодательстве Соединенных Штатов и других стран вопрос пиратства образа урегулирован. Например, в штате Нью-Йорк считается преступлением использование изображения человека в рекламе без его согласия. Этот закон появился еще в начале XX века, когда торговцы начали размещать лица людей на упаковках с продуктом как форму его одобрения, не получив предварительно официального разрешения человека. Кто-то может предположить, что данный закон будет работать и в XXI веке, защищая нас от пиратства образа и биометрического пиратства. Но он будет бессилен, если политика в области биометрии будет устанавливаться на основании сложившейся в бизнесе практики.

 

Идентификация с использованием смарт-карт

Смарт-карта, вроде изображенной на рисунке карты фирмы Gemplus, представляет собой обычную пластиковую карту с размещенным на ней тонким микрочипом. Чип может включать в себя микропроцессор и несколько килобайт памяти. Самое популярное применение смарт-карт – «электронные кошельки», когда карта используется в качестве носителя электронной наличности. Смарт-карта может быть использована и в качестве носимого банка данных, причем владелец карты не может модифицировать находящуюся на карте информацию. В приведенном примере смарт-карта используется в качестве идентификатора, содержащего оцифрованную фотографию владельца и, возможно, отпечатки пальцев. Пограничник сравнивает лицо стоящей перед ним женщины с ее фотографией, считанной со смарт-карты. Поскольку изменить записанное в карту фотоизображение гораздо сложнее, чем переклеить обычную фотографию на документе, разработчики считают такую технологию более безопасной. Хотя эта технология считается сегодня наиболее безопасной, это значит лишь, что создателей поддельной карты ждет более высокое вознаграждение. В конечном счете смарт-карта будущего окажется не более защищенной, чем кредитные карты сегодня. [Фотографии любезно предоставлены фирмой Gemplus]

Уже сегодня крупнейшая служба доставки United Parcel Service (UPS) является также и крупнейшим биометрическим пиратом. При доставке большинства отправлений UPS требует, чтобы получатель расписался в качестве подтверждения получения. В 1987 году UPS начала оцифровывать изображения подписей получателей и хранить их в базе данных. Изображение могло быть отослано по факсу любому, кто позвонил в UPS по номеру 800 и запросил уведомление о вручении отправления. В 1990 году UPS усовершенствовала свою пиратскую технологию, оснастив своих курьеров портативными компьютерами, названными «устройствами для сбора информации о доставке» – DIAD [Delivery Information Acquisition Device]. Каждый компьютер оснащался встроенным считывателем штрих-кодов и специальным планшетом для подписи. Доставив отправление, курьер считывает штрих-код и предлагает получателю расписаться на планшете. Эти данные записываются в память DIAD, после чего, конечно, попадают в базы данных UPS.

Когда я обратился в компанию с жалобой на такую практику, пресс-секретарь UPS Пэт Стифен [Pat Steffen] объяснила мне, что инициатива сделать подписи доступными в электронном виде исходила от клиентов UPS. Подписи рассматривались как подтверждение доставки. Оцифровка этого подтверждения позволяла UPS работать с ними, как и с любыми другими цифровыми данными. Отправка по факсу сертификатов с подтверждением о доставке осуществляется компьютерами UPS автоматически, объяснила мне Стифен. Клиентам UPS также предоставляется возможность получить специальное программное обеспечение для отслеживания доставки и просматривать подписи непосредственно на своем персональном компьютере.

Самое забавное, что, сделав оцифрованную собственноручную подпись клиента широко доступной, UPS тем самым принизила ее значимость. Как только подпись оцифровывается, ею очень легко манипулировать с помощью компьютера, например поставить ее под контрактом. Система UPS особенно уязвима: вы можете отслеживать доставку отправлений, зная номера накладных, которые присваиваются последовательно, например «0930 8 164 904», «0930 8 164 913», «0930 8 164 922». Зная номер выданной в UPS квитанции, злоумышленник может использовать эту информацию для составления полного списка получателей отправлений и присвоить копию подписи каждого получателя.

UPS понимает уязвимость своей системы, но не предпринимает серьезных действий по ее ликвидации. На web-сайте компании можно увидеть замечание следующего содержания:

UPS предоставляет вам возможность использовать систему отслеживания доставки только с целью контроля ваших отправлений. Любое другое использование системы отслеживания и информации из нее строго запрещено.

Говоря по правде, UPS не делает практически ничего для противодействия атакам криминального характера. «Если кто-то захочет узнать номера отправлений, он сможет это сделать. Если кто-то захочет сделать что-то еще, я думаю, что это ему тоже удастся. И этому сложно противостоять», – говорит Стифен. Но подобрать номер было бы сложнее, если бы UPS использовала более длинные числа для номеров накладных и не назначала их предсказуемым образом.

Финансовое сообщество нашло лучший способ внедрить биометрию в практику бизнеса. Известно, что мошенники всегда имели возможность украсть бланки чеков или напечатать свои, чтобы потом заполнить их и обналичить. Поэтому в 1997 году Sea First и множество других банков Западного побережья стали фиксировать на обратной стороне чека отпечаток большого пальца, если человек, предъявивший чек для обналичивания, не имел счета в банке. Отпечатки пальцев фиксировались с помощью специальных чернил: человек макал палец в подушечку с чернилами и ставил отпечаток на обратной стороне чека, после чего легко удалял с пальца остатки чернил. Если чек оказывался поддельным, в распоряжении Sea First оставался отпечаток пальца мошенника, причем реальный, а не хранимая в компьютере электронная копия, используя которую можно былс переложить вину на другого. Поскольку SeaFirst было известно также и точное время, когда чек был предъявлен для обналичивания (оно фиксировалось на чеке и в компьютере), можно было легко получить фотографию мошенника из архивных записей системы видеонаблюдения. Поиск по отпечатку пальца мог быть также осуществлен при помощи большого количества систем AFIS. Увы, несмотря на то что данная система безупречна с технической точки зрения, ее использование имеет побочный эффект: люди, предъявляющие в банк чеки, ощущают себя неуютно, потому что с ними обращаются как с потенциальными преступниками.

Биометрия является очень мощным средством идентификации, но только для человека или компьютера, который непосредственно производит измерение. Как только биометрические данные помещаются для хранения в компьютер, вся безопасность, обеспечиваемая биометрической идентификацией, сходит на нет. Вместо измерения биометрические показатели могут быть просто скопированы из одного компьютера в другой. Эту критичную особенность биометрических систем не следует забывать. К сожалению, она настолько тонка, что очень часто не принимается во внимание людьми, разрабатывающими и использующими биометрические системы.

 

Идентификация тела, а не человека

Абсолютная идентификация – соблазнительная идея. Но, к сожалению, эта идея изначально порочна. Все описанные в этой главе системы идентификации обладают одним существенным недостатком: они идентифицируют не личность, они идентифицируют тело. В современном обществе юридическим субъектом является личность. Личность имеет имя, номер социального страхования и биографию. Личность покупает и продает собственность. Личность имеет обязательства. Тела же всего лишь теплокровные двуногие животные, передвигающиеся по поверхности планеты. Тела рождаются и умирают.

Когда происходит убийство, одно тело лишает жизни другое. Работа полиции заключается в установлении личностей причастных людей, т. е. идентификации жертвы и поиске преступника. В тюрьму помещается тело, но свободы лишается личность. Любой идентификационный банк данных, будь это паспорт, выданный Госдепартаментом США, или принадлежащая ФБР система CODIS, пытается установить соответствие между субъектом права (личность) и телом, в котором она обитает. Эта процедура несовершенна.

Сегодня для преступника не составляет большого труда создать себе полноценный псевдоним и получить на него водительское удостоверение, официально выданное штатом. Существует целый ряд нелегальных или полулегальных путей создания поддельной личности: для начала необходимо найти информацию о человеке, родившемся примерно в то же время, что и вы, но умершем в детском возрасте. Далее запрашивается дубликат свидетельства о рождении и оформляется карточка социального страхования. После этого нужно начать активно использовать новое имя, например выписать на него журналы. И в какой-то момент сдать экзамен и получить водительское удостоверение.

В США не существует единого хранилища информации о рождении и смерти в масштабе страны. Города, округа и штаты ведут свои собственные архивы. Иногда информация теряется: больница может сгореть вместе с архивами, компьютерные файлы – уничтожиться. Иногда дублирование информации осуществляется, иногда нет. Некоторые архивные системы очень устарели. Отсутствие централизации информации может быть использовано знающими людьми. После присвоения личности умершего в детстве человека описанным выше способом очень сложно доказать подлог. Практически единственный случай, когда это возможно, – ситуация, когда человек ранее подвергался снятию отпечатков пальцев при аресте и эта информация хранится в базе данных, например в картотеке отпечатков пальцев полицейского управления. Но даже с помощью этой базы данных невозможно доказать, что новая личность поддельная. Все, что может быть с помощью нее доказано, – это лишь факт, что обладатель данного тела использовал когда-то другое имя.

Преступники не единственная категория, нуждающаяся в новых именах, это нужно и правительству. Создание новых личностей необходимо для внедряемых в криминальную среду полицейских, шпионов, перебежчиков и участников федеральной программы защиты свидетелей. Существование спроса со стороны правительства гарантирует, что строгая система биометрической идентификации никогда не будет создана ни в США, ни в других странах: всегда должна оставаться лазейка для внесения в поддерживаемую правительством базу данных ложной информации или изменения правильной информации по политическим мотивам.

Некоторые системы биометрической идентификации обладают еще одним недостатком: при желании их можно обмануть. В 1930-е годы некоторые гангстеры хирургически изменяли свои отпечатки пальцев путем пересадки кожи с других участков тела. Сегодня отпечатки пальцев и сетчатки глаза также могут быть удалены как по желанию человека, так и без него. Чем больше общество полагается на биометрию, тем больше риск опасности травмирования.

Вместо того чтобы полагаться на биометрию для решения социальной проблемы телесной идентификации, мы могли бы предложить социальный путь ее решения. Одним из вариантов могло бы быть ужесточение наказания за «подделку личности» при относительно слабой системе биометрической идентификации. Далее мы должны законодательно установить, что при этом ущерб наносится не только банку или учреждению, которое было непосредственно обмануто, но и человеку, чье имя при этом использовалось.

В ближайшем будущем биометрия станет неотъемлемой частью всех аспектов нашей жизни. Но, вследствие описанных выше недостатков и проблемы ущемления гражданских свобод, наша цивилизация вряд ли когда-нибудь создаст общество, тотально отслеживающее каждого при помощи биометрии. Вместо отслеживания каждого отдельного человека наша цивилизация все больше склоняется к более простому варианту – отслеживанию событий. Этому аспекту посвящена следующая глава.