Капля

Гегузин Яков Евсеевич

Книга состоит из отдельных очерков о физиче­ских законах, управляющих поведением капли, об ученых, которым капля помогла решить ряд сложных и важных задач в различных областях науки.

Книга иллюстрирована кадрами скоростной ки­носъемки и будет интересна самому широкому кругу читателей.

 

АКАДЕМИЯ НАУК СССР

Научно-популярная серия

Я. Е. ГЕГУЗИН

КАПЛЯ  

Посвящаю памяти матери

Розалии Моисеевны Гегузиной

 

ВМЕСТО ВВЕДЕНИЯ

 

Первая капля

Когда я задумал написать эту книгу и структура ее была еще неясна, мне советовали каждый из очерков называть так: «Капля первая», «Капля вторая» и т. д. Мысль мне показалась тенденциозной, и совету я не внял. А вот пер­вый очерк — даже не очерк, а несколько вводных фраз — решил все же назвать «Первая капля».

Жизнь развивается так, что искусство в несравненно меньшей степени, чем наука, со временем оснащается вну­шающим почтение «новейшим оборудованием» — умными и сложными машинами с разноцветными кнопками и мига­ющими лампочками на пульте. Скрипка и кисть сохрани­лись в руках мастера, устояли против натиска множества электронных музыкальных приборов и цветной фотопленки. Творчество в литературе и искусстве осталось привиле­гией человека, его личной одаренности, одержимости, спо­собности удивляться. А в науке происходит нечто иное: лупа и примитивный электроскоп естествоиспытателя ус­тупили место огромным электронным микроскопам и слож­нейшим электрическим машинам. Сложным оборудованием управляет коллектив научных работников со штатом ла­борантов, механиков и инженеров.

Чисто внешнее и совершенно оправданное изменение облика науки иногда представляется признаками ее пере­рождения — превращением науки в нечто обезличенное и механизированное, оторвавшееся от образного, поэтиче­ского мировосприятия человека. К счастью, в действи­тельности дело обстоит совершенно не так. Как и всегда, своими всплесками наука обязана озарениям тех естест­воиспытателей, которые, подобно поэтам ихудожникам, одарены талантом видеть. Как всегда, наука и ныне остается сродни искусству и никакого разделительного вала между ними нет.

Составляя очерки о капле, я не расставался с мыслью о родственности науки и искусства. И если — пусть не пря­мо, а между строк — читатель эту мысль прочтет и в его глазах она «обретет плоть», я буду считать, что труд мой не пропал даром.

 

Слово о кинокамере

В работе над «Каплей» моим верным помощником была кинокамера, и она несомненно заслуживает благодарст­венного слова.

Глаз человека — великолепный оптический прибор. Он тонко различает цвета, мгновенно настраивается «на резкость» при разглядывании объектов на различных расстояниях, чувствует слабые полутени и резкие конту­ры. И все же глаз нуждается в помощниках, расширяю­щих его возможности. Нужны и телескоп, и микроскоп, и множество различных луп. Они помогают соотнести ис­тинные размеры объекта с разрешающей способностью глаза: приблизить удаленное, увеличить мелкое, оттенить расплывчатое.

В последние десятилетия в ряду помощников глаза появилась кинокамера. Кто-то о ней сказал «лупа време­ни». Это определение верное, так как камере под силу «растягивать» и «сжимать» отрезки времени. Мощь кино­камеры неизмеримо возрастает, если ею пользоваться, укрепив на тубусе микроскопа.

В нашей лаборатории есть различные кинокамеры — маленькие и большие, скоростные, которые успевают за­снять тысячи кадров в секунду, и «обычные», которые, работая, не изменяют масштаба времени. Есть и такие, которые снимают покадрово, т. е. так, что между съем­ками двух последовательных кадров проходит время, заданное камере. Все они «помогали» мне разглядеть кап­лю — в полете, рождающуюся на кончике сосульки, пуль­сирующую, подобно сердцу, скользящую по оконному стеклу. Без кинокамер многое бы глаз не увидел и кап­ля в «Капле» выглядела бы обедненной.

 

Сталагмология

Однажды я участвовал в субботней телевизионной пере­даче «Голубой огонек». По замыслу ее организаторов, мне была отведена роль посетителя кафе, которому надлежит сидеть за столиком, пить кофе и аплодировать выступаю­щим. По ходу передачи ведущий должен был обратиться ко мне с каким-то вопросом о дожде, а мне, как бы экспром­том, следовало рассказать о падении дождевой капли на поверхность воды и показать телезрителям полутораминутный кинофильм об этом. Фильм тоже должен был по­явиться экспромтом. Видимо, стремясь вдохновить участ­ников «Голубого огонька», режиссер передачи напом­нил, что из объектива телекамеры на нас глядят миллионы. Добился он этим напоминанием противоположного резуль­тата. Под тяжестью ответственности посетители кафе немного оробели, и каждый свой «экспромт» излагал скованно. Мою задачу немного облегчил фильм, который я комментировал, оставаясь за экраном.

Вскоре после передачи стали приходить письма теле­зрителей. Писем было много, и каждое по-своему инте­ресно и неожиданно.

Автор одного из писем сообщал, что он пишет книгу, которая посвящена изложению науки о каплях. Называть­ся книга будет «Сталагмология», что в переводе на рус­ский язык означает «каплеведение». Автор письма с по­хвалой отзывался о моем фильме и просил прислать ему несколько кинограмм, которые он хотел бы поместить в качестве иллюстрации в соответствующей главе «Сталагмологии».

Письмо меня заинтересовало, и мне захотелось позна­комиться с человеком, которому надлежит стать основателем новой науки,— до письма я не подозревал о суще­ствовании «каплеведения». Я попросил автора письма меня принять и поехал к нему.

Меня встретил немолодой человек, некогда занимав­шийся научной деятельностью в области биологии. Он рассказал о том, что образ капли его привлекает еще с юности, что в его картотеке числится множество статей, которые прямо или косвенно посвящены капле, и что его память хранит много наблюдений над каплями. Он рас­сказал и о том, что некогда ему довелось, вернее, посчаст­ливилось сделать важную научную работу, в которой объ­ектом исследования была капля. Я ему тоже рассказал кое-что о каплях, чего, он, нефизик, не знал.

Начался разговор о сталагмологии. Я говорил о том, что не совсем понимаю правомерность такой науки. Да, действительно, о каплях известно много, и вещество в «капельной» форме изучали представители многих наук. Да, действительно, о каплях можно рассказать уйму ин­тересного, и капля, пожалуй, один из самых совершенных образов, созданных природой. И все же все это в совокуп­ности не составляет науки, основанной на прочном фун­даменте аксиом и основных законов, без которых наука немыслима. Мой собеседник многие годы лелеял мысль о сталагмологии, и ему было очень трудно согласиться с моими рассуждениями. Он не возражал, а просто не соглашался.

Итак, по-моему, сталагмология — не наука, нет та­кой науки. Отдельные свойства капель, процессы, свя­занные с ними, к наукам имеют прямое отношение, но в совокупности самостоятельной науки не составляют. Во время того трудного разговора со старым ученым я вспом­нил слова физика Феймана, одну из тех фраз, которые не­ожиданными блестками вкраплены в самые трудные стра­ницы «феймановских» лекций по физике. Он пишет: «Не все то, что не наука, уж обязательно плохо. Любовь, например, тоже не наука. Словом, когда какую-то вещь называют не наукой, это не значит, что с ней неладно: просто не наука она и все».

Предлагаемая книжка очерков о каплях не «сталагмо­логия» и не «предтеча» науки с таким звучным названием. В ней собраны рассказы о физических законах, управляю­щих поведением капли, о ее красоте и о людях, которым образ капли подсказал решение сложных и важных задач из различных областей науки.

Капля — это кусочек мира, в котором мы живем и ко­торый мы стремимся узнать. Капля — быть может, дож­девая — подсказала ученым идею модели атомного ядра и один из лучших способов наблюдения за движением элементарных частиц материи. Капля, летящая в дожде­вом потоке и падающая на речную гладь, или росинкой сидящая на паутине, или набухающая на кончике сосуль­ки во время весенней капели,— это очень красиво и по­этично, и не случайно многие поэты и художники востор­гались каплей. Я считаю, что творчество поэтов и ученых питается из одного источника — умения смотреть, ви­деть и удивляться. И кто знает, сколько еще будет увидено и понято благодаря капле?

Недавно встретилась мне великолепная книга о спеле­ологах — людях, изучающих пещеры, подземные каналы и коридоры, размытые миллиардами капель. Ее авторы, исходившие сотни подземных троп и тропок, назвали книгу «Вслед за каплей воды»...

А вот что написано о капле в «Толковом словаре» Да­ля. Слова «капля» нет, есть «капать», а «капля» — в качестве одного из множества производных слов. Они в словаре занимают места больше, чем находящиеся поблизости «капелла», «капитан», «капкан», «капрал» и «каприз», вместе взятые. «Капля» обросла множеством сентенций. Кто-то глубокомысленно заметил, что «океан начинается с капли», а кто-то — что «капля воды обладает всеми свой­ствами воды, но бури в ней заметить нельзя».

Много лет мечтал я написать книжку очерков о капле. Снимал кинофильмы, запоминал встречавшиеся стихи, в которых были строки о капле, сохранял короткие записи об историях, связанных с каплей. Готовился к книге, но не писал, что-то сковывало меня. И вот недавно встре­тилась мысль, которая придала мне решимость. Мысль о том, что писать книгу надо хотя бы для того, чтобы ос­вободиться от иллюзии, что можешь написать ее.

Итак, книжка очерков о капле. Не «Сталагмологии», а книжка очерков.

 

КАПЛЯ В НЕВЕСОМОСТИ

В условиях невесомости все выглядит так же, как и в условиях весомости, за исключением от­сутствия веса, в связи с чем в условиях неве­сомости все выглядит не так, как в условиях весомости.

Ответ на экзамене по физике

 

Опыт Плато

Жозеф Антуан Фердинанд Плато, профессор Гентского университета по кафедре физики и анатомии, в течение жизни занимался множеством различных проблем, кото­рые, судя по всему, считал значительно более важными, чем поставленный им опыт с невесомой каплей. Но история рассудила иначе и прочно соединила его имя именно с этим опытом. Опыт широко известный, классический, демонстрируемый почти во всех лекционных курсах по фи­зике. В прозрачный сосуд наливается водный раствор спирта, и затем туда с помощью пипетки вводится капля масла. Концентрацию раствора можно сделать такой, что­бы плотность раствора и масла была одинаковой. В этом случае капля масла, не растворяющаяся в спиртовом растворе, вне зависимости от ее объема, приобретет форму сферы и повиснет в растворе. Аналогичный опыт можно поставить, воспользовавшись соленой водой и кусочком жидкой эпоксидной смолы или анилина,— результат будет тот же.

Сферическая форма капли в опыте Плато объясняется тем, что вследствие равенства плотности вещества капли и среды капля оказывается в невесомости, и поэтому ее форма определяется только стремлением к уменьшению поверхностной энергии на границе капля — среда.

В последние годы в связи с развитием космонавтики возрос интерес к поведению жидкости в невесомости. Возникло научное понятие «гидродинамика невесомости». Плато, пожалуй, следует считать пионером этой науки. Он первый, оставаясь приверженным Земле, поставил жид­кость в условия невесомости, «отключив» тяготение для одной капли.

Истинная форма капли определяется суммой всех сил, которые на нее действуют, и поэтому задачи о форме капли в обычных условиях, как правило, очень сложны. Если капля лежит на твердой поверхности, то надо учесть и дей­ствие силы тяжести, которое будет каплю расплющивать, и действие собственного поверхностного натяжения, ко­торое будет каплю сжимать, и действие поверхностного натяжения на границе капля — твердая поверхность, которое тоже в какой-то степени деформирует каплю. В опыте Плато действует только одна из перечисленных сил — сила, обусловленная собственным поверхностным натяжением, и капля прини­мает форму сферы, т. е. фор­му, которая при данном объ­еме отличается минимальной поверхностью.

 

Капли анилина, взвешенные в воде, имеют сферическую форму вне зависимости от их размера

Последнее утверждение обычно повторяют как само собой разумеющееся. Между тем стоило бы убедиться в том, что шар действительно обла­дает минимальной поверх­ностью. Это можно сделать с помощью рассуждений, не­когда предложенных немец­ким геометром Штайнером.

Воспроизведем его рассуж­дения в виде двухэтапной последовательности.

Этап первый. Фигура, по­верхность которой минималь­на при данном объеме, не мо­жет иметь вогнутые участки, так как превращение этих участков в плоские приводит к уменьшению поверхности, которое сопровождается увеличением объема.

Этап второй. Пересечем двусторонним зеркалом вы­пуклую пространственную фигуру так, чтобы поверх­ности слева и справа от зеркала были равны. Отразим в зеркале ту часть фигуры, объем которой оказался боль­шим. При этом возникает симметричная фигура. Ее по­верхность равна начальной, а объем увеличен. Таким об­разом, вследствие зеркального отражения мы «улучшили» фигуру, сделали ее более совершенной в том смысле, что увеличили ее объем, сохранив поверхность. Единственная фигура, которую последовательностью зеркальных ото­бражений невозможно «улучшить», т. е. объем которой бу­дет максимальным при данной поверхности или поверх­ность минимальной при данном объеме, будет сфера. Это именно то, в чем мы и хотели убедиться.

 

«Маленькие» водяные капли на ворсистой поверхности листа чувствуют себя почти в невесомости

Результат опыта Плато не зависит от размера капли. Любая капля в невесомости будет сферической. Легко, однако, убедиться — и с помощью расчета, и с помощью опыта,— что форма капли может оказаться близкой к сферической и в том случае, если она не находится в не­весомости. Для этого капля должна быть настолько мала, чтобы ее вес не мог заметно исказить сферическую форму, которую ей стремится придать поверхностное натяжение. Попытаемся определить, какую каплю в этом смысле сле­дует считать «маленькой». Для этого надо сравнить два давления: то, которое придает капле форму сферы, и то, которое ее расплющивает. В случае «маленькой» капли второе давление должно быть значительно меньше первого.

Первое давление — оно называется капиллярным, или лапласовским, — определяется хорошо известной формулой:

    

а R — радиус капли. Это давление, возрастая с уменьше­нием размера капли, в случае очень маленьких капель может быть огромным. Учтя, что поверхностное натяже­ние воды α = 70 дин/см, легко убедиться, что микроско­пическая водяная капелька, радиус которой одна сотая микрона (R   = 10 -6 см), сжата лапласовским давлением, величина которого около 150 атмосфер!

#img9E16.jpg

Теперь о давлении, которое расплющивает лежащую каплю. Назовем его гравитационным P g . Величину этого давления, равного отношению силы тяжести капли, масса которой т, к площади контакта между каплей и твердой поверхностью, точно определить трудно, потому что неизвестна величина этой площади. Его можно оценить, посчитав, что площадь контакта приблизительно равна квадрату радиуса капли.

В этом предположении

 

Все рассуждения о почти сферической форме «малень­кой» капли могут совершенно потерять смысл, если силы поверхностного натяжения на границе капля — твердая поверхность растянут каплю, заставят ее растечься тонким слоем. Однако во многих случаях, когда капля не смачи­вает подложку, наши рассуждения остаются в силе. Именно такие случаи мы и обсуждали.

«Маленькие» капли совершенной формы можно наблюдать после дождя на листьях многих деревьев. Не смачивая лист, капли располагаются на нем сверкающими шари­ками. Особенно хороши они натыльной, ворсистой сто­роне. Капли висят как бы в воздухе, поддерживаемые вор­синками. Прекрасные «маленькие» капли можно увидеть после дождя на кончиках игл кактуса или ели.

Вернемся к опыту Плато, к капле, находящейся в не­весомости. Советский космонавт В. Н. Кубасов наблюдал жидкие капли в условиях невесомости. Он производил опыты по электросварке плавящимся электродом в кос­мосе. Процесс сварки был запечатлен на кинопленке. Оказалось, что на кончике электрода формируется боль­шая, почти сферическая капля жидкого металла, сущест­венно больше той, которая образуется при сварке в зем­ных условиях. Капли жидкого металла, случайно отор­вавшиеся от электрода, свободно парят около места сварки, подобно тому как движутся капли в опыте Плато, если их слегка толкнуть.

Творческая фантазия Плато более 100 лет назад роди­ла идею наземного опыта с каплей в искусственно создан­ной невесомости. Быть может, он тогда думал и о космосе?

 

Воспоминание о лекции профессора Френкеля

Начну с банальной мысли о том, что впечатления юности запоминаются надолго — в звуках, в цвете, в незнача­щих деталях, которые тогда, в давно прошедшие годы, ка­зались особенно важными.

Лекцию Якова Ильича Френкеля я слушал поздней весной 1939 года. Он тогда приезжал в Харьков и в ма­ленькой университетской аудитории амфитеатром, кото­рая еще с середины прошлого века торжественно называ­лась «большой физической», читал лекцию о капельной мо­дели ядра. Теперь, спустя более трети века, когда во всех подробностях известны драматические события тех дней, когда закладывались основы ядерной энергетики, ясно, что с профессором Френкелем, который всего за несколь­ко недель до приезда в Харьков предложил идею капель­ной модели ядра, в аудиторию вошла сама история. Тог­да же мы, студенты-физики, шли слушать очередную лекцию «гостевого» профессора, одну из многочислен­ных лекций, которые в «большой физической» часто чита­ли нам университетские гости.

Начал лекцию Френкель спокойно, размеренно, но по­степенно академическая размеренность исчезла: он говорил так, как можно говорить лишь о самом сокро­венном, о чем непрерывно думаешь и кажется, что открыв­шееся тебе прозрение и ясность абсолютно необходимо передать слушателям. Именно на этой лекции я понял смысл выражения «слушать затаив дыхание». Затаив, возможно, для того, чтобы не было лишних звуков, а возможно, чтобы не отвлекаться для дыхания.

Формул профессор почти не писал. Нарисовав мелом на доске водопроводный кран с набухающей каплей на конце, он начал рассказывать об аналогии между каплей воды и каплей ядерной жидкости — атомным ядром. До достижения некоторого размера капля на кончике крана устойчива, по крану можно щелкнуть, и капля не оборвет­ся (он щелкнул по нарисованному крану). Когда же, на­бухая, капля достигнет определенного размера, она сама оборвется. И неожиданно заключил: периодическая сис­тема потому и оканчивается на уране, что тяжелая капля ядерной жидкости — ядро урана — велика и находится на пределе устойчивости, подобно той капле воды на кон­чике крана, которая вот-вот оторвется от него. Когда после этого как само собой разумеющееся он предсказал воз­можность спонтанного деления ядра урана, возникло ощу­щение провидения.

Теперь, когда мне на лекциях приходится рассказы­вать студентам о ядре, я ловлю себя на том, что невольно пытаюсь повторять фразы и рисовать картинки, которые отпечатались у меня в памяти после той далекой предво­енной лекции, слышанной в юности.

Термин «деление» применительно к ядру впервые ис­пользовала Лиза Майтнер — выдающийся немецкий фи­зик. Она, однако, имела в виду аналогию не с каплей, а с амебой. Аналогия со сферической каплей, которая не деформируется тяжестью, оказалась значительно более глубокой и содержательной.

Естественно возникает вопрос, где основания для аналогии? Ведь недостаточно представить себе, что, по­добно жидкой капле, ядро имеет форму шарика. Видимо, Френкель усмотрел в строении ядра более глубокие ос­нования, чтобы уподобить его жидкой капле.

Поиски аналогий — потребность многих умов, проби­вающихся сквозь сплетения идей и фактов, сквозь заросли отрывочных наблюдений. Удача в этих поисках, как известно, зависит не только и, быть может, не столько от эрудиции и способности мыслить формально строго — она зависит от умения из множества жизненных наблюдений, из хранящихся в тайниках мозга некогда подмеченных штрихов явлений и событий в нужный момент извлечь именно те, которые наиболее полно походят на осмысли­ваемое явление или образ. Это совершенно естественная попытка мозга — среди известного, понятного, ставшего «своим» отыскать нечто такое, чему незнаемое уподобится, а уподобившись, потеряет загадочность и тоже станет «своим».

Иной сочтет поверхностное сходство достаточным ос­нованием для аналогии — такому путь к откровениям за­казан. Поверхностная аналогия не ведет к знаниям, а хитро уводит от них. Какая же аналогия окажется глубо­кой? Как и чем измеряется ее глубина? Чем руководст­воваться, чтобы не принять внешнее сходство за истин­ную аналогию? У одного из восточных народов в ходу муд­рость: «С нетерпением ожидая возвращения дорогого друга из военного похода, не ошибись, не прими стук своего сердца за топот копыт его коня». Как же не оши­биться? А ведь очень часто интуиция — именно ей и при­надлежит основная инициатива отбора в кладовых памяти всего подходящего к случаю — вместо истинной и глубо­кой аналогии предлагает нам, образно выражаясь, троян­ского коня. В словаре русского языка в качестве синони­ма слова «интуиция» называется слово «чутье». Так вот «чутьем» профессор Френкель был богато одарен. Он был богачом.

Об аналогии между атомным ядром и каплей жидкости, вернее, о том, в чем он усматривает основания для анало­гии, Френкель говорил так просто и естественно, будто она не была угадана его чутьем, а заведомо очевидна лю­бому студенту. Говорил доверительно, не низводя слуша­теля до положения школяра, которого известный ученый одаривает крупицами своих необозримых знаний, вынуж­дая себя при этом опуститься до школярского уровня. Он очень умело создавал иллюзию разговора «на равных» со слушателем, который чувствует себя вправе перебить лектора, усомниться в его правоте, выразить одобрение.

Силы притяжения, говорил он, которые удерживают протоны и нейтроны в ядре, велики и могут противостоять силам электрического отталкивания, действующим между протонами в ядре. И это несмотря на то, что расстояния между протонами ничтожно малы — около 10 -13 — 10 -12 см. Сравнив энергии различных ядер и их геометрические размеры, можно убедиться, что силы, удерживающие ней­троны и протоны в ядре, в одном существенном отношении сходны с обычными силами межмолекулярного взаимодей­ствия в жидкостях, а именно в том, что эти силы «коротко­действующие». Они обладают значительной величиной лишь на расстояниях, сравнимых с размерами частиц— протонов и нейтронов в ядре и молекул в обычной жидко­сти. Различия между ядерными силами и силами взаимо­действия между молекулами в жидкости заключаются в том, что радиус действия у первых в сто тысяч раз меньше, чем у вторых, а энергия связи — в миллион раз меньше. Различие, разумеется, огромное, но только количествен­ное, а не качественное, и аналогии оно не помеха.

Френкель обратил внимание на то, что объемы различ­ных ядер оказываются пропорциональными их массе, т. е. атомному весу соответствующих элементов. А это означает, что ядерное вещество, как и обычная жидкость, имеет постоянную плотность, которая от размеров ядра не за­висит. Вот теперь есть основания говорить о ядерной жид­кости, о ядре — капле. Плотность этой жидкости, гово­рил лектор, можно вычислить, и она оказывается в бил­лионы раз больше плотности обычных жидкостей, поверх­ностное натяжение — в 10 18 раз больше поверхностного натяжения воды.

Не многим дано увидеть черты сходства между веще­ствами, характеристики которых различаются в такое число раз, а профессор Френкель увидел, и его интуиция не отступила перед числом с восемнадцатью нулями.

Аналогия — это значит не тождество, а аналогия, и где-то ей положен предел. И ядерная жидкость не тожде­ственна обычной. Ядра, капли ядерной жидкости, в от­личие от капель жидкости обыкновенной, имеют электри ческий заряд, связанный с входящими в их состав прото­нами. Вот это уже отличие принципиальное, а не количе­ственное, и оно определяет одно своеобразное свойство ядер- капель, которым не обладают обычные капли, дождинки или росинки. Именно это отличие и кладет предел ана­логии.

Представим себе в невесомости две капли: одну из обычной жидкости, вторую — из ядерной. Невесомость нам нужна только для того, чтобы силы тяжести не иска­жали их форму. Будем мысленно увеличивать объем этих капель. С первой из них, «обычной», это можно делать без всяких ограничений — ее форма будет оставаться сфери­ческой. Жидкость в капле будет подвержена лишь давлению всестороннего сжатия, которое обусловлено кривизной ее поверхности. А вот со второй каплей, ядерной, дело обстоит сложнее. Ее вещество электрически заряжено. Это значит, что полусферы, на которые капля может быть условно разделена, взаимно отталкиваются, подчиняясь закону Кулона, согласно которому силы отталкивания прямо пропорциональны произведению взаимодействую­щих зарядов и обратно пропорциональны квадрату рас­стояния между ними. Так как величина заряда каждой из ядерных полусфер пропорциональна их объему, т. е. ку­бу радиуса, а расстояние между ними — радиусу, то, очевидно, с увеличением объема капли силы отталкива­ния, которые пытаются исказить сферическую форму капли и в конечном счете разорвать ее, будут расти. Препят­ствует этому лапласовское давление, которое стремится придать капле сферическую форму. Это давление, однако, с увеличением капли убывает. Сколь бы малым оно ни было, в условиях невесомости его всегда будет достаточно для того, чтобы капля обычной жидкости оставалась сферической, а в случае заряженной капли с лапласовским давлением вступает в борьбу иное давление, элект­ростатическое, искажающее сферическую форму капли. Итак, два давления. Одно с увеличением размера капли падает, а другое растет. И, следовательно, это другое в конце концов окажется победителем: под его влиянием капля деформируется и разорвется на две разлетающиеся маленькие капли.

Профессор Френкель об этом говорил так. Деление яд­ра капли на две дочерние капли осуществляется не сра­зу, а путем постепенного вытягивания, при котором оно сначала превращается в вытянутый эллипсоид, затем центральное сечение этого эллипсоида сужается, образуя шейку. Шейка постепенно утоньшается, пока, наконец, не разорвется, после чего процесс деления может считать­ся законченным. Разумеется, и вытягивание и последую­щий разрыв происходят в режиме колебаний ядра-капли, во время одного из периодов этих колебаний, когда изме­нение формы капли оказалось наиболее значительным.

На доске появились элементарные формулы — Френ­кель «оценивал» атомный вес того элемента, ядро которого должно потерять устойчивость и разделиться на два дочер­них. Атомный вес такого элемента оказался близким 100. Оценка озадачивающая, так как если она верна, то все элементы, атомный вес которых больше 100, должны были бы потерять право на существование, а в периодиче­ской системе элементов фигурируют более тяжелые эле­менты, вплоть до урана, атомный вес которого 238. Что- то, видимо, в оценке не учтено. Что же? Френкель уже го­ворил о том, что, превращаясь в две сферические дочерние капли-ядра, материнское ядро должно постепенно вытяги­ваться. Это значит, что поверхность, а с ней и поверхност­ная энергия должны увеличиваться. Следовательно, на пути к процессу деления природой поставлен барьер, который необходимо преодолеть. Величину этого барьера можно вычислить, и во время лекции профессор это сделал. Он показал, что по мере увеличения радиуса материнского ядра-капли этот барьер постепенно снижается и становит­ся практически равным нулю для ядра урана. Вот почему все, что можно примыслить себе за ураном, не должно быть долго жизнеспособным, а менделеевская таблица «ста­бильных» элементов должна оканчиваться именно ураном.

Вернемся к водопроводному крану. Капелька, форми­рующаяся на его конце, подвержена действию силы тяжести, которая деформирует каплю. Действие ее подобно дейст­вию электростатических сил отталкивания между двумя половинками заряженного ядра. Таким образом, если ус­матривать аналогию между развалом ядра и отрывом капли от кончика водопроводного крана, надо примыс­лить себе, что в кране остается капелька, подобная той, которая от него оторвалась.

После лекции профессора Френкеля прошло более трид­цати лет. Капельная модель ядра уточнена, улучшена, а глубокая аналогия, навеянная видом капли на кончике крана или, быть может, дождевой каплей, в науке осталась прочно. Эта аналогия помогла решить задачи общечело­веческой значимости.

Образ капли близок творчеству Френкеля, к каплям он обращался много раз в разные годы и по разным поводам.

 

О подпрыгнувшей капле

Вначале совсем очевидное утверждение: если в силу каких- либо обстоятельств капля приобрела несферическую фор­му, это означает, что ее поверхность увеличилась по сравнению с поверхностью сферы и, следовательно, увели­чилась и ее поверхностная энергия. Или: если в силу ка­ких-либо обстоятельств несферическая капля вдруг при­обретает сферическую форму, вследствие уменьшения по­верхности должна выделиться избыточная энергия.

Допустим, что нам удалось осуществить преобразова­ние формы капли от несферической к сферической, уда­лось предоставить возможность избыточной поверхност­ной энергии освободиться, выделиться. Кстати, эта энер­гия может оказаться совсем немалой. Ее очень легко вы­числить, если задаться объемом капли и ее начальной фор­мой. Вот пример, который дальше нам пригодится. Круп­ная капля ртути весом 20 г на стеклянной пластинке имеет форму лепешки, близкую к форме цилиндра, радиус ко­торого 1,2 см, а высота 0,35 см. Если эта капля превра­тится в сферу, то при этом освобождается энергия W= 1060 эрг.

Куда же эта энергия денется, на что она способна, что может произойти после того, как капле эта энергия в качестве поверхностной станет не нужна? Какие процессы могут сыграть роль «стоков» выделившейся энергии? Очевидно, некоторая часть энергии должна будет израс­ходоваться на то, чтобы осуществить перемещение ве­щества капли, в результате которого капля станет сфери­ческой. Дело в том, что жидкость, из которой капля состо­ит, обладает некоторой вязкостью, и поэтому всякое изме­нение формы капли связано с необходимостью преодо­леть сопротивление вязкой жидкости ее деформированию, т. е. с необходимостью совершить некоторую работу про­тив сил трения. Кроме того, часть освободившейся энер­гии может израсходоваться на нагрев капли. Можно ожи­дать, что, приобретая сферическую форму, капля будет сама себя подогревать. Кроме того, может нагреваться и пространство, окружающее каплю. В этом случае сфероидизирующаяся капля будет играть роль своеобразной печ­ки, отапливающей пространство вокруг себя.

Кроме названных «стоков» для избыточной энергии можно указать еще один — в основном о нем далее и бу­дет разговор. Если приплюснутая несферическая капель­ка лежит на твердой пластинке и если почему-либо она должна преобразовать свою форму из несферической в сферическую, можно ожидать, что в момент преобразова­ния она оттолкнется от пластинки и подскочит вверх, как может подскочить каждый из нас, оттолкнувшись от земли. Для совершения такого скачка капля, естествен­но, нуждается в энергии, которая может быть частью энер­гии, выделившейся при сокращении поверхности капли.

Как видите, стоков энергии много, и, очевидно, все «работающие», но скорость их действия и «поглощатель­ная способность», конечно же, различны. Совершенно яс­но, что капля не подпрыгнет, если изменение ее формы будет происходить медленно. В этом случае принципиаль­но возможный расход энергии на скачок не произойдет. И на борьбу с сопротивлением жидкости изменению ее формы тоже будет расходоваться мало энергии, потому что этот расход, как оказывается, тем больше, чем быстрее должно произойти изменение формы. При медленной сфероидизации капли выделяющаяся энергия была бы израсходована в основном на ее нагрев и нагрев окружаю­щего пространства. Увидеть, как капля подпрыгнет, мож­но лишь при условии, что преобразование ее формы будет происходить быстро. Если, присев на корточки, мы будем медленно распрямляться, прыжок не получится: чтобы подпрыгнуть, надо, быстро распрямляясь, оттолк­нуться от земли. Но что значит «быстро» применительно к капле, которая изменяет свою форму? Капле, чтобы под­прыгнуть, надо побороть силу тяжести, препятствующую прыжку.

На каплю в момент ее прыжка действуют две силы.

 

Итак, возникает задача, которую можно сформули­ровать следующим образом. Допустим, что вся энергия, которая выделяется в процессе сфероидизации капли, должна быть израсходована только на ее подпрыгивание. Пусть другие стоки энергии каким-то образом запрещены. Спрашивается, при какой длительности процесса преоб­ разования формы капли в сферическую капля оторвется от твердой пластинки, на которой она лежит? Решить такую задачу просто. Это могут сделать восьмиклассники в на­чале учебного года, узнав, что кинетическая энергия тела равна половине произведения его массы на квадрат скоро-

 

При такой оценке времени кажется, что надежда на­блюдать подпрыгивающую каплю становится иллюзор­ной. Но, если каплю на подложке перевести в состояние невесомости или близкое к нему, произойдет то, к чему мы стремимся: потеряв вес, капля приобретает сферичес­кую форму и на нее перестает действовать сила тяжести, мешающая оторваться от пластинки, на которой она лежит. В состоянии невесомости величина g, которая стоит в знаменателе последней формулы, обращается в нуль, а это значит, что т становится рав­ным бесконечности, и капля подскочит даже при сколь угодно медленном преобразо­вании ее формы. При малей­шем изменении формы она оторвется от пластинки и с некоторой скоростью начнет двигаться от нее. Ситуация совершенно аналогична той, в которую попадают космо­навты во время полета, когда им приходится специально заботиться, чтобы случайное движение не вынудило их покинуть рабочее место.

 

Подпрыгнувшая в невесомости капля, колеблясь, свободно летит вверх

Вот теперь можно расска­зать о великолепном экспери­менте, который в 1970 г. по­ставили советские физики И. М. Кирко, Е. П. Добычин и В. И. Попов. Их экспери­мент состоял в следующем. Тяжелый контейнер, в кото­ром располагались прозрач­ный сосуд с двадцатиграм­мовой каплей ртути, залитой раствором соляной кислоты, и автоматически работающая кинокамера, сбрасывался с высоты 20 м. Во время свобод­ного полета, длившегося 2 сек., все содержимое контей­нера было практически в со­стоянии невесомости. Кинока­мера зафиксировала происхо­дящее в полете: ртутная ле­пешка, превращаясь в сферу, подпрыгнула и полетела прочь от дна прозрачной кюветы со скоростью 8,7 см/сек. Это главное наблюдение, сделанное камерой. Проверим, как оно согласуется с величиной энер­гии, которая должна выделиться при сфероидизации кап­ли. Именно для этой проверки в начале очерка была наз­вана энергия, которая выделяется при сфероидизации ртутной капли весом 20 г. Получив скорость 8,7 см/сек., она унесет с собой энергию W k = mν2 /2= 752 эрг,

т. е. большую часть всей выделяющейся энергии. Не ис­пользованными при прыжке остались 1060 — 752 =  308 эрг. Как показала кинокамера, основная часть этой энергии была израсходована на преодоление сопротивления вязкой ртути ее деформированию — движущаяся капля пульсировала, колебалась, и на это расходовалась энергия.

При опытах обнаружился еще один сток энергии — на этот раз энергии движущейся капли. Когда капля под­ходила к границе соляная кислота — воздух, грани­ца изгибалась и отражала от себя каплю, заставляя ее двигаться в обратном направлении. Часть энергии капли расходовалась на изгиб границы. Ртутная капля, подобно мячику, металась между дном кюветы и границей между соляной кислотой и воздухом. Именно поэтому свою статью, опубликованную в «Докладах АН СССР» (1970, т. 192, № 2), экспериментаторы назвали не совсем акаде­мично, но точно и выразительно: «Явление капиллярной игры в мяч в условиях невесомости».

Возникает естественный вопрос: почему этот опыт, в основе своей «классический», постановка которого не пред­полагает использования каких-либо новых «квантовых» идей, не был осуществлен, скажем, 150 лет назад? Неужели потому, что тогда не было автоматических кинокамер? Но мог же какой-нибудь энтузиаст-естествоиспытатель, держа в руках перед глазами прозрачную кювету с ртут­ной лепешкой, покрытой соляной кислотой, прыгнуть «солдатиком» в воду с десятиметровой вышки! Вынырнул бы и сообщил, что капля подпрыгнула. И скорость мог бы ее определить по зарубкам на кювете. А вот не прыг­нул. Видимо, не было интереса к тому, что может про­изойти в невесомости. А сейчас, в наш век, интерес к невесомости огромный. Вот и пришла в голову мысль сбросить с высоты контейнер с ртутной каплей и автома­тической кинокамерой.

 

Фильм о слиянии двух капель

Этому фильму предшествовала 26-летняя история. Ее на­чало восходит к 1944 году, а фильм был снят в 1970-м. Прежде чем всмотреться в кадры фильма, пожалуй, стоит проследить этапы этой истории. Началась она в Казани. Я. И. Френкель был в этом городе в эвакуации и работал над развитием теории жидкости и твердого тела. Он обду­мывал вопрос, который и до него возникал перед многими: каким образом твердые, скажем металлические, поро­шинки, которые соприкасаются лишь в отдельных точках, после длительного отжига при высокой температуре ока­зываются прочно соединенными, приблизившимися друг к другу,— вопрос, рожденный необходимостью понять физику процессов, которые происходят при спекании спрес­сованных порошков, процессов, лежащих в основе порош­ковой металлургии.

Ученый последовательно развивал мысль: в строении твердых и жидких тел много общих черт и процесс плавле­ния не бог весть какое революционное событие в жизни вещества, так как плотность при этом изменяется незначи­тельно, незначительно меняется и расстояние между ато­мами, а следовательно, и силы, связывающие их. При плавлении катастрофически уменьшается вязкость веще­ства — жидкость течет даже при малых воздействиях на нее, а твердое тело при таких воздействиях зримо остается неизменным, сохраняя свою форму. В действительности, однако, и оно течет, но это происходит во много раз мед­леннее, чем в жидкости.

Такое различие свойств жидкости и твердого тела Френ­кель считал не принципиальным, а только количествен­ным. В кругу этих идей у него и появился ответ на вопрос о том, каким образом твердые порошинки при высокой температуре самопроизвольно сближаются и соединя­ются в одно целое. Они просто сливаются, подобно тому как сливаются две соприкоснувшиеся жидкие капли. Такое слияние и в случае твердых крупинок, и в случае жидких капель оправданно и выгодно потому, что сопро­вождается уменьшением поверхности порошинок — ка­пель. Вот, пожалуй, основная идея: порошинки сливают­ся, и этот процесс приводит к выигрышу энергии. Теперь нужен расчет скорости процесса слияния капель или кру­пинок. Он завершится формулой, затем эту формулу сле­дует вручить экспериментатору, который выступит тре­тейским судьей между теоретиком и явлением.

Профессор Френкель как-то писал о том, что хороший теоретик обычно рисует не точный портрет явления, а карикатуру на него. Это значит, что подобно карикату­ристу, он отбрасывает не очень существенные детали явления и оставляет лишь наиболее характерные его осо­бенности. Талантливый карикатурист нарисует несколько завитков на лбу, кончики пальцев, держащих сигару, узел галстука — и все уже знают, кого он изобразил. Перед физиком-теоретиком почти та же задача. Реальное явление, как правило, очень сложно и описать его абсо­лютно точно чаще всего просто немыслимо. И Френкель, великолепный теоретик, нарисовал «карикатуру» процес­са: вместо реальных крупинок произвольной формы он примыслил две сферические крупинки, вместо реального контакта по какой-то сложной поверхности — контакт в одной точке. И еще одно упрощение он вынужден был сде­лать: решил описать лишь начальную стадию процесса, когда на образование контактного перешейка между двумя каплями расходуется так мало вещества, что радиу­сы сливающихся капель можно считать практически не- изменившимися. Он считал, что на этой стадии слияние сферических капель происходит под действием сил, кото­рые приложены только к вогнутым участкам поверхности формирующегося перешейка, движутся только эти участки поверхности, а вся прочая поверхность сфер в процессе участия не принимает.

Теоретик сделал главное: предложил идею и определил условия, в которых проявляются наиболее существенные черты явления. После этого формула появилась без осо­бого труда. Оказалось, что площадь круга, по которому соприкасаются сферические капли, равномерно увеличи­вается со временем: время увеличилось вдвое и площадь — вдвое, время — втрое и площадь — втрое.

Неизвестно, заботился ли Френкель лишь об удобст­вах теоретика, определяя черты «карикатуры», или думал и об экспериментаторе, но модель сливающихся сфери­ческих капель была экспериментаторами охотно взята «на вооружение». Они припекали друг к другу маленькие стек­лянные бусинки, нагретые до высокой температуры. Под­черкнем слово «маленькие» — сферические бусинки имели диаметр не более долей миллиметра. С бусинками более крупными экспериментировать нельзя, так как они будут деформироваться под влиянием собственной тяжести, а этого модель Френкеля не предусматривает. Специально не подчеркивая этого, Френкель предполагал, что капли подвержены лишь силам, которые обусловлены наличием поверхностного натяжения, т. е. находятся в невесдмости.

Опыт ставился следующим образом: соприкасающиеся бусинки выдерживались при высокой температуре неко­торое время, затем охлаждались. На охлажденных бусинках измерялась ширина контактного перешейка, а потом все повторялось сначала: нагревались, выдержива­лись, охлаждались, измерялись. В каждом таком цикле добывалась одна экспериментальная точка. По 5—10 точ­кам строилась зависимость; квадрата ширины контакт­ного перешейка (эта величина пропорциональна площади контакта) от времени. Экспериментальные точки не сов­сем точно укладывались на прямую, но в общем, как и предсказывает формула Френкеля, прямая получалась.

Итак, как будто круг замкнулся. Экспериментатор подтвердил правоту теоретика, узнал в «карикатуре» истинную натуру. И все же, может быть, он увидел не все? Возможно, согласие теории и эксперимента иллю­зорно, оно .не точное, а, как говорят, «в общих чертах»? Теоретику, определившему задачу, те допущения, кото­рые он делает, решая ее, «карикатура» простительна, а от экспериментатора можно потребовать подлинную фо­тографию с деталями,. которые не обязательны в кари­катуре.

Опыты с микроскопическими бусинками — не лучшим образом поставленные опыты. Во-первых, бусинки малы, и поэтому некоторое изменение их формы в процессе вза­имного слияния обнаружить непросто. Во-вторых, они не абсолютно сферические. В-третьих, пусть не много, но сила тяжести все же искажает форму бусинок, размяг­ченных температурой. В-четвертых, 5—10 точек, рассе­янных вокруг прямой,— не стопроцентная гарантия вы­полнимости предсказаний теоретика.

Теперь уместно перейти к фильму о слиянии двух капель. Он назван «Слияние вязких сфер в невесомости». Чтобы избавиться от перечисленных упреков в неточно­сти, опыт, который должен был быть заснят на кино­пленку, мы поставили так.

Два одинаковых по весу бесформенных кусочка вязкого вещества, допустим смолы, следует поместить в жидкость, плотность которой в точности совпадает с плотностью смо­лы. Вскоре, если темпера­тура жидкости достаточна, бесформенные кусочки пре­вратятся в идеальные сферы, как это было в опыте Плато. В этом случае не следует бояться, что сила тяжести исказит форму сфер, посколь­ку они находятся в невесо­мости. Это дает эксперимента­тору возможность изучать не микроскопические бусин­ки, а крупные сферы. Снимая этот фильм, мы эксперимен­тировали со сферами диамет­ром 5 см. Разобщенные сферы . приводились в контакт, и все происходящее с ними снима­лось кинокамерой. Две пяти­сантиметровые сферы слива­лись в одну приблизительно за 1 мин. Так как скорость съемки 24 кадра в секунду, то весь процесс оказывался запечатленным на огромном количестве кадров — более тысячи. Для игрового фильма это число кадров ничтожно, а для экспериментатора 1000 кадров — это 1000 экспери­ментальных точек! По этим точкам можно построить на­дежную кривую, отражаю­щую зависимость изучаемой характеристики от времени.

 

Слияние капель эпоксидной смолы в невесомости

Наблюдая за слиянием сфер в невесомости с помощью кинокамеры, можно получить истинный «портрет» явления и оценить интуицию и зор­кость теоретика.

Кадры фильма свидетельствуют о том, что в основном Френкель был прав, но только в основном. Действитель­но, быстрее иных участков поверхности движется вогну­тая область контактного перешейка, но движется не толь­ко она. Оказывается, что, стремясь поскорее слиться, сферы меняют свою форму и рядом с перешейком. Поэто­му центры сфер сближаются быстрее, чем это следует из расчетов Френкеля. Поэтому и площадь контакта со временем изменяется по очень сложному закону, а закон, выведенный Френкелем, проглядывает сквозь последова­тельность огромного числа точек лишь как нечто усреднен­ное, справедливое приближенно. На киноленте, кроме того, были запечатлены и более далекие стадии слияния сферических капель, которые описать с помощью формул чрезвычайно трудно. Начинает перемещаться вещество во всем объеме сферы, в каждой точке с разной скоростью и в разных направлениях, и оказывается практически не­возможным усмотреть черты, пригодные для создания по­хожей «карикатуры».

Бот уже четверть века идея Френкеля определяет де­ятельность всех тех, кто занимается изучением процесса спекания. Кинокамера не отменила исследование 26-лет­ней давности, а лишь указала на детали, от которых ос­вободила сложное явление интуиция теоретика.

 

Статья Эйнштейна о лорде Кельвине

В конце 1924 года в немецком журнале «Naturwissen­schaften» появилась статья Эйнштейна «К столетию со дня рождения лорда Кельвина». Эйнштейн счел своим долгом почтить память лорда Кельвина-Томсона — вы­дающегося английского физика прошлого века. Статья начинается с характеристики Кельвина — «...один из наиболее сильных и плодотворных мыслителей XIX сто­летия...», «...основатель теоретической школы, из которой вышел гениальный теоретик нового времени К .Максвелл...», «...одаренный богатой фантазией, редким умением при­менять математический аппарат и проникновенным умом...», «.. .не многие ученые были столь же плодотворны». А затем — о конкретных заслугах и достижениях. «Наиболее су­щественный вклад Томсона в развитие физики — это ос­нование термодинамики...»; «В возрасте 23 лет он вводит одно из фундаментальнейших понятий современной физи­ки — абсолютную температуру...»; «Обилие результа­тов... в области учения о теплоте, гидродинамики, учения об электричестве, навигации, физической географии и из­мерительной техники...»

Схема опыта Кельвина, в котором с помощью капель получено высо­кое напряжение

В мемориальной статье Эйнштейн стремится принести дань глубокого уважения блестящему ученому и решает не писать о всей деятель­ности Кельвина, а показать четкость его исследователь­ской мысли на нескольких примерах, которые в свое время Эйнштейна особенно восхитили. Из множества ра­бот Кельвина он выбрал те, которые имеют касательство к каплям, вернее, из трех ра­бот Кельвина, особенно пора­зивших Эйнштейна, две ока­зались о каплях. О них и рассказ.

В первой работе предлагается идея генератора высокого напряжения, в котором главным работающим элементом являются капли. Вместо пересказа принципа работы гене­ратора я приведу цитату из статьи Эйнштейна.

«Из заземленной водонаполненной трубки [см. рисунок] вытекают две струи, которые внутри пустотелых изо­лированных металлических цилиндров С иС' разбиваются на капли. Эти капли падают в изолированные подставки А и А' со вставленными воронками. С соединен провод­ником с А', аС' сА. Если С заряжен положительно, то образующиеся внутри С капли заряжаются отрицательно и отдают свой заряд А , заряжая тем самым С' отрицатель­но. Из-за отрицательного заряда С' образующиеся внутри него водяные капли получают положительный заряд и разряжаются в А', увеличивая его положительный заряд. Заряды С , А' и С', А возрастают до тех пор, пока изоля­ция препятствует проскакиванию искры».

Идея Кельвина изумительна по простоте и очевидности, и мы в своей лаборатории решили воплотить ее в реаль­ных каплях и металлических бездонных цилиндрах и ста­канах. Все, что изображено на рисунке, мы разместили под стеклянным колпаком, оградив от различных внешних воздействий, а от цилиндров С и С' вывели из колпака проводники и присоединили их к двум одинаковым метал­лическим шарикам диаметром 1 см. Шарики укрепили на специальной подставке, и расстояние между ними сделали неизменным — 1 мм. Затем, открыв зажимы, дали возмож­ность каплям падать и начали наблюдать: подсчитывали число упавших капель и следили, когда между шарами проскочит искра.

В тот момент, когда проскочила искра, между шарика­ми была разность потенциалов 3000 вольт! Никто в наши дни не пользуется капельным методом, чтобы создавать высокие напряжения,— существуют способы помощнее... И все же нельзя не понять Эйнштейна, который был вос­хищен кельвиновской идеей.

В мемориальной статье Эйнштейн рассказал еще об одной идее Кельвина, имеющей прямое отношение к кап­ле. Кельвин заинтересовался следующим вопросом: как зависит давление пара жидкости вблизи поверхности от степени ее искривленности? Если рассуждать предметно, то речь идет о том, насколько отличается давление пара вблизи изогнутой поверхности водяной капли от давления пара вблизи плоской поверхности воды, налитой в широ­кое блюдце. В поисках ответа па этот вопрос Кельвин рассуждал так. Допустим, что в сосуд с жидкостью по­гружена тонкая трубка, внутренний радиус которой R . Если жидкость не смачивает материал, из которого сдела­на трубка, то ее уровень в трубке расположится ниже, чем в широком сосуде, в который налита жидкость. Произой­дет это по причине очевидной: в связи с тем что жидкость не смачивает стенок трубки, поверхность жидкости в ней будет выпуклой, полусферической, именно поэтому к жид­кости будет приложено давление, направленное внутрь, то самое лапласовское давление, с которым мы уже встре­чались, обсуждая опыт Плато. Под влиянием этого давле­ний уровень жидкости в трубке опустится ровно настолько, чтобы давление из-saразности уровней жидкости в труб­ке и вне ее в точности равнялось лапласовскому. Его величину мызнаем: Р л = 2α /R Разность уровней h обусловит давление Р = ρ gh . Буквами обозначены следующие ве­личины: α — поверхностное натяжение жидкости, ρ — ее плотность, g — ускорение силы тяжести. Приравняв два эти давления, мы убедимся, что разница уровней h = 2α/ ρgR .

Таков результат первого этапа рассуждений Кельвина.

 

К расчету влияния кривизны поверхности жидкости на дав­ление пара над ней

Второй этап — естественное продолжение первого. Над всей поверхностью жидкости — и той, которая в трубке, и той, которая в широком со­суде,— имеется пар этой жид­кости, однако не везде дав­ление, оказываемое им на жидкость, одинаково: несколько большим оно будет над по­верхностью жидкости в труб­ке, так как слой пара над ней толще на величину h . Очевид­но, дополнительное давление этого слоя равно ΔР = ρ0 gh, где ρ0 — плотность газа, которая много меньше плот­ности жидкости. Величину h мы знаем — она была найдена на первом этапе рассужде­ний — и, следовательно, можем определить величину ΔР. Она очень важна, и поэтому формулу, которая определяет эту величину, мы вынесем на отдельную строку:

 

По поводу этой формулы Эйнштейн заметил, что она действительна «независимо от того, какими причинами обусловлено возникновение кривизны поверхности».

Можно понять восхищение, испытанное Эйнштейном, когда он ознакомился с логикой рассуждений и формулой Кельвина. Ведь, казалось бы, Кельвин обсуждал совсем частный пример: широкий сосуд, в нем жидкость, в жид­кости капилляр и т. д. А пришел к закону природы огром­ной важности и выразил его формулой, в которой ничего не содержится от того частного примера, который обсуж­дался. Разве что только R — радиус тонкой трубочки. Но ведь трубочка, как оказалось, нужна была только для

того, чтобы получить участок изогнутой поверхности, ограничивающей жидкость.

Вспомним о капле — она вся ограничена изогнутой по­верхностью, и значит, давление пара вблизи нее будет повышено на величину, определяемую формулой Кельви­на: чем меньше радиус капли, тем большее давление пара над ней. В этом легко убедиться с помощью многих опытов — далее мы с ними еще встретимся, а здесь, вместе с Эйн­штейном, восхитимся талантом Кельвина — его проница­тельным умом и великолепной логикой.

 

Капля пустоты

Много лет подряд вместе с моим покойным учителем Бори­сом Яковлевичем Пинесом мы занимались изучением по­ристых кристаллических тел. Так случилось, что я ни разу не спросил, как у него возникло представление о капле пустоты — поре в кристалле. А сейчас, к сожа­лению, спросить уже некого и остается лишь стро­ить догадки, сопоставляя факты и отрывки случайных раз­говоров.

Образ капли пустоты прочно вошел в физику твердого тела, о нем вспоминают всякий раз, когда надо осмыс­лить поведение различных дефектов в кристалле. И я расскажу о том, как этот образ возник. На примере рож­дения образа капли пустоты можно проследить, как вя­жется логическое кружево мысли ученого, где сосущест­вуют и конкурируют фантазия и строгая формальная ло­гика.

Борис Яковлевич не очень был склонен к аналогиям, упрощенным моделям, картинам, иллюстрирующим мысль. Он часто повторял, что картина — образование дву­мерное и, следовательно, неглубокое. Аналогия может появиться позже, а вначале должна быть формула, числен­ная оценка. И еще, посмеиваясь, он любил говорить о том, что иных формулы гипнотизируют, поскольку формула — это математика, а математика, как известно, наука точ­ная. Это преувеличенное почтение к формулам обычно испытывают люди, которые никогда не создавали их и поэтому не чувствуют ни их слабостей, ни таящихся в них возможностей.

Первая работа Бориса Яковлевича, посвященная изуче­нию поведения пор в кристаллах (она появилась еще в 1946 году), начинается с анализа давно известной формулы лорда Кельвина, которая устанавливает связь между давлением пара вблизи изогнутой поверхности капли (Р R ), ее радиусом ( R ) и давлением пара вблизи плоской поверхности жидкости, из которой капля состоит ( Р 0 ). Вот эта формула:

#imgBC00.jpg

В нее входят величины поверхностного натяжения (α ), объема, приходящегося на один атом в жидкости (ω ), тем­пературы ( Т ) и некоторая постоянная величина к , так на­зываемая постоянная Больцмана.

 

Легко заметить, что в формуле Кельвина нет ничего спе­цифически «жидкого» и ее можно применять и к твердым закристаллизовавшимся каплям. Надо только при этом помнить, что поверхностное натяжение зависит от ориен­тации кристаллографических плоскостей, охраняющих застывшую каплю. Но это деталь, а в главном формула применима к твердым кристаллическим каплям. Из фор­мулы следует, что, чем меньше капля, т. е. чем меньше ее радиус, тем на большую величину давление пара вблизи ее поверхности превосходит давление пара вблизи плоской поверхности вещества, из которого капля состоит.

Понять это легко. Ведь что означают слова «упругость пара больше» или «упругость пара меньше»? Они означают, что при прочих равных условиях в газе вблизи поверх­ности будет большая или меньшая концентрация атомов вещества капли. Атом, который расположен на искривлен­ной поверхности капли, имеет меньшее число соседей, чем тот, который расположен наплоской. В случаепредельно маленькой капли, состоящей из одного атома, этот атом и находился бы па «поверхности» в единственном числе, вообще не имея соседей. Капля из одного атома, конечно же, никакая не капля, но эта условность помогает почув­ствовать тенденцию: чем меньше капля, тем меньше сосе­дей у атома, сидящего на ее поверхности. А меньше сосе­дей — меньше связей, удерживающих атом на поверхности, меньше связей — легче оторваться, легче оторваться — большее число атомов это совершит, и следовательно, боль­шая их концентрация будет в газе вблизи поверхности. Именно это строго и описывает формула.

Борис Яковлевич прочел эту формулу по-своему, не­ожиданно и формально очень строго. Он обратил внима­ние на то, что она примечательна не только теми величи­нами, которые входят в нее, но и теми, которые в ней отсутствуют. Из величин, характеризующих вещество капли, в формулу входят лишь поверхностная энергия и объем, приходящийся на один атом. Масса атома не входит. Формально это означает, рассуждал он, что формула го­дится для вещества с любой массой атома, от бесконечной до равной нулю. Бесконечная масса — это по ту сторону разумного, а вот о «веществе» с нулевой массой «атома» можно говорить вполне серьезно, не забывая, однако, о кавычках. Таким «веществом» является пустота.

Несколько странное соседство слов «вещество» и «пу­стота». В действительности имеется в виду не «вещество», а отсутствие вещества. Например, в узле кристаллической решетки нет атома, которому следовало бы в этом узле быть. Этот свободный от атома узел можно назвать «ато­мом пустоты», а физики его иногда называют «вакансией». Очевидно, скопление большого количества «атомов пу­стоты» должно образовать «каплю пустоты», т. е. пору. Все это по аналогии с реальными атомами и реальным ве­ществом: скопление большого количества, скажем, атомов железа, образует каплю железа. Разумеется, при темпе­ратуре более высокой, чем температура плавления железа.

Итак, пустой узел в кристаллической решетке — «атом пустоты», пора в кристалле — «капля пустоты», и они должны подчиняться формуле, которая впервые была написана более 100 лет назад и применительно к «капле пустоты» впервые прочтена Борисом Яковлевичем Пи­несом. 

Теперь о следствиях нового прочтения формулы. И не о  всех, а о самом главном, ради которого стоило присталь­но всмотреться в старую формулу и заново ее прочесть.

 

Перенос жидкости из капли в блюдце

 

Капля пустоты (пора) испаряется в кристалл. Вблизи поры много вакансий (зачерненные кружки), вдали — мало

Вот опыт, который демонстрируют на школьных уро­ках физики или рассказывают о нем. Небольшой стеклян­ный колпак (перевернутый стакан) установлен на стек­ле. Под колпаком блюдечко с водой и рядом на предмет­ном стеклышке капли воды. Эти капли надо поместить на стеклышко после того, как пространство под колпаком на­сытится водяным паром, который образуется над плоской поверхностью воды в блюдце. Через некоторое время капли исчезнут — они испарятся, а возникшие при этом в водяном паре молекулы воды сконденсируются на по­верхности воды в блюдце.

Итак, в начале опыта под колпаком было три объекта: вода в блюдце, вода в каплях и насыщенный водяной пар. Опыт окончился, когда один из объектов исчез — капель не стало. Здесь все ясно: согласно формуле, давление пара над изогнутой поверхностью водяной капли больше, чем над плоской поверхностью воды в блюдце, и пар под влиянием этой разности давлений двигался по направлению к блюд­цу — уходил оттуда, где его давление больше, и приходил туда, где его давление меньше. Чтобы вблизи своей поверх­ности поддерживать давление, предписываемое ей форму­лой, капля должна все время испаряться. Она это добро­совестно делала и в конце концов исчезла.

А теперь тот же опыт только не с каплями и атомами ре­альной жидкости, а с «каплями» и «атомами» пустоты. Вме­сто колпака с блюдцем и каплей — монокристалл. Он огра­нен плоскими поверхностями и в объеме имеет одну пору сферической формы. Вблизи изогнутой поверхности поры (капля!) концентрация вакансий повышена, а вблизи плоской поверхности, которая отделяет кристалл от ок­ружающего пространства (вода в блюдце!), концентрация вакансий нормальная, не повышена. Очевидно, появится поток вакансий от поры к поверхности кристалла, и, подобно капле воды, пора исчезнет — «испарится в кри­сталл». Образовавшийся при этом в кристалле избыток вакансий со временем сгладится — вакансии либо по­глотятся внутренними стоками, либо с помощью диффузии переместятся к внешней поверхности кристалла.

Начали мы опыт с пористым, а окончили с беспористым кристаллом! Как быстро это произойдет? Все зависит от размеров поры и температуры кристалла. Например, пора, радиус которой один микрон, в медном кристалле при тем­пературе 1000° С исчезает приблизительно за 30 мин.

Все рассказанное о формуле, об аналогии между реаль­ными каплями и каплями пустоты лежит в основе целого раздела современной физики твердого тела— физики спе­кания, которая объясняет, как пористые кристаллические тела самопроизвольно при высоких температурах превра­щаются в плотные. Оказывается, капли пустоты могут испаряться в кристалл!

 

Удобная «постель» для капли

В названии очерка нет надуманности — его содержание находится в полном соответствии с названием. Дело в том, что гладкая, чистая, полированная поверхность твердого тела для жидкой капли неудобна. Попав на нее, капля бу­дет пытаться изменить, улучшить подложку, сделать ее более удобной, даже если для этого ей придется трудиться очень долго.

 

Взаимное расположение сил, действующих на контур капли, лежащей на гладкой твердой поверхности

Напомню, что нет ничего удобнее для капли, чем быть взвешенной в пространстве, в невесомости: ни с чем она не соприкасается, никакие силы ее не искажают и ни к ка­ким изменениям она не стремится. А на пластинке с пло­ской поверхностью все не так, даже если пластинка с кап­лей находится в невесомости.

Вначале подумаем над тем, чем гладкая поверхность не­удобна для жидкой капли. Казалось бы, капля подвижна и должна, переливаясь, как-то приспособиться к плоской поверхности, сделать свое пребывание на ней удобным. Оказывается, что одним изменением собственной формы добиться этого капля не может.

Посмотрите на приведенный рисунок. На нем изображе­на капля жидкости, смачивающей твердую поверхность (угол φ — острый). Стрелками обозначены силы, обуслов­ленные поверхностным натяжением на границе подлож­ка — капля ( α 21 ), подложка — воздух ( α 20 ) и капля — воздух ( α 10 ). Все дальнейшее можно было бы рассказать, имея в виду и каплю, не смачивающую твердую поверх­ность. Но мы остановимся на случае, который изображен на рисунке. Из него с очевидностью следует, что три силы, которые соответствуют поверхностным натяжениям твер­дое — воздух, твердое — капля и капля — воздух, ни при какой форме капли не могут прийти в равновесие, так как первые две из них направлены одна против другой и лежат в одной плоскости, а третья — под углом к ней. Именно поэтому имеется нескомпенсированная сила, приложенная к контуру капли,— на рисунке она обозначена жирной стрелкой и, пожалуй, может считаться количественной мерой степени неудобства подложки. Капле надо сделать что-либо с собой или с подложкой, чтобы избавиться от нее.

Можно рассказать об этом по-другому. Выпуклая по­верхность капли создает давление, которое прижимает ее к плоскости. Это так называемое капиллярное (лапласовское) давление — мы уже с ним встречались. Участок же поверхности капли, который граничит с твердой под­ложкой, такого давления не создает: оно должно быть пропорциональным 1/ R , а радиус кривизны плоского участка

поверхности капли равен бесконечности, и, значит, давле­ние равно нулю. К одному участку поверхности давление приложено, к другому — не приложено, а это неудобно. Капля, подвешенная в невесомости, таких неудобств не испытывает.

Два разных рассказа об одном и том же явлении можно проиллюстрировать двумя опытами. Опыт первый иллю­стрирует первый рассказ, опыт второй — второй.

Опыт первый. На полированной поверхности стеклян­ной пластинки, сухой и чистой, располагается тонкий лепесток полимерной пленки. Хорошо, если его толщина будет не более 5 микрон. На поверхность лепестка надо посадить каплю воды и наблюдать за происходящим. Кап­ля начнет изгибать пленку, стремясь завернуться в нее. Отчетливо это иллюстрирует кинограмма. Работает при этом та сила, которая на рисунке обозначена жирной стрелкой. Если бы полимерная пленка абсолютно подчи­нялась воле капли, произошло бы следующее: капля при­няла бы форму сферы, равномерно покрыв себя слоем поли­мерной пленки. В действительности же, так как плоская пленка не может приобрести сферическую форму, капле не удается полностью в нее завернуться, но все же устра­ивается она при этом более удобно, чем на плоской поверх­ности.

Стремление капли завернуться в пленку мы объяснили, сославшись на силу, изображенную жирной стрелкой. Можно и в иных словах и понятиях описать процесс, за­печатленный на кинограмме, смонтированной из кадров фильма, в котором заснята кинетика заворачивания водя­ной капли в пленку. Из рисунка следует, что α 21 + α 10 •  cos φ = а 20 . Так как cos φ ≥ 0 , то α 21 < α 20 и, следова­тельно, заведомо меньше, чем сумма α 10 + α 20 . Это оз­начает, что выгодно вместо двух свободных поверхностей капли и пленки создать одну поверхность, вдоль которой капля и пленка соприкасаются. А для этого капле следует в пленку завернуться, что она и делает.

 

Последовательность моментов ваворачивания водяной капли в лепесток из полимерной пленки

Внимательно присмотритесь к каплям, которые после дождя остались на поверхности тонких листиков, и вы увидите, что вблизи капель листики изогнуты значитель­но больше, чем это могло бы произойти лишь под влиянием их веса. Капли явно гото­вили себе «постель» поудоб­нее.

Опыт второй был постав­лен чешскими физиками. На полированную поверхность массивного кристалла железа наносилась капля расплав­ленного свинца. Железо было раскалено до температуры более 1000° С, и поэтому свин­цовая капля оставалась жид­кой. Кристалл железа — не полимерная пленка, и изо­гнуть его вокруг себя капля не может. Поэтому поступает она иным способом: выкапы­вает под собой ямку такой формы, чтобы вдоль контуров капли все три силы скомпенсировались так, как показано на рисунке. Эта «удобная» ям­ка должна иметь такую фор-

му, чтобы давление, обусловленное изогнутой поверхностью жидкий свинец — воздух, было в точности равно тому давлению, которое обусловлено искривленностью поверх­ности жидкий свинец — твердое железо, т. е. дна ямки.

Равенство двух этих давлений означает, что α 10 / R 10 = α 12 / R 12    . Итак, давления равны, а кривизна двух поверхностей различна, потому что различны соответствующие поверхностные энер­гии.

 

Взаимное расположение сил, действующих на контур капли, которая «удобно устроилась» на твердой поверхности

Выкопав под собой ямку, капля как бы перенеслась в невесомость — как и в невесомости, капиллярное давление оказалось одинаковым вдоль всей поверхности, огра­ничивающей каплю.

Естественно возникает вопрос: каким образом капля вы­копала ямку? Ответим на него. Вначале, когда капля была расположена на плоской поверхности железа, она прижи­малась к нему тем давлением, которое обусловлено искрив­ленностью поверхности свинец — воздух. Под влиянием этого давления железо из-под свинцовой капли перемещалось в области вокруг нее. Перемещалось в процессе диф­фузии поатомно, атом за атомом — опыт ставился при высокой температуре, когда диффузия в железе происхо­дит достаточно активно.

Надо подчеркнуть, что в описанном опыте капиллярное давление, которое обусловливает перемещение железа из-под свинцовой капли, существенно больше давления, обусловленного ее весом, так как капля свинца была очень «маленькая» в том смысле, в каком мы об этом гово­рили в очерке об опыте Плато.

Итак, в названии очерка все точно. Попав на твердую поверхность, капля действительно готовит себе удобную постель: либо изгибает подложку, если ей это удается, либо выкапывает для себя удобную ямку.

 

Раздавленная капля

Аналогия рождается на перекрестках памяти и раздумий и иногда связывает воедино образы и события, состоящие в очень дальнем родстве. Неожиданная аналогия, даже от­даленная или поверхностная, родившись вовремя, может помочь исследователю выйти из тупика и осветить путь к решению.

Когда-то, в конце 40-х годов, я участвовал в экспери­ментальной работе. Ее цель заключалась в определении физических характеристик вещества, которое ранее не исследовалось. Ранее этого вещества в чистом виде просто не было — ценой больших усилий его получили химики.

На первый взгляд задача совсем не новая, и решать ее следует, двигаясь путями, проторенными многими исследо­вателями, изучавшими физические характеристики других веществ. Наша задача, однако, была усложнена тем, что экспериментировать мы могли лишь с микроскопическими крупинками. Каждая крупинка весила около одной мил­лионной грамма, а размер ее — несколько десятков мик­рон. Количеством крупинок мы были очень ограничены — химики их добывали с трудом.

Группа, в которой я работал, должна была определить температуру плавления и поверхностное натяжение веще­ства в жидкой фазе.

 В обычном «макроскопическом» эксперименте температу­ра плавления измеряется легко и просто: в образец по­гружают термометр и следят за тем, как меняются его показания по мере нагрева образца. Температура посте­пенно возрастает. Когда она достигнет некоторого значе­ния, ее рост приостановится в связи с тем, что тепло, при­текающее к образцу, начнет расходоваться не на нагрев, а на процесс расплавления. Эта температура и является тем­пературой плавления. Когда же масса крупинки — одна миллионная грамма, термометр внедрить в нее невозмож­но и для определения температуры плавления следует ис­кать обходные пути.

Один из участников нашей группы, у которого за пле­чами были годы работы в литейном цехе, предложил совсем неожиданное решение задачи. Его память храни­ла воспоминание, родившее аналогию. В годы войны, ска­зал он, я вел плавку одновременно в нескольких одина­ковых тигельных электропечах. Загружал их алюмини­евыми чушками и, чтобы определить начало расплавления шихты в печи, не забираясь на ее загрузочную площадку, в каждую печь между чушками вертикально устанавливал длинный металлический стержень, который был виден над печью. В момент начала плавления стержень наклонялся — это служило сигналом.

Это воспоминание подсказало идею, с помощью которой можно было измерить температуру плавления крупинки. Опыт заключался в следующем. На тщательно отполиро­ванной пластинке кварца располагалась крупинка. Свер­ху ее накрывали другой пластинкой кварца, которая, ка­саясь крупинки, образовывала некоторый угол с первой пластинкой. Это устройство нагревали, и в тот момент, когда крупинка расплавлялась, верхняя пластинка раз­давливала образовавшуюся каплю и угол между пластин­ками скачкообразно уменьшался. Чтобы надежнее этот момент зарегистрировать, на внешнюю поверхность верх^ ней пластинки нанесли зеркальное покрытие и следили за тем, как отражаемый от нее луч скачком смещается. Пластинка, меняющая свое положение, была подобна ме­таллическому стержню, который наклонялся, свидетель­ствуя о начале процесса плавления. Так как масса кру­пинки пренебрежимо мала по сравнению с массой квар­цевых пластинок, между которыми она зажата, температу­ра крупинки равна температуре пластинок и, следова­тельно, измерить ее весьма просто.

В описанном опыте, вопреки известной пословице, нам удалось убить двух зайцев: определить, во-первых, тем­пературу плавления и, во-вторых, величину поверхност­ного натяжения расплавленного вещества. Дело в том, что верхняя пластинка, раздавливая своей тяжестью кап­лю, превращала ее в лепешку определенной толщины. Сколько раз ни повторялся бы опыт по расплавлению од­ной и той же крупинки, образовывавшаяся жидкая капля весом пластинки расплющивалась до одной и той же тол­щины к . Эту величину можно было уменьшить, увеличивая вес верхней пластинки. Легко понять, что дальнейшему

расплющиванию препятствуют силы поверхностного на­тяжения, приложенные к той части поверхности расплю­щенной капли, которая граничит с воздухом. В наших опытах вещество капли практически не смачивало кварц (именно поэтому опыты и ставились с кварцевыми пластин­ками) и, следовательно, можно считать, что радиус за­кругления свободной поверхности r = h /2

Величина поверхностного натяжения α может быть опре­делена из условия равенства давления, которое оказывает пластинка на жидкую каплю ( Р п ), и лапласовского давле­ния ( Р л ), которое обусловлено искривленностью ее свобод­ной поверхности. Если вес пластинки давит на каплю с силой F , а площадь ее контакта с расплющенной каплей π R 2 , то Р п = F/π R 2 . Величина Р л = α/ r   = 2α/ h       Приравнивая Р п к Р л , находим формулу, с помощью которой можно опреде­лить величину поверхностного натяжения вещества:

            α = F . h /2π R 2

Величины h и R можно измерить с большой точностью, а силу легко определить, зная вес верхней пластинки.

Способ решения стоящей перед нами задачи, который подсказала возникшая вдруг аналогия, конечно же, был не единственно возможным. Видимо, можно было приду­мать и иные приемы, но нас привлекла в нем неожидан­ность аналогии и возможность опровергнуть пословицу о двух зайцах.

 

ПЕРВАЯ КАПЛЯ ТАЛОЙ ВОДЫ

Что там творится в мире заоконном?

Зима в исходе, видно по всему.

Давайте вместе слушать, как со звоном

Летит сосулька из зимы в весну.

Александр Межиров

 

Капля, осушенная иглой

Расскажу об одном очень простом опыте, который когда- то в нашей лаборатории был поставлен и заснят на кино­пленку. «Героем» фильма, естественно, была капля.

Начну с предыстории, с «общих соображений». Во мно­гих учебниках физики утверждается, что жидкость сма­чивает твердое тело того же вещества: жидкая медь — твер­дую медь, вода — лед. Это означает, что если бы, например, на поверхности твердой меди поместить каплю жидкой меди, она должна была бы растечься по ней тонким слоем. Утверждается, что это веществу «выгодно», поскольку при этом его поверхностная энергия уменьшается, т. е. что поверхностная энергия твердой меди на границе с парами меди больше, чем сумма энергий на границе твердая медь — жидкая медь и жидкая медь — пары меди. Разумеет­ся, медь — это лишь пример. Имеется в виду, что утверж­дение справедливо применительно ко многим веществам.

Если авторы учебников физики не заблуждаются, то смачивание твердого тела жидким должно проявлять себя во многих явлениях. Ведь это означает выгодность наличия жидкой пленки на поверхности твердого тела. Чуть курьезно об этом можно сказать так: твердым те­лам выгодно быть мокрыми. Но окружающие нас твердые предметы сухи, если, разумеется, мы их специально не смочим. Впрочем, и смочить их не просто, так как смачи­вать надо жидкостью того же вещества, что и твердое тело, а такая жидкая пленка на твердом теле быстро кристал­лизуется и, присоединившись к нему, становится твердой.

Впрочем, быть может, авторы учебников не заблуж­даются и существуют условия, при которых потребность твердых тел быть мокрыми удовлетворяется. Ведь жидкая пленка на твердой поверхности — это как бы палка о двух концах. С одной стороны, пленка выгодна, так как с ее присутствием связано уменьшение поверхностной энергии,— об этом уже говорилось. С другой стороны, плен­ка невыгодна — с ней связана избыточная «объемная» энергия: если пленка закристаллизуется, выделится энер­гия, и тем большая, чем дальше отстоит температура, при которой находится твердое тело, от температуры его плавления. Если дело обстоит так, то, быть может, авторы учебников все же правы и их правота не противоречит нашему жизненному опыту, протестующему против того, что якобы все твердые тела должны быть мокрыми. Быть может, твердые тела станут мокрыми, когда их температура непосредственно приблизится к температуре плавления, когда проигрыш «объемной» энергии будет меньшим, чем выигрыш «поверхностной». Ведь процессы, которые в природе происходят самопроизвольно, всегда движимы стремлением к уменьшению энергии. Скажем так: камень сам в гору не покатится, а вот с горы — при первой воз­можности.

В первые послевоенные годы в одном из томов «Докладов АН СССР» было опубликовано описание интересного опы­та, который поставили В. И. Данилов и Д. С. Каменецкая. Опыт заключался в следующем. Маленький шарик ме­таллического натрия, состоящий из нескольких кристал­ликов, медленно нагревался в ультратермостате, где тем­пература поддерживалась и регулировалась с большой точ­ностью, кажется, не меньшей пяти тысячных градуса. Гра­ницы между отдельными зернами на поверхности шарика очерчивались канавками. Они образовывали узор, по­добный тому, который образуют швы на покрышке фут­больного мяча. Канавки на шарике сохранялись при всех температурах, однако, когда до температуры плавления оставалось менее одной сотой градуса, они исчезли и вся поверхность шарика, ранее бывшая матовой, как бы покрывалась глазурью. Когда шарик натрия немного охлаждался, канавки снова появлялись, а затем повтор­ным нагревом можно было заставить их исчезнуть, а по­верхность покрыться глазурью. Это наблюдение очень .естественно объясняется «общими соображениями»: жид­кость смачивает собственное твердое тело, и поэтому вбли­зи температуры плавления твердое тело должно покрыться жидкой пленкой — это она сглаживает канавки и придает поверхности блеск глазури.

Авторы опыта с шариком натрия изучали не причины и закономерности появления и исчезновения канавок на его поверхности. Это наблюдение — побочный результат опы­та, и поэтому они специально не стремились убедиться в том, что вблизи температуры плавления натрий запотевает, покрывается тонким жидким слоем.

Опыт, о котором рассказано, очень красив, но его ре­зультат лишь косвенно свидетельствует о правильно­сти утверждения, что жидкость смачивает твердое тело того же вещества. Если жидкая пленка появляется — ка­навки должны исчезнуть, но не исключено, что они исче­зают по каким-либо иным причинам, а причин может быть множество.

Здесь можно оставить предысторию и «общие соображе­ния» и перейти к опыту, о котором говорилось в начале очерка. Мы пытались придумать прямой опыт, результат которого, не допуская кривотолков, убедил бы нас в том, что твердое тело с готовностью покроется жидкостью того же вещества, если такая возможность будет ему предостав­лена. Вспомнили о ментоле — веществе, расплав которого очень легко переохлаждается. Кристаллики ментола пла­вятся при 35° С, но и при комнатной температуре ментол может оставаться жидким.

Опыт заключался в следующем. На стеклянной пластин­ке поместили маленький кристалл ментола, подогрели его, расплавили, и он превратился в жидкую каплю. Менто­ловая капля немного растеклась по стеклу и приняла форму плоской лепешки. Затем взяли ментоловую иголоч­ку — продолговатый кристаллик ментола, сечение кото­рого было много меньше площади капли,— и опустили ее в ментоловую переохлажденную жидкую каплю.

Рассуждали так. Игла из кристаллика ментола может вмешаться в судьбу капли двумя различными способами. Она может явиться затравкой, которая вызовет кристал­лизацию переохлажденной ментоловой капли. В этом слу­чае капля, затвердев, останется на стекле в виде твердой лепешки, которая по форме мало отличается от формы жид­кой капли. Может произойти и иное: ментоловая игла, ока­завшись в непосредственном контакте с жидким ментолом, начнет жадно втягивать его на свои свободные поверхности, чтобы закрыть их жидкой пленкой. Если это произойдет, игла осушит каплю, как бы промокнет ее.

Произошло именно это: у места контакта с каплей игла начала утолщаться. Дело об­стояло так. Жидкий ментол, который в виде тонкого слоя наполз на поверхность иглы, кристаллизовался. На воз­никшую при этом свежую твердую поверхность опять наползал ментол и в свою очередь тоже кристаллизо­вался. Так происходило до тех пор, пока вся масса жид­кой капли не перебралась на иглу. Разумеется, процессы наползания и кристаллиза­ции не следовали один за другим, а происходили одно­временно, но наползание бы­ло ведущим процессом.

 

Ментоловая капля наползает на кончик ментоловой иглы

Нам, конечно, повезло — могла бы осуществиться пер­вая возможность, и капля осталась бы на стекле твер­дой лепешкой. В чем же при­чина везения? Главным обра­зом в том, что наползал мен­тол на иглу со скоростью большей, чем кристаллизо­вался. Опыт с иным вещест­вом, которое, как и ментол, подчиняется правилу, описан­ному в учебнике физики, окончился бы неудачей, если бы соотношение между скоро­стью наползания и кристал­лизации было неблагоприят­ным для проявления напол­зания и капля отвердела бы прежде, чем заметная ее часть успела бы наползти на иглу.

Обнаружив, что игла мо­жет осушить каплю, мы реши­ли заснять этот процесс на киноленту и теперь показываем студентам двухминутный фильм на лекции, посвящен­ной явлениям на границе между твердой и жидкой фазами. Кинограмма, иллюстрирующая очерк, смонтирована из кадров этого фильма.