Введение в электронику

Гейтс Эрл Д.

Раздел 4

ЛИНЕЙНЫЕ ЭЛЕКТРИЧЕСКИЕ ЦЕПИ

 

 

Специальность — техник по автоматике

Механик по автоматике поддерживает в рабочем состоянии контроллеры, сборочное оборудование, копировальные машины, промышленных роботов и другие автоматизированные или использующие компьютерное управление устройства.

Человек на этой работе устанавливает, ремонтирует и осуществляет сервисное обслуживание механизмов с электрическими, механическими, гидравлическими или пневматическими компонентами. При этом используются точные измерительные инструменты, тестирующее оборудование и ручные инструменты. Для подобной работы требуется знание электроники и умение читать монтажные и принципиальные схемы.

Для того, чтобы стать техником по электронике, необходима официальная подготовка. Такую подготовку дают профессионально-технические школы, военные училища или заочные учебные программы. Хотя в большинстве случаев обучение проводится в виде классных занятий, иногда можно приобрести навыки и практической работы.

Потребность промышленности в техниках по автоматике растет очень быстро. Ожидается, что этот рост будет продолжаться и после 2000 года.

 

Глава 27. Источники питания

ЦЕЛИ

После изучения этой главы студент должен быть в состоянии:

• Объяснить назначение источника питания.

• Начертить блок-схему цепей и частей источника питания.

• Описать три различных схемы выпрямителей.

• Объяснить назначение фильтра.

• Описать два основных типа регуляторов напряжения и объяснить их работу.

• Объяснить назначение умножителя напряжения.

• Перечислить устройства защиты от превышения напряжения и тока.

Блоки питания используются для подачи напряжения на различные цепи. Принципы работы всех блоков питания одинаковы.

Главной функцией блока питания является преобразование переменного тока в постоянный. Блок питания может увеличивать или уменьшать величину входного переменного напряжения с помощью трансформатора.

Переменное напряжение требуемой величины преобразуется в постоянное напряжение с помощью процесса, который называется выпрямлением. Выпрямленное напряжение еще содержит переменную составляющую, которая называется пульсацией. От пульсаций избавляются с помощью фильтра.

Для обеспечения неизменной величины выходного напряжения используется стабилизатор напряжения. Он удерживает выходное напряжение на постоянном уровне.

27-1. ТРАНСФОРМАТОРЫ

Трансформаторы используются в блоках питания для изоляции блока питания от источника переменного напряжения. Они также применяются для повышения напряжения, если требуется более высокое напряжение, и для понижения напряжения, если требуется более низкое.

Если трансформаторы используются в блоках питания, то источник переменного напряжения подсоединяется только к первичной обмотке трансформатора. Таким образом электрические цепи изолируются от сети переменного тока.

При выборе трансформатора сначала надо определить напряжение первичной обмотки. Первичные обмотки у большинства трансформаторов рассчитаны на напряжения от 110 до 120 вольт или от 220 до 240 вольт. Потом надо уточнить частоту, на которой будет работать трансформатор. Рабочими частотами трансформатора могут быть 50 или 60 герц, 400 герц и 10 000 герц. Затем следует определить напряжение вторичной обмотки и ток, на который она рассчитана. И наконец, надо определить общую расчетную мощность трансформатора в вольт-амперах, что позволит оценить мощность, которая может быть передана во вторичную обмотку трансформатора. Она измеряется в вольт-амперах, так как ко вторичной обмотке может быть подсоединена нагрузка любого типа.

27-1. Вопросы

1. Почему в блоках питания используются трансформаторы?

2. Как подсоединяется трансформатор в блоке питания?

3. Какие важные соображения необходимо принять во внимание при выборе трансформатора для блока питания?

4. Как оценивается мощность трансформатора?

27-2. ВЫПРЯМИТЕЛИ

Выпрямитель — это сердце блока питания. Его функция — преобразование входного переменного напряжения в постоянное напряжение. В блоках питания применяются три основные схемы выпрямителей: однополупериодная, двухполупериодная и мостовая.

На рис. 27-1 изображена схема однополупериодного выпрямителя. Диод размещен последовательно с нагрузкой. Из-за наличия диода ток в цепи течет только в одном направлении.

Рис. 27-1. Основная схема однополупериодного выпрямителя.

На рис. 27-2 показан результат работы однополупериодного выпрямителя в течение положительного полупериода синусоиды. Диод смещен в прямом направлении, что позволяет току течь через нагрузку. При этом в течение положительного полупериода на нагрузке выделяется мощность.

Рис. 27-2. Однополупериодный выпрямитель в течение положительного полупериода.

На рис. 27-3 представлен результат работы однополупериодного выпрямителя в течение отрицательного полупериода синусоиды. Диод теперь смещен в обратном направлении и не проводит ток. Так как через нагрузку не течет ток, то на ней нет и падения напряжения.

Рис. 27-3. Однополупериодный выпрямитель в течение отрицательного полупериода.

Однополупериодный выпрямитель работает только в течение одной половины периода. Выходное напряжение представляет собой последовательность положительных или отрицательных импульсов, в зависимости от того, как диод включен в цепь. Частота импульсов такая же, как и частота входного напряжения. Частота импульсов называется частотой пульсаций.

Полярность выходного напряжения зависит от того, каким способом диод включен в цепь (рис. 27-4).

Рис. 27-4. Диод определяет направление тока.

Ток электронов течет через диод от катода к аноду. Когда ток течет через диод, на выводе катода возникает дефицит электронов, делая этот вывод диода положительным. Полярность выходного напряжения блока питания может быть изменена путем изменения способа включения диода.

Однополупериодный выпрямитель имеет серьезный недостаток, так как ток через него течет только в течение половины каждого периода. Чтобы избавиться от этого недостатка, используется двухполупериодный выпрямитель.

На рис. 27-5 изображена схема двухполупериодного выпрямителя. Для этой схемы требуются два диода и трансформатор с выводом от середины вторичной обмотки. Этот вывод от середины обмотки заземлен. Напряжение на каждом выводе вторичной обмотки трансформатора сдвинуто по фазе на 180 градусов относительно друг друга.

Рис. 27-5. Основная схема двухполупериодного выпрямителя.

На рис. 27-6 изображено, как двухполупериодный выпрямитель работает в течение положительного полупериода входного напряжения. На аноде диода D1 положительный потенциал, а на аноде диода D2 — отрицательный.

Рис. 27-6. Двухполупериодный выпрямитель в течение положительного полупериода.

Диод D1 смещен в прямом направлении и проводит ток. Диод D2 смещен в обратном направлении и не проводит ток.

Ток течет от центрального вывода трансформатора через нагрузку и диод D1 к верхнему выводу вторичной обмотки трансформатора. Это позволяет ему во время положительного полупериода проходить на нагрузку.

На рис. 27-7 тот же двухполупериодный выпрямитель работает в течение отрицательного полупериода синусоиды.

Рис. 27-7. Двухполупериодный выпрямитель в течение отрицательного полупериода.

На аноде диода D2 появился положительный потенциал, а на аноде диода D1 — отрицательный. Теперь диод D2 смещен в прямом направлении и проводит ток. Диод D1 смещен в обратном направлении и не проводит ток. Ток течет от центрального вывода трансформатора через нагрузку и диод D2 к нижнему выводу вторичной обмотки трансформатора.

Таким образом, в двухполупериодном выпрямителе ток течет в течение обоих полупериодов. Это означает, что частота пульсаций в два раза больше частоты входного переменного тока.

Недостатком двух полу периодного выпрямителя является то, что его выходное напряжение в два раза меньше выходного напряжения однополупериодного выпрямителя, использующего такой же трансформатор. Этот недостаток преодолевается при использовании мостовой схемы выпрямителя.

На рис. 27-8 изображена мостовая схема выпрямителя. Четыре диода включены таким образом, что ток через нагрузку течет только в одном направлении.

Рис. 27-8. Схема мостового выпрямителя

На рис. 27-9 показано прохождение тока в течение положительного полупериода входного сигнала. Ток течет от нижнего вывода вторичной обмотки трансформатора через диод D4, через нагрузку, через диод D2 к верхнему выводу вторичной обмотки трансформатора. Все напряжение падает на нагрузке.

Рис. 27-9. Мостовой выпрямитель в течение положительного полупериода.

На рис. 27–10 показано прохождение тока в течение отрицательного полупериода входного сигнала. На верхнем выводе вторичной обмотки отрицательный потенциал, а на нижнем — положительный. Ток течет от верхнего вывода вторичной обмотки через диод через нагрузку, через диод D3 к нижнему выводу вторичной обмотки. Заметим, что ток течет через нагрузку в том же направлении, что и в течение положительного полупериода. И опять все напряжение падает на нагрузке.

Рис. 27–10. Мостовой выпрямитель в течение отрицательного полупериода.

Мостовой выпрямитель является двухполупериодным выпрямителем, так как он работает в течение обоих полупериодов входного синусоидального напряжения. Преимуществом мостового выпрямителя является то, что он не требует трансформатора с выводом от середины вторичной обмотки. Эта цепь также не требует для своей работы трансформатора. Трансформатор используется только для повышения или понижения напряжения или для обеспечения изоляции от источника переменного напряжения.

Перечислим различия выпрямителей. Преимуществом однополупериодного выпрямителя является его простота и низкая стоимость. Для него требуется один диод и трансформатор. Он не очень эффективен, так как использует только половину входного сигнала. Кроме того, его применение ограничено цепями с малыми токами.

Двухполупериодный выпрямитель более эффективен, чем однополупериодный. Он работает в течение обоих полупериодов синусоиды. Более высокая частота пульсаций двухполупериодного выпрямителя облегчает фильтрацию.

Недостатком его является то, что для него требуется трансформатор с отводом от середины вторичной обмотки. Его выходное напряжение ниже, чем у однополупериодного выпрямителя при использовании такого же трансформатора, так как в течение каждого полупериода работает только половина обмотки.

Мостовой выпрямитель может работать без трансформатора. Однако трансформатор бывает необходим для повышения или понижения напряжения. Выходное напряжение у него выше, чем у однополупериодного или двухполупериодного выпрямителей. Недостатком является то, что для него требуются четыре диода. Однако диоды дешевле трансформатора с выводом от середины вторичной обмотки.

27-2. Вопросы

1. Каково назначение выпрямителя в блоке питания?

2. Каковы три схемы выпрямителей, используемых в блоках питания?

3. В чем отличия в работе этих трех схем?

4. Каковы преимущества одного выпрямителя перед другим?

5. Какая схема выпрямителя является лучшей? Почему?

27-3. ЦЕПИ ФИЛЬТРАЦИИ

Выпрямитель выдает пульсирующее напряжение постоянного тока, которое не годится для питания большинства электронных цепей, поэтому в блоках питания, как правило, после выпрямителя стоит фильтр. Фильтр преобразует пульсирующее напряжение в гладкое напряжение постоянного тока.

Простейшим фильтром является конденсатор, включенный параллельно выходу выпрямителя (рис. 27–11). На рис. 27–12 сравнивается выходное напряжение выпрямителя без фильтра и с фильтрующим конденсатором.

Рис. 27–11. Однополупериодный выпрямитель с емкостным фильтром.

Рис. 27–12. Выходное напряжение однополупериодного выпрямителя без фильтра и с фильтрующим конденсатором.

Конденсатор работает в такой цепи следующим образом.

Когда на аноде диода положительный потенциал, по цепи течет ток. В это время фильтрующий конденсатор заряжается в полярности, показанной на рис. 27–11. За четверть периода входного сигнала конденсатор заряжается до максимального потенциала цепи.

Когда напряжение входного сигнала начинает падать, конденсатор разряжается через нагрузку. Скорость разряда конденсатора зависит от постоянной времени RC, а, следовательно, от сопротивления нагрузки. Постоянная времени разряда велика по сравнению с периодом переменного тока. Следовательно, период заканчивается раньше, чем конденсатор может разрядиться. Поэтому после первой четверти периода ток через нагрузку поддерживается разряжающимся конденсатором. Как только конденсатор начинает разряжаться, напряжение на нем уменьшается. Однако до того, как конденсатор полностью разрядится, начнется следующий период синусоиды. На аноде диода опять появится положительный потенциал, что позволит ему проводить ток. Конденсатор зарядится снова, и цикл повторится. В результате, пульсации напряжения сгладятся, и выходное напряжение фактически повысится (рис. 27–13).

Рис. 27–13. Влияние фильтрующих конденсаторов различной емкости на выходное напряжение однополупериодного выпрямителя.

Чем больше емкость конденсатора, тем больше постоянная времени RC. Это приводит к более медленному разряду конденсатора, что повышает выходное напряжение.

Наличие конденсатора позволяет диоду в цепи проводить ток в течение короткого периода времени. Когда диод не проводит, конденсатор обеспечивает нагрузку током. Если нагрузка потребляет большой ток, то должен использоваться конденсатор большой емкости.

Емкостной фильтр в двухполупериодном или мостовом выпрямителе ведет себя точно так же, как и описанные емкостной фильтр в однополупериодном выпрямителе. На рис. 27–14 показано выходное напряжение двухполупериодного или мостового выпрямителя. Частота пульсаций этого напряжения вдвое больше, чем у однополупериодного выпрямителя.

Рис. 27–14. Влияние фильтрующих конденсаторов различной емкости на выходное напряжение двухполупериодного или мостового выпрямителя.

Когда к выходу выпрямителя подсоединяется емкостной фильтр, конденсатор не успевает сильно разрядиться до начала следующего импульса.

Выходное напряжение достаточно высокое. Если используется конденсатор большой емкости, то выходное напряжение равно максимальному напряжению входного сигнала. Следовательно, конденсатор лучше фильтрует напряжение в двухполупериодной цепи, чем в однополупериодной.

Назначение фильтрующего конденсатора — сглаживание пульсаций постоянного напряжения выпрямителя. Качество работы фильтра определяется величиной пульсаций, остающихся в постоянном напряжении. Величину пульсаций можно уменьшить путем использования конденсатора большей емкости или-путем увеличения сопротивления нагрузки. Обычно сопротивление нагрузки определяется при расчете цепи. Следовательно, емкость фильтрующего конденсатора диктуется допустимой величиной пульсаций.

Необходимо отметить, что фильтрующий конденсатор создает дополнительную нагрузку на диоды, используемые в выпрямителе. На рис. 27–15 изображены однополупериодный и двухполупериодный выпрямители с фильтрующим конденсатором.

Рис. 27–15. Однополупериодный выпрямитель ( А ) и двухполупериодный выпрямитель ( В ) с фильтрующим конденсатором.

Конденсатор заряжается до максимального значения напряжения вторичной обмотки и удерживает это значение в течение всего цикла входного напряжения. Когда диод становится смещенным в обратном напряжении, он запирается, и максимальное отрицательное напряжение попадает на анод диода. Фильтрующий конденсатор удерживает максимальное положительное напряжение на катоде диода. Разность потенциалов на диоде в два раза превышает максимальное значение напряжения вторичной обмотки. Для выпрямителя должен быть выбран диод, выдерживающий такое напряжение.

Максимальное напряжение, которое может выдержать диод, будучи смещенным в обратном направлении, называется импульсным обратным напряжением диода. Импульсное обратное напряжение диода, выбранного для выпрямителя, должно быть выше, чем удвоенное максимальное напряжение вторичной обмотки. В идеале диод должен работать при 80 % номинального значения обратного напряжения для того, чтобы выдержать изменения входного напряжения. Это касается как однополупериодного, так и двухполупериодного выпрямителя. Но это не так для мостового выпрямителя.

К диодам в мостовом выпрямителе никогда не прикладывается напряжение, большее чем максимальное напряжение вторичной обмотки. На рис. 27–16 ни к одному из диодов не приложено напряжение, превышающее максимальное значение входного сигнала. Использование диодов с более низкими значениями импульсного обратного напряжения является еще одним преимуществом мостового выпрямителя.

Рис. 27–16. Мостовой выпрямитель с фильтрующим конденсатором.

27-3. Вопросы

1. Каково назначение фильтра в блоке питания?

2. Какова простейшая конфигурация фильтра?

3. Что такое частота пульсаций?

4. Как выбирается конденсатор для фильтра?

5. Какие неблагоприятные эффекты возникают при подключении фильтра?

27-4. РЕГУЛЯТОРЫ И СТАБИЛИЗАТОРЫ НАПРЯЖЕНИЯ

Выходное напряжение блока питания может изменяться по двум причинам. Во-первых, может изменяться входное напряжение блока питания, что приводит к увеличению или уменьшению выходного напряжения. Во-вторых, сопротивление нагрузки, что приводит к изменению потребляемого тока.

Многие цепи рассчитаны на работу при определенном напряжении. Если напряжение меняется, это может влиять на работу цепи. Следовательно, блок питания должен обеспечивать выходное напряжение постоянной величины, независимо от изменения нагрузки или входного напряжения. Для того, чтобы этого добиться, после фильтра ставят регулятор или стабилизатор напряжения.

Существует два основных типа регуляторов напряжения: параллельные регуляторы и последовательные регуляторы. Их названия соответствуют методу их соединения с нагрузкой. Параллельный регулятор подключается к нагрузке параллельно. Последовательный регулятор подсоединяется к нагрузке последовательно. Последовательные регуляторы более популярны, чем параллельные, так как они более эффективны и рассеивают меньшую мощность. Параллельный регулятор также работает в качестве управляющего устройства, защищая регулятор от короткого замыкания в нагрузке.

На рис. 27–17 показана регулирующая цепь на основе стабилитрона. Это параллельный регулятор.

Рис. 27–17. Стабилизирующая цепь на основе стабилитрона.

Стабилитрон соединен последовательно с резистором. Входное постоянное напряжение прикладывается к стабилитрону и резистору и смещает стабилитрон в обратном направлении. Резистор позволяет протекать малому току и поддерживать стабилитрон в области пробоя. Входное напряжение должно быть выше, чем напряжение стабилизации стабилитрона. Падение напряжения на стабилитроне равно напряжению стабилизации стабилитрона. Падение напряжения на резисторе равно разности между входным напряжением и напряжением стабилизации стабилитрона.

Цепь, изображенная на рис. 27–17, обеспечивает постоянное выходное напряжение при изменениях входного напряжения. Любое изменение напряжения проявляется в виде изменения падения напряжения на резисторе. Сумма падений напряжения должна равняться входному напряжению. Выходное напряжение может быть увеличено или уменьшено путем замены стабилитрона и последовательно включенного резистора.

Ток через нагрузку определяется сопротивлением нагрузки и выходным напряжением. Через последовательно включенный резистор течет суммарный ток, состоящий из тока нагрузки и тока стабилитрона. Этот резистор должен быть тщательно подобран таким образом, чтобы ток через стабилитрон удерживал его в области стабилизации.

Когда ток через нагрузку увеличивается, ток через стабилитрон уменьшается, и сумма этих токов поддерживает напряжение постоянным. Это позволяет цепи поддерживать постоянное выходное напряжение при изменениях выходного тока так же, как и при изменениях входного напряжения.

На рис. 27–18 изображена параллельная регулирующая цепь, использующая транзистор. Заметим, что транзистор Q1 включен параллельно нагрузке. Это защищает регулятор в случае короткого замыкания в нагрузке. Существуют более сложные параллельные регуляторы, которые используют больше одного транзистора.

Рис. 27–18. Параллельный стабилизатор, использующий транзистор.

Последовательный регулятор популярнее чем параллельный регулятор. Простейшим последовательным регулятором является переменный резистор, включенный последовательно с нагрузкой (рис. 27–19).

Рис. 27–19. Последовательный регулятор напряжения, использующий переменный резистор.

Сопротивление регулируется непрерывно для поддержания постоянного напряжения на нагрузке. При увеличении постоянного напряжения сопротивление увеличивают, чтобы на нем падало излишнее напряжение. Это сохраняет постоянное падение напряжения на нагрузке, так как избыточное напряжение падает на последовательно включенном резисторе.

Переменный резистор может компенсировать и изменения тока нагрузки. При увеличении тока нагрузки падение напряжения на переменном резисторе увеличивается.

Это приводит к уменьшению падения напряжения на нагрузке. Если в момент увеличения тока уменьшить сопротивление, то падение напряжения на переменном резисторе останется постоянным. В результате постоянным окажется и выходное напряжение, несмотря на изменения тока нагрузки.

На практике достаточно трудно вручную изменять сопротивление резистора для компенсации изменений напряжения и тока. Более эффективно заменить переменный резистор транзистором (рис. 27–20).

Рис. 27–20. Транзисторный последовательный регулятор напряжения, использующий переменный резистор, регулируемый вручную.

Транзистор включен таким образом, что через него течет ток нагрузки. Путем изменения тока базы транзистора можно управлять величиной тока, текущего через транзистор. Для того, чтобы сделать эту цепь саморегулирующейся, требуются дополнительные компоненты (рис. 27–21).

Рис. 27–21. Саморегулирующийся последовательный стабилизатор.

Эти компоненты позволяют транзистору автоматически компенсировать изменения входного напряжения и тока нагрузки.

На рис. 27–22 изображен простой последовательный стабилизатор.

Рис. 27–22. Последовательный стабилизатор.

На его вход подается нестабилизированное постоянное напряжение, а на его выходе получается стабилизированное постоянное напряжение меньшее по величине. Транзистор включен как эмиттерный повторитель, и поэтому здесь отсутствует обращение фазы между базой и эмиттером. Напряжение на эмиттере повторяет напряжение на базе. Нагрузка подключена между эмиттером транзистора и землей. Напряжение на базе транзистора устанавливается с помощью стабилитрона. Следовательно, выходное напряжение равно напряжению стабилизации стабилитрона за вычетом 0,7 вольта падения напряжения на переходе база-эмиттер.

Когда входное напряжение на транзисторе увеличивается, выходное напряжение также пытается увеличиться. Напряжение на базе транзистора установлено с помощью стабилитрона. Если на эмиттере появляется положительный потенциал больший, чем на базе, проводимость транзистора уменьшается. Когда транзистор уменьшает свою проводимость, это действует так же, как включение между входом и выходом большого резистора. Большая часть добавившегося входного напряжения падает на транзисторе и только малая его часть увеличит выходное напряжение.

Недостатком стабилизатора с эмиттерным повторителем является то, что стабилитрон должен быть рассчитан на достаточно высокую мощность, а стабилитроны большой мощности стоят дорого.

Наиболее популярным типом последовательных стабилизаторов является стабилизатор с обратной связью. Он содержит цепь обратной связи, контролирующую выходное напряжение. При изменениях выходного напряжения появляется управляющий сигнал. Этот сигнал управляет проводимостью транзистора. На рис. 27–23 изображена блок-схема стабилизатора с обратной связью.

Рис. 27–23. Блок-схема последовательного стабилизатора с обратной связью.

Нестабилизированное напряжение постоянного тока подается на вход стабилизатора. Более низкое стабилизированное постоянное напряжение появляется на выходе стабилизатора.

К выходу стабилизатора подключена цепь выбора напряжения. Цепь выбора напряжения — это делитель напряжения, который подает выходное напряжение для сравнения на цепь регистрации ошибок. Это напряжение изменяется при изменениях выходного напряжения.

Цепь регистрации ошибок сравнивает выходное напряжение с опорным напряжением. Для получения опорного напряжения используется стабилитрон. Разность между выходным и опорным напряжением называется напряжением ошибки. Напряжение ошибки усиливается усилителем ошибки. Усилитель ошибки управляет проводимостью последовательно включенного транзистора. Проводимость транзистора меняется в ту или иную сторону для компенсации изменений выходного напряжения.

На рис. 27–24 изображена схема стабилизатора напряжения с обратной связью. Резисторы R3, R4 и R5 — цепь выбора напряжения. Транзистор Q2 работает в качестве и регистратора, и усилителя ошибки. Стабилитрон D1 и резистор R1 задают опорное напряжение. Транзистор Q1 — последовательно включенный регулирующий транзистор. Резистор R2 является коллекторной нагрузкой транзистора Q2 и подает смещение на базу транзистора Q1.

Рис. 27–24. Последовательный стабилизатор с обратной связью.

Если выходное напряжение начинает увеличиваться, то увеличится и напряжение, передаваемое для сравнения. Это увеличит напряжение смещения на базе транзистора Q2. Напряжение на эмиттере транзистора Q2 удерживает постоянным стабилитрон Это приводит к увеличению проводимости транзистора Q2 и увеличению тока через резистор R2. Это, в свою очередь, приведет к уменьшению напряжения на коллекторе транзистора Q2 и на базе транзистора Q1. Теперь уменьшатся прямое смещение транзистора Q1 и его проводимость. Когда проводимость транзистора убывает, через него течет меньший ток. Это снижает падение напряжения на нагрузке и компенсирует увеличение напряжения.

Выходное напряжение может быть точно установлено с помощью потенциометра R4. Для увеличения выходного напряжения стабилизатора движок потенциометра R4 вращают в отрицательном направлении, что уменьшает напряжение выбора на базе транзистора Q2, снижая его прямое смещение. Это приводит к уменьшению проводимости транзистора и к увеличению напряжения на коллекторе транзистора Q2 и на базе транзистора Q1. Последнее увеличивает прямое смещение транзистора Q1 и его проводимость. Через нагрузку теперь будет течь больший ток, что увеличит выходное напряжение.

Серьезным недостатком последовательного стабилизатора является то, что транзистор включен последовательно с нагрузкой. Короткое замыкание в нагрузке приведет к большому току через транзистор, а это может вывести его из строя. Необходима цепь, поддерживающая ток, проходящий через транзистор, на безопасном уровне.

На рис. 27–25 изображена цепь, которая ограничивает ток через транзистор последовательного стабилизатора.

Рис. 27–25. Последовательный стабилизатор с обратной связью с цепью ограничения тока.

Как видно из рисунка, в цепь обратной связи добавлен последовательный регулятор напряжения. Транзистор Q3 и резистор R6 образуют цепь ограничения тока. Для того чтобы транзистор Q3 проводил, переход база-эмиттер должен быть смещен в прямом направлении напряжением не менее 0,7 вольта. Когда между базой и эмиттером приложено напряжение 0,7 вольта, транзистор начинает проводить.

Если R6 равно 1 ому, то ток, необходимый для получения на базе транзистора Q3 0,7 вольта, равен:

I = E/R = 0,7/1

I = 0,7 А или 700 мА.

Когда через нагрузку протекает ток, меньший 700 мА, напряжение база-эмиттер транзистора Q3 меньше, чем 0,7 В, и он закрыт. Когда транзистор Q3 закрыт, цепь работает так, как будто ее не существует. Когда ток превышает 700 мА, падение напряжения на резисторе R6 превышает 0,7 В. Это приводит к тому, что транзистор Q3 начинает проводить ток через резистор R2. Это уменьшает напряжение на базе транзистора Q1, и его проводимость уменьшается. Ток не может превышать 700 мА. Величина предельного тока может быть изменена путем изменения величины резистора R6. Увеличение R6 уменьшает величину предельного тока.

Последовательный стабилизатор с обратной связью имеет еще один недостаток — значительное количество компонентов. Эта проблема может быть решена путем использования стабилизатора на интегральной микросхеме.

Современные стабилизаторы на интегральных микросхемах дешевы и просты в применении. Большинство стабилизаторов на интегральных микросхемах имеют только три вывода (вход, выход и земля) и могут быть подсоединены непосредственно к выходу фильтра выпрямителя (рис. 27–26).

Рис. 27–26. Микросхема стабилизатора с тремя выводами.

Стабилизаторы на интегральных микросхемах обеспечивают широкий диапазон выходных напряжений как положительной, так и отрицательной полярности. Если стабилизатора с нужным напряжением нет среди стандартных микросхем, то существуют микросхемы стабилизаторов с регулируемым напряжением.

При выборе микросхемы стабилизатора необходимо знать напряжение и ток нагрузки, а также электрические характеристики нестабилизированного блока питания. Микросхемы стабилизаторов классифицируются по их выходному напряжению. Микросхемы стабилизаторов с фиксированным выходным напряжением имеют три вывода и обеспечивают только одно выходное напряжение. Существуют микросхемы стабилизаторов напряжения как положительной, так и отрицательной полярности. Двухполярные стабилизаторы напряжения обеспечивают и положительное и отрицательное напряжения. Микросхемы стабилизаторов с регулируемым напряжением существуют как в однополярном, так и в двухполярном вариантах. При использовании любых микросхем стабилизаторов напряжения обращайтесь к данным, предоставляемым производителем.

27-4. Вопросы

1. Каково назначение стабилизатора напряжения в блоке питания?

2. Каковы два основных типа стабилизаторов напряжения?

3. Стабилизаторы напряжения какого типа используются чаще?

4. Нарисуйте схему простого стабилизатора напряжения на стабилитроне и объясните, как она работает.

5. Нарисуйте блок-схему последовательного стабилизатора с обратной связью и объясните, как он работает.

27-5. УМНОЖИТЕЛИ НАПРЯЖЕНИЯ

Во всех случаях напряжение постоянного тока ограничено амплитудным значением входного синусоидального напряжения. Когда требуются более высокие постоянные напряжения, используется повышающий трансформатор. Однако более высокие постоянные напряжения могут быть получены и без повышающего трансформатора. Цепи, которые способны создавать высокие постоянные напряжения без помощи трансформатора, называются умножителями напряжения. Умножителями напряжения являются удвоитель напряжения и утроитель напряжения.

На рис. 27–27 изображен однополупериодный удвоитель напряжения. Он создает выходное постоянное напряжение, которое в два раза больше максимального значения входного сигнала.

Рис. 27–27. Однополупериодный удвоитель напряжения.

На рис. 27–28 изображена работа этой цепи в течение отрицательного полупериода входного сигнала. Диод D1 проводит, и ток течет по указанному пути. Конденсатор C1 заряжается до максимального напряжения входного сигнала. Поскольку путь разряда отсутствует, то конденсатор С1 остается заряженным.

Рис. 27–28. Однополупериодный удвоитель напряжения в течение отрицательного полупериода входного сигнала.

На рис. 27–29 изображен положительный полупериод входного сигнала. В этот момент конденсатор C1 заряжен до отрицательного максимального значения. Это запирает диод D1 и открывает диод D2, что позволяет диоду D2 проводить, заряжая конденсатор С2. Поскольку конденсатор С1, заряжен до максимального отрицательного значения, конденсатор С2 заряжается до удвоенного максимального значения входного сигнала.

Рис. 27–29. Однополупериодный удвоитель напряжения в течение положительного полупериода входного сигнала.

Как только синусоида меняет знак с положительного на отрицательный, диод D2 отсекается. Это обусловлено тем, что конденсатор С2 удерживает диод D2 смещенным в обратном направлении. Конденсатор С2 разряжается через нагрузку, удерживая напряжение на нагрузке постоянным. Следовательно, он работает также и в качестве фильтрующего конденсатора.

Конденсатор С2 разряжается только в течение положительного полупериода входного сигнала, обеспечивая частоту пульсаций 60 герц (и название однополупериодного удвоителя напряжения). Напряжение, полученное от однополупериодного удвоителя напряжения трудно фильтруется, так как оно имеет частоту пульсаций 60 герц. Другим недостатком этого удвоителя является то, что конденсатор С2 должен быть рассчитан на напряжение, которое, по крайней мере, вдвое превышает максимальное значение входного сигнала переменного тока.

Двухполупериодный удвоитель напряжения свободен от некоторых недостатков однополупериодного удвоителя напряжения. На рис. 27–30 изображена схема цепи, которая работает как двухполупериодный удвоитель напряжения.

Рис. 27–30. Двухполупериодный удвоитель напряжения.

На рис. 27–31 показано, что в течение положительного полупериода входного сигнала конденсатор C1 заряжается через диод D1 до максимального значения входного сигнала переменного тока.

Рис. 27–31. Однополупериодный удвоитель напряжения в течение положительного полупериода входного сигнала.

На рис. 27–32 показано, что в течение отрицательного полупериода конденсатор С2 заряжается через диод D2 до максимального значения входного сигнала.

Рис. 27–32. Двухполупериодный удвоитель напряжения в течение отрицательного полупериода входного сигнала.

Когда входной сигнал переменного тока меняет знак, конденсаторы C1 и С2 последовательно разряжаются через нагрузку. Поскольку каждый конденсатор заряжен до максимального значения входного сигнала, полное напряжение на нагрузке будет в два раза больше максимального значения входного сигнала.

Конденсаторы C1 и С2 заряжаются до достижения максимумов входного сигнала. Так как оба конденсатора заряжаются в течение обоих полупериодов, то частота пульсаций полученного напряжения будет 120 герц. Конденсаторы C1 и С2 суммируют свое напряжение на нагрузке.

Рис. 27–33 представляет схему утроителя напряжения.

Рис. 27–33. Утроитель напряжения.

На рис. 27–34 показано, как положительный полупериод открывает диод D1, и он начинает проводить. В результате конденсатор C1 заряжается до максимального значения входного сигнала и создает положительный потенциал на диоде D2.

Рис. 27–34. Утроитель напряжения в течение первого положительного полупериода входного сигнала.

На рис. 27–35 изображено действие отрицательного полупериода входного сигнала. Так как диод D2 теперь смещен в прямом направлении, через него течет ток к конденсатору C1 через конденсатор С2. Поскольку на конденсаторе C1 сохранилось напряжение, конденсатор С2 заряжается до удвоенного максимального значения.

Рис. 27–35. Утроитель напряжения в течение отрицательного полупериода входного сигнала.

На рис. 27–36 показан следующий положительный полупериод.

Рис. 27–36. Утроитель напряжения в течение второго положительного полупериода входного сигнала.

В течение этого полупериода на конденсаторе С2 создается разность потенциалов, которая в три раза больше максимального входного значения. Верхняя обкладка конденсатора С2 заряжена положительно до удвоенного максимального значения напряжения. Анод диода D2 имеет положительный потенциал, равный утроенному значению максимального значения напряжения по отношению к земле, следовательно, конденсатор С3 заряжен до утроенного значения максимального значения напряжения. Это напряжение и прикладывается к нагрузке.

27-5. Вопросы

1. Для чего предназначен умножитель напряжения?

2. Нарисуйте схему однополупериодного удвоителя напряжения и объясните, как он работает.

3. Нарисуйте схему двухполупериодного удвоителя напряжения.

4. Нарисуйте схему утроителя напряжения.

5. Какие требования должны предъявляться к конденсаторам, используемым в цепях удвоения и утроения напряжения?

27-6. УСТРОЙСТВА ЗАЩИТЫ ЦЕПЕЙ

Для защиты нагрузки от неисправности в блоке питания используется цепь защиты от превышения напряжения. На рис. 27–37 изображена схема защиты от превышения напряжения. КУВ, подключенный параллельно нагрузке, в нормальном состоянии закрыт (не проводит).

Рис. 27–37. Цепь защиты от превышения напряжения на основе КУВ.

Если выходное напряжение превышает установленный уровень, КУВ открывается и закорачивает нагрузку. Когда нагрузка закорочена, через нее течет очень маленький ток. Это полностью защищает нагрузку. Однако закорачивание нагрузки не защищает блок питания, так как при этом закорачивается выход блока питания. Это пережигает предохранитель в блоке питания.

Стабилитрон устанавливает уровень напряжения, при котором КУВ открывается. Он защищает нагрузку от напряжений, превышающих напряжение стабилизации. До тех пор, пока приложенное напряжение меньше, чем напряжение стабилизации стабилитрона, он не проводит ток. Это удерживает КУВ в запертом состоянии.

Если приложенное напряжение превышает напряжение стабилизации вследствие неправильной работы блока питания, стабилитрон начинает проводить. Это создает ток управляющего электрода КУВ, он открывается и закорачивает нагрузку. Необходимо заметить, что КУВ должен быть достаточно мощным для работы при большом токе короткого замыкания.

Другим устройством защиты является плавкий предохранитель (рис. 27–38).

Рис. 27–38. Плавкие предохранители, используемые для защиты электронных цепей.

Плавкий предохранитель — устройство, которое выходит из строя при перегрузке. Плавкий предохранитель — это просто кусочек проволоки, соединяющий два металлических вывода. Полый стеклянный цилиндр отделяет выводы друг от друга и защищает проволоку. Обычно плавкий предохранитель включают последовательно с первичной обмоткой трансформатора блока питания. Если через блок питания течет большой ток, то проволока предохранителя перегревается и плавится. Цепь размыкается, и ток прерывается. Стеклянный цилиндр предохранителя позволяет визуально проверить пригодность предохранителя.

Предохранители делятся на обычные и с замедлением.

Обычные предохранители перегорают сразу же при превышении тока. В некоторых цепях это является преимуществом, так как быстро устраняется перегрузка. Предохранитель с замедлением может выдерживать короткий период перегрузки перед тем, как расплавиться. Это происходит потому, что в таком предохранителе проволока нагревается медленнее. Если перегрузка имеет место в течение более чем нескольких секунд, она расплавляет предохранитель. Предохранитель с замедлением может содержать спираль в состоянии оттягивания момента расплавления.

Некоторые цепи могут противостоять току перегрузки. В таких цепях использование предохранителя с замедлением предпочтительнее обычного.

Предохранитель всегда устанавливается после выключателя на «горячем» выводе (фазе) источника переменного тока. В результате трансформатор отсоединяется от источника переменного тока при перегорании предохранителя. При установке предохранителя после выключателя сеть может быть отключена от держателя предохранителя для обеспечения безопасности при замене предохранителя.

Плавкий предохранитель не следует заменять до тех пор, пока неисправность не будет обнаружена и исправлена.

Недостатком плавкого предохранителя является то, что после каждого перегорания его необходимо заменять. Размыкатель цепи выполняет такую же работу, но не требует замены после каждой перегрузки. Вместо этого размыкатель цепи может быть вручную установлен в исходное положение после перегрузки (рис. 27–39). Размыкатели цепи включаются в цепь так же, как и предохранители.

Рис. 27–39. Размыкатели цепи, используемые для защиты электронных цепей.

27-6. Вопросы

1. Как работает схема защиты от превышения напряжения на основе КУВ?

2. Как работает плавкий предохранитель, когда он используется в цепи?

3. Какие бывают типы предохранителей?

4. В каком месте цепи устанавливается предохранитель?

5. В чем преимущество размыкателя цепи перед предохранителем?

РЕЗЮМЕ

• Основным назначением блока питания является преобразование переменного тока в постоянный.

• Трансформаторы используются в блоках питания для изоляции и для повышения или понижения напряжения.

• Выпрямитель преобразует входное переменное напряжение в пульсирующее постоянное напряжение.

• Основными выпрямительными цепями являются: однополупериодная, двухполупериодная и мостовая.

• Однополупериодные выпрямители проще и дешевле, чем двухполупериодные и мостовые.

• Двухполупериодный выпрямитель более эффективен, чем однополупериодный.

• Мостовой выпрямитель может работать без трансформатора.

• Для преобразования пульсирующего постоянного напряжения в сглаженное постоянное напряжение после выпрямителя должен использоваться фильтр.

• Конденсатор, подсоединенный параллельно нагрузке является эффективным фильтром.

• Стабилизатор напряжения обеспечивает постоянное выходное напряжение, несмотря на изменения входного напряжения и тока нагрузки.

• Стабилизатор напряжения устанавливается в цепи после фильтра.

• Основными типами стабилизаторов являются параллельный и последовательный.

• Последовательный стабилизатор более эффективен и, следовательно, более популярен, чем параллельный.

• Умножители напряжения — это цепи, которые способны обеспечить более высокие, чем входные, напряжения постоянного тока без использования трансформатора.

• Для защиты от превышения напряжения используется цепь на основе КУВ.

• Плавкий предохранитель защищает цепь от перегрузки по току.

• Предохранители делятся на обычные и с замедлением.

• Размыкатели цепи выполняет такую же работу, что и предохранители, но не требуют замены после каждой перегрузки.

Глава 27. САМОПРОВЕРКА

1. Какие четыре параметра надо учитывать при выборе трансформатора для блока питания?

2. Каково назначение трансформатора в блоке питания?

3. Для каких целей служит выпрямитель в блоке питания?

4. Каковы достоинства и недостатки двухполупериодного и мостового выпрямителей?

5. Опишите процесс, с помощью которого фильтрующий конденсатор преобразует пульсирующее постоянное напряжение в сглаженное.

6. На основе каких соображений выбирается величина фильтрующего конденсатора?

7. Как последовательный стабилизатор поддерживает выходное напряжение на постоянном уровне?

8. Какие характеристики цепи должны быть известны при выборе стабилизирующей цепи?

9. Для каких целей служат умножители напряжения?

10. Каковы преимущества двухполупериодного удвоителя напряжения по сравнению с однополупериодным удвоителем напряжения?

11. Какие устройства используются для защиты от превышения напряжения?

12. Какие устройства используются для защиты от превышения тока?

 

Глава 28. Усилители

ЦЕЛИ

После изучения этой главы студент должен быть в состоянии:

• Описать назначение усилителя.

• Перечислить три основных типа транзисторных усилительных цепей.

• Перечислить классы усилителей.

• Описать работу усилителей с непосредственной связью, усилителей звуковой частоты, видеоусилителей, усилителей радиочастоты, усилителей промежуточной частоты и операционных усилителей.

• Нарисовать принципиальные схемы усилителей различных типов.

Усилители — это электронные цепи, используемые для увеличения амплитуды электрического сигнала. Цепь, рассчитанная на преобразование низкого напряжения в высокое, называется усилителем напряжения. Цепь, рассчитанная на преобразование слабого тока в большой по величине, называется усилителем тока.

28-1. ТИПЫ УСИЛИТЕЛЕЙ

Для обеспечения усиления транзистор должен принять входной сигнал и выдать выходной, значительно больший, чем входной.

Входной сигнал управляет током, текущим через транзистор. Этот ток, в свою очередь, управляет напряжением на нагрузке. Транзисторная цепь рассчитана таким образом, чтобы брать напряжение от внешнего источника питания (VCC) и подавать его на резистор нагрузки (RL) в виде выходного напряжения.

Транзистор используется, главным образом, как усилительное устройство. Существует несколько способов включения в цепь транзистора: схема с общей базой, схема с общим эмиттером и схема с общим коллектором. В каждой из этих схем один из выводов транзистора служит общей точкой, а два других являются входом и выходом.

Каждая схема может быть собрана как с р-n-р, так и с n-р-n транзистором. В каждом случае на переход эмиттер-база подается напряжение смещения в прямом направлении, а на переход коллектор-база — в обратном. Каждая схема имеет преимущества и недостатки.

В схеме с общей базой (рис. 28-1) входной сигнал подается в цепь эмиттер-база, а выходной наблюдается в цепи коллектор-база. База является общим элементом для входа и выхода.

Рис. 28-1. Схема усилителя с общей базой.

В схеме с общим эмиттером (рис. 28-2) входной сигнал подается в цепь эмиттер-база, а выходной сигнал снимается с нагрузки в цепи коллектор-эмиттер. Эмиттер является общим для входа и выхода. Этот способ включения транзистора используется наиболее широко.

Рис. 28-2. Схема усилителя с общим эмиттером

Третий тип соединения (рис. 28-3) — это схема с общим коллектором. В этой схеме входной сигнал подается в цепь база-коллектор, а выходной сигнал снимается с цепи эмиттер-коллектор. Здесь коллектор является общим для входа и выхода. Эта схема используется для согласования импедансов.

Рис. 28-3. Схема усилителя с общим коллектором.

В таблице, изображенной на рис. 28-4, приведены входные и выходные сопротивления, а также величина усиления по напряжению, току и мощности для трех схем включения транзистора.

Рис. 28-4. Характеристики усилительных цепей.

На рис. 28-5 показаны фазовые соотношения входного и выходного сигналов для трех схем включения транзистора. Заметим, что схема с общим эмиттером обеспечивает изменение фазы выходного сигнала на 180° по отношению к фазе входного.

Рис. 28-5. Фазовые соотношения между входным и выходным сигналами усилительных цепей.

28-1. Вопросы

1. Нарисуйте схемы трех основных конфигураций транзисторных усилительных цепей.

2. Перечислите характеристики:

а.  Цепи с общей базой;

б.  Цепи с общим эмиттером;

в.  Цепи с общим коллектором.

3. Составьте таблицу, показывающую фазовые соотношения входного и выходного сигналов для трех схем включения транзистора.

4. Составьте таблицу, показывающую входные и выходные сопротивления для трех схем включения транзистора.

5. Составьте таблицу, показывающую усиление по напряжению, току и мощности для трех схем включения транзистора.

28-2. ЦЕПИ СМЕЩЕНИЯ УСИЛИТЕЛЯ

Основными конфигурациями транзисторных усилительных цепей являются схемы с общей базой, с общим эмиттером и с общим коллектором. Для подачи правильного напряжения смещения на n-р-n или р-n-р переходы все они требуют двух источников тока. На переход база-эмиттер должно быть подано смещение в прямом направлении, а на переход база-коллектор — в обратном направлении. Однако оба напряжения смещения могут быть обеспечены с помощью одного источника тока.

Поскольку цепи с общим эмиттером используются наиболее часто, они детально описываются. Те же принципы применимы и к цепям с общей базой и общим коллектором.

На рис. 28-6 изображен транзисторный усилитель с общим эмиттером, использующий один источник питания. Эта же цепь схематически изображена на рис. 28-7.

Рис. 28-6. Усилитель с общим эмиттером и одним источником питания.

Рис. 28-7. Схематическое представление усилителя с общим эмиттером и одним источником питания.

Источник питания обозначен +VCC. Символ заземления является отрицательным выводом источника питания VCC. Один источник питания обеспечивает подачу правильного напряжения смещения для переходов база-эмиттер и база-коллектор. Два резистора (RB и RL) используются для распределения напряжения, обеспечивающего правильную работу транзистора. Резистор RL, сопротивление нагрузки коллектора, соединен последовательно с коллектором. Когда через коллектор течет ток, на резисторе RL появляется падение напряжения. Падение напряжения на резисторе RL и падение напряжения на переходе коллектор-эмиттер транзистора должны в сумме равняться приложенному напряжению.

Резистор RB, соединяющий базу с источником питания, управляет величиной тока базы. Ток базы, текущий через резистор RB, создает на нем падение напряжения, составляющего большую часть напряжения источника питания. Меньшая часть этого напряжения падает на переходе база-эмиттер транзистора, обеспечивая правильное прямое смещение.

Один источник питания может обеспечить необходимые напряжения прямого и обратного смещения. В случае n-р-n транзистора потенциал на базе и коллекторе транзистора должен быть положительным по отношению к эмиттеру.

Следовательно, источник питания может быть связан с базой и коллектором через резисторы RB и RL. Эту цепь часто называют цепью смещения базы, так как ток базы управляется величиной резистора RB и напряжением источника питания. Входной сигнал подключается между базой транзистора и его эмиттером или между выводом входа и землей.

Значение входного сигнала либо складывается с прямым смещением на эмиттерном переходе, либо вычитается из него. Это служит причиной изменения коллекторного тока, что, в свою очередь, приводит к изменению падения напряжения на резисторе RL. Выходной сигнал появляется между выводом выхода и землей.

Цепь, изображенная на рис. 28-6, является нестабильной, так как она не может компенсировать изменения тока смещения при отсутствии сигнала. Изменения температуры приводят к изменению внутреннего сопротивления транзистора, что заставляет изменяться ток смещения и сдвигает рабочую точку транзистора, уменьшая его усиление. Этот процесс называется температурной нестабильностью.

Существует возможность компенсации температурных изменений в схеме транзисторного усилителя посредством организации отрицательной обратной связи в нем. Если часть нежелательного выходного сигнала подать на вход цепи, этот сигнал будет противодействовать изменениям в транзисторе. Такой процесс называется отрицательной обратной связью (рис. 28-8).

Рис. 28-8. Усилитель с общим эмиттером и коллекторной обратной связью.

В цепи, использующей отрицательную обратную связь, базовый резистор RB соединен непосредственно с коллектором транзистора. Если температура увеличивается, то ток коллектора и падение напряжения на резисторе RL тоже увеличиваются. Напряжение коллектор-эмиттер уменьшается, уменьшая также напряжение приложенное, к RB. Это уменьшает ток базы, что служит причиной уменьшения тока коллектора. Таким образом действует коллекторная цепь обратной связи.

На рис. 28-9 показан другой тип обратной связи. Эта цепь похожа на цепь, изображенную на рис. 28-7, за исключением того, что последовательно с выводом эмиттера включен резистор RE. Резисторы RB и RE и переход транзистора эмиттер-база соединены последовательно с источником питания VCC.

Рис. 28-9. Усилитель с общим эмиттером и эмиттерной обратной связью.

Увеличение температуры служит причиной увеличения коллекторного тока. Ток эмиттера также увеличивается, увеличивая падение напряжения на резисторе RE и уменьшая падение напряжения на резисторе RB. Ток базы уменьшается, что уменьшает как ток коллектора, так и ток эмиттера. Поскольку сигнал обратной связи создается на эмиттере транзистора, эта цепь называется цепью эмиттерной обратной связи.

В цепи этого типа происходит уменьшение общего усиления цепи, связанное с тем, что входной сигнал переменного тока появляется как на резисторе RL, так и на резисторе RE и на транзисторе. При подсоединении конденсатора параллельно резистору RE (рис. 28–10), сигнал переменного тока обходит резистор RE, так как сопротивление конденсатора существенно меньше RE. Этот конденсатор часто называют блокировочным конденсатором.

Рис. 28–10. Эмиттерная обратная связь с блокировочным конденсатором.

Блокировочный конденсатор устраняет любые быстрые изменения напряжения на резисторе RE, благодаря тому, что он обладает низким импедансом для переменного тока. Блокировочный конденсатор удерживает напряжение на резисторе RE неизменным, в то же самое время не мешая работе цепи обратной связи, обеспечиваемой RE.

Цепь обратной связи с делителем напряжения обеспечивает большую стабильность транзистора (рис. 28–11). Эта цепь используется наиболее широко. Резистор RB заменяется двумя резисторами, R1 и R2. Эти соединенные последовательно резисторы подключены параллельно источнику питания VСС. Резисторы делят напряжение питания на два напряжения, образуя делитель напряжения.

Рис. 28–11. Усилитель с общим эмиттером и обратной связью на основе делителя напряжения.

На резисторе R2 падает меньшее напряжение, чем на резисторе R1. Напряжение на базе по отношению к земле равно падению напряжения на резисторе R2. Цель делителя напряжения — установить постоянное напряжение на базе транзистора по отношению к земле. Ток, текущий через резистор R2, направлен к базе. Следовательно, подсоединенный к базе конец резистора R2, имеет положительный потенциал по отношению к земле.

Так как через резистор RE течет ток эмиттера, то на конце резистора RE, подсоединенном к эмиттеру, положительный потенциал по отношению к земле. Напряжение на переходе эмиттер-база является разностью двух положительных напряжений — напряжения на резисторе R2 и напряжения на резисторе RE. Для того, чтобы на транзисторе имело место правильно приложенное прямое смещение, положительный потенциал базы должен быть немного выше положительного потенциала эмиттера.

При увеличении температуры токи коллектора и эмиттера также увеличиваются. Увеличение тока эмиттера приводит к увеличению падения напряжения на резисторе RE. Это приводит к тому, что положительный потенциал эмиттера по отношению к земле увеличивается. Тогда прямое смещение перехода эмиттер-база уменьшается, что приводит к уменьшению тока базы. Уменьшение тока базы уменьшает токи коллектора и эмиттера. Противодействие также имеет место и при понижении температуры: ток базы увеличивается, что приводит к увеличению токов эмиттера и коллектора.

Усилители, обсуждавшиеся до сих пор, имели такое напряжение смещения, что выходной сигнал был таким же, как и входной сигнал в течение всего периода, только величина его была больше. Усилитель, смещение которого такое, что ток через него течет и усиливается во время всего периода сигнала, называется усилителем, работающим в классе А (рис. 28–12).

Рис. 28–12. Выходное напряжение усилителя класса А .

Усилитель, смещение которого таково, что выходной ток через него течет и усиливается в течение времени меньшем, чем полный период, но большем половины периода, называется усилителем, работающим в классе АВ (рис. 28–13).

Рис. 28–13. Выходное напряжение усилителя класса АВ .

Усилитель, смещение которого такое, что выходной ток через него течет только половину периода входного сигнала — это усилитель, работающий в классе В . Только во время половины периода входной сигнал переменного тока усиливается в режиме класса В (рис. 28–14).

Рис. 28–14. Выходное напряжение усилителя класса В .

Усилитель, смещение которого такое, что выходной ток через него течет меньше, чем половину периода входного сигнала переменного тока — это усилитель, работающий в классе С. Меньше, чем половина периода входного сигнала усиливается в режиме класса С (рис. 28–15).

Рис. 28–15. Выходное напряжение усилителя класса С .

Усилители класса А создают наименьшие искажения и называются линейными. Они также имеют самую низкую выходную мощность и наименее эффективны. Усилители класса А находят широкое применение в тех случаях, когда требуется точное сохранение входного сигнала, как, например, при усилении сигналов звуковой частоты в радиоприемниках и телевизорах. Однако из-за высоких требований по мощности, транзисторы обычно работают в режиме класса АВ или класса В.

Усилители классов АВ, В и С вносят значительные искажения. Это обусловлено тем, что они усиливают только часть входного сигнала. Для усиления полного входного сигнала переменного тока необходимы два транзистора, соединенные в двухтактную схему (рис. 28–16).

Рис. 28–16. Схема двухтактного усилителя.

Усилители класса В используются в качестве выходных каскадов в стереосистемах и мощных концертных усилителях, а также в промышленности. Усилители класса С используются в качестве усилителей высокой мощности в передатчиках, где необходимо усиление только одной частоты, например в радио и телевизионных передатчиках.

28-2. Вопросы

1. Нарисуйте схему транзисторного усилителя с общим эмиттером, использующего один источник питания.

2. Как компенсируются изменения температуры в транзисторном усилителе?

3. Нарисуйте схему цепи обратной связи с делителем напряжения.

4. Перечислите классы усилителей и укажите их выходные мощности.

5. Перечислите применения усилителей каждого класса.

28-3. СОЕДИНЕНИЕ УСИЛИТЕЛЕЙ

Для получения большого усиления, транзисторные усилители могут быть соединены вместе. Однако для избежания влияния смещения одного усилителя на работу другого, они должны соединяться специальным образом.

Используемый метод соединения усилителей не должен нарушать работу какой-либо цепи. Возможны следующие методы соединения усилителей: посредством резистивно-емкостной, импедансной, трансформаторной и непосредственной (гальванической) связей.

Резистивно-емкостная связь или RC связь состоит из двух резисторов и конденсатора, соединенных как показано на рис. 28–17.

Рис. 28–17. RC связь.

Резистор R3 является коллекторной нагрузкой первого каскада. Конденсатор C1 является блокирующим для постоянного тока и конденсатором связи для переменного тока. Резистор R4 является входной нагрузкой, а также замыкает по постоянному току цепь перехода база-эмиттер второго каскада. Резистивно-емкостная связь используется, главным образом, в усилителях низкой частоты.

Конденсатор связи C1 должен иметь низкое реактивное сопротивление для минимизации ослабления сигнала на низких частотах. Обычно используется емкость в пределах от 10 до 100 микрофарад. Конденсатор связи обычно бывает электролитическим.

Реактивное сопротивление конденсатора связи увеличивается при уменьшении частоты. Низкочастотная граница определяется величиной емкости конденсатора связи. Высокочастотная граница определяется типом использованного транзистора.

Импедансная связь подобна RC связи, только вместо резистора в качестве нагрузки коллектора первого каскада усиления используется катушка индуктивности (рис. 28–18).

Рис. 28–18. Импедансная связь.

Импедансная связь работает совершенно аналогично RC связи. Ее преимуществом является то, что катушка индуктивности имеет очень низкое сопротивление постоянному току. Выходной сигнал переменного тока на катушке индуктивности такой же, как и на нагрузочном резисторе. Однако катушка индуктивности потребляет меньшую мощность, чем резистор, что увеличивает общую эффективность цепи.

Недостатком импедансной связи является то, что индуктивное сопротивление увеличивается при увеличении частоты. Поэтому коэффициент усиления по напряжению изменяется при изменении частоты. Этот тип связи идеален для одночастотного усиления, то есть при усилении очень узкой полосы частот.

В цепи с трансформаторной связью два усилительных каскада связаны между собой через трансформатор (рис. 28–19).

Рис. 28–19. Трансформаторная связь.

Трансформатор может эффективно согласовать высокоимпедансный источник с низкоимпедансной нагрузкой. Недостатком этого метода является то, что трансформаторы громоздки и дороги. Кроме того, как и усилитель с импедансной связью, усилитель с трансформаторной связью может использоваться только в узком диапазоне частот.

Когда необходимо усилить очень низкие частоты или сигнал постоянного тока, следует использовать усилитель с непосредственной (гальванической) связью (рис. 28–20).

Рис. 28–20. Гальваническая связь.

Усилители с гальванической связью обеспечивают равномерное усиление по току и напряжению в широком диапазоне частот. Усилители этого типа могут усиливать частоты от нуля герц (постоянный ток) до многих тысяч герц. Однако усилители с гальванической связью преимущественно применяются на низких частотах.

Недостатком усилителей с гальванической связью является то, что они нестабильны. Любые изменения выходного тока первого каскада усиливаются вторым каскадом. Это происходит потому, что смещение второго каскада непосредственно связано с первым каскадом. Для повышения стабильности требуется использование дорогих прецизионных компонентов.

28-3. Вопросы

1. Каковы четыре основных метода соединения транзисторных усилителей?

2. Где, в основном, используется резистивно-емкостная связь?

3. В чем разница между резистивно-емкостной связью и импедансной связью?

4. В чем недостаток трансформаторной связи?

5. Какой метод связи используется при усилении низкочастотных сигналов и сигналов постоянного тока?

28-4. УСИЛИТЕЛИ С ГАЛЬВАНИЧЕСКОЙ СВЯЗЬЮ

Усилители с гальванической связью или усилители постоянного тока используются для усиления низкочастотных сигналов или для усиления сигналов постоянного тока. Усилитель постоянного тока также используется для устранения индуктивных потерь в цепях связи. Усилители постоянного тока применяются в компьютерах, измерительном и тестирующем оборудовании и в промышленной аппаратуре для управления производственными процессами.

Простейший усилитель постоянного тока изображен на рис. 28–21.

Рис. 28–21. Простой усилитель постоянного тока.

Чаще всего используется усилитель с общим эмиттером. Изображенная схема содержит цепь смещения на основе делителя напряжения и эмиттерную цепь обратной связи. В цепях этого типа не используется конденсатор связи. Входной сигнал подается прямо на базу транзистора. Выходной сигнал снимается с коллектора.

Усилитель постоянного тока может обеспечивать усиление как по току, так и по напряжению. Однако, он применяется, главным образом, в качестве усилителя напряжения. Усиление по напряжению одинаково для сигналов постоянного и переменного токов.

В большинстве случаев одного каскада усиления недостаточно. Для получения более высокого усиления требуются два или более каскадов. Соединенные вместе два или более каскадов называются многокаскадным усилителем.

На рис. 28–22 изображен двухкаскадный усилитель.

Рис. 28–22. Двухкаскадный усилитель постоянного тока.

Входной сигнал усиливается первым каскадом. После этого усиленный сигнал поступает на базу транзистора второго каскада. Общее усиление цепи равно произведению коэффициентов усиления по напряжению двух каскадов. Например, если и первый, и второй каскады имеют коэффициент усиления по напряжению равный 10, то общий коэффициент усиления цепи равен 100.

На рис. 28–23 изображен усилитель постоянного тока другого типа. В нем используются транзисторы типов n-р-n и р-n-р. Цепь такого типа называется комплементарным усилителем. Функции этой цепи такие же, как и у цепи, изображенной на рис. 28–22. Разница только в том, что транзистор второго каскада р-n-р типа, р-n-р транзистор, перевернут, так что на эмиттер и коллектор подается напряжение смещения правильно.

Рис. 28–23. Комплементарный усилитель постоянного тока.

На рис. 28–24 изображены два соединенных вместе транзистора, работающих, как одно целое. Эта цепь называется схемой Дарлингтона. Транзистор Q1 используется для управления проводимостью транзистора Q2. Входной сигнал, поданный на базу транзистора Q1, управляет током базы транзистора Q2. Схема Дарлингтона может быть изготовлена в одном корпусе с тремя выводами: эмиттер (Э), база (Б) и коллектор (К). Она используется как простой усилитель постоянного тока с высоким коэффициентом усиления по напряжению.

Рис. 28–24. Схема Дарлингтона.

Основным недостатком многокаскадных усилителей является их высокая температурная нестабильность. В цепях, требующих три или четыре каскада усиления постоянного тока, оконечный каскад может не усиливать исходный сигнал постоянного или переменного тока, так как он будет сильно искажен. Та же самая проблема существует и со схемой Дарлингтона.

В случаях, когда требуется и высокий коэффициент усиления, и высокая температурная стабильность, необходим усилитель другого типа. Это — дифференциальный усилитель (рис. 28–25).

Рис. 28–25. Дифференциальный усилитель.

Его особенность в том, что он имеет два отдельных входа и может обеспечить либо один, либо два выходных сигнала. Если сигнал подан на вход транзистора Q1, усиленный сигнал появится между выходом А и землей, как в обычном усилителе. Однако малый сигнал появится также на резисторе R4 и на эмиттере транзистора Q2. Транзистор Q2 работает, как усилитель с общей базой. Усиленный выходной сигнал появится между выходом В и землей. Выходной сигнал с выхода В сдвинут по фазе на 180 градусов по отношению к сигналу на выходе А. Это делает дифференциальный усилитель более универсальным, чем обычный.

Обычно дифференциальный усилитель не используется для получения выходного напряжения между одним из выходов и землей. Выходной сигнал получают между выходом А и выходом В. Поскольку два выходных сигнала сдвинуты относительно друг друга на 180 градусов по фазе, то между этими точками существует значительное выходное напряжение. Входной сигнал может быть подан на любой вход.

Дифференциальный усилитель обладает высокой температурной стабильностью, так как транзисторы Q1 и Q2 расположены близко друг к другу и испытывают одинаковое влияние температуры. Кроме того, коллекторные токи транзисторов Q1 и Q2 испытывают одинаковые тенденции к увеличению и уменьшению, так что выходное напряжение остается постоянным.

Дифференциальный усилитель широко используется в интегральных микросхемах и в электронном оборудовании. Он используется для усиления и(или) сравнения амплитуд сигналов как постоянного, так и переменного токов. Дифференциальные усилители можно соединять последовательно для получения более высокого усиления. В некоторых случаях дифференциальный усилитель используется в качестве первого каскада в многокаскадных обычных усилителях. Дифференциальные усилители, благодаря их универсальности и температурной стабильности, являются наиболее важным типом усилителей с гальванической связью.

28-4. Вопросы

1. В каких случаях используют усилители с гальванической связью?

2. Какую конфигурацию усилителя обычно используют в усилителях с гальванической связью?

3. Нарисуйте схемы следующих цепей:

а.  Комплементарный усилитель.

б.  Схему Дарлингтона.

в.  Дифференциальный усилитель.

4. Как дифференциальный усилитель отличить от обычного?

5. Где, в основном, используются дифференциальные усилители?

28-5. УСИЛИТЕЛИ ЗВУКОВОЙ ЧАСТОТЫ

Усилители звуковой частоты усиливают сигналы переменного тока в диапазоне частот примерно от 20 до 20000 герц. Они могут усиливать весь диапазон звуковых частот или только небольшую часть его.

Усилители звуковой частоты делятся на две категории: усилители напряжения и усилители мощности. Усилители напряжения применяются, главным образом, для получения высокого усиления по напряжению. Усилители мощности используются для передачи большой мощности в нагрузку. Например, усилитель напряжения применяется, главным образом, для повышения напряжения выходного сигнала до уровня, достаточного для раскачки усилителя мощности. После этого используется усилитель мощности для получения высокой мощности, необходимой для передачи сигнала на усилительные колонки или другое устройство высокой мощности. Обычно усилители напряжения работают как усилители класса А, а усилители мощности — как усилители класса В.

На рис. 28–26 изображен простой усилитель напряжения.

Рис. 28–26. Усилитель напряжения

Изображенная цепь является цепью с общим эмиттером. Смещение транзистора выбрано для работы в классе А, чтобы обеспечить минимальные искажения. Усилитель может обеспечить заметное усиление по напряжению в широком диапазоне частот. Наличие конденсатора связи не позволяет цепи усиливать сигнал постоянного тока.

Два или более усилителя напряжения могут быть соединены последовательно для получения большего усиления. Каскады могут быть соединены с помощью RC связи или трансформаторной связи. Трансформаторная связь более эффективна. Трансформатор используется для согласования входного и выходного импеданса двух каскадов. Это предохраняет второй каскад от перегрузки первым каскадом. Перегрузка возникает, когда устройство создает большую нагрузку и сильно влияет на выход, потребляя слишком большой ток. Трансформатор, используемый для связи двух каскадов, называется меж каскадным трансформатором.

Когда достаточный уровень выходного напряжения достигнут, используется усилитель мощности для раскачки нагрузки. Усилители мощности рассчитаны для раскачки определенных нагрузок и характеризуются мощностью в ваттах. Обычно сопротивление нагрузки лежит в пределах от 4 до 16 Ом.

На рис. 28–27 изображена схема усилителя мощности на двух транзисторах, которая называется двухтактной.

Рис. 28–27. Двухтактный усилитель мощности.

Верхняя половина цепи является зеркальным отображением нижней. Каждая половина представляет собой усилитель на одном транзисторе. Выходное напряжение снимается с первичной обмотки трансформатора в течение чередующихся полупериодов входного сигнала. Оба транзистора работают как усилители класса АВ или В. Вход двухтактного усилителя требует сдвинутых по фазе на 180° входных сигналов. Это означает, что один сигнал должен быть инвертирован по отношению к другому. Однако оба сигнала должны иметь одинаковую амплитуду и частоту. Цепь, создающая такой фазовый сдвиг сигнала, называется фазовращателем. Фазовращатель на одном транзисторе изображен на рис. 28–28. Выходы взяты с коллектора и эмиттера транзистора.

Рис. 28–28. Фазовращатель.

Фазовращатель работает, как усилитель класса А, обеспечивая наименьшие искажения выходного сигнала. Конденсаторы связи необходимы для компенсации разницы между коллекторным и эмиттерным напряжениями постоянного тока.

Двухтактный усилитель, не требующий фазовращателя, называется комплементарным двухтактным усилителем.

Для работы двухтактного каскада в нем используются транзисторы n-р-n и р-n-р (рис. 28–29).

Рис. 28–29. Комплементарный двухтактный усилитель мощности.

Два транзистора соединены последовательно, эмиттерами друг к другу. Когда на каждый транзистор подается напряжение смещения в прямом направлении, между его базой и эмиттером возникает напряжение 0,7 вольт или 1,4 вольт между двумя базами. Два диода помогают поддерживать разность потенциалов 1,4 вольт постоянной. Выходное напряжение берется из точки соединения эмиттеров через конденсатор связи.

Для усилителей мощностью более 10 ватт, трудно и дорого подобрать пару n-р-n и р-n-р транзисторов с одинаковыми характеристиками. На рис. 28–30 изображена цепь, использующая два n-р-n транзистора в качестве мощного выходного транзистора. Мощные транзисторы раскачиваются двумя транзисторами n-р-n и р-n-р меньшей мощности. Верхний набор транзисторов образует схему Дарлингтона.

Рис. 28–30. Квазикомплементарный усилитель мощности.

Нижний набор транзисторов использует транзисторы n-р-n и р-n-р. Работая как одно устройство, они соответствуют р-n-р транзистору. Усилитель этого типа называется квазикомплементарным усилителем. Он работает так же, как и комплементарный усилитель, но не требует комплементарных выходных транзисторов высокой мощности.

Так как усилители мощности развивают высокую мощность, некоторые его детали сильно нагреваются. Для отвода накопленного тепла используются радиаторы. Радиатор — это устройство, имеющее большую площадь, которая может излучать тепло. На рис. 28–31 изображены различные типы радиаторов для транзисторов.

Рис. 28–31. Типы радиаторов

28-5. Вопросы

1. В каком диапазоне частот используются усилители звуковой частоты?

2. Каковы два типа усилителей звуковой частоты?

3. Что такое межкаскадный трансформатор?

4. Нарисуйте схемы следующих устройств:

а . Двухтактного усилителя.

б.  Комплементарного двухтактного усилителя.

в.  Квазикомплементарного двухтактного усилителя.

28-6. ВИДЕОУСИЛИТЕЛИ

Видеоусилители — это широкополосные усилители, используемые для усиления видеоинформации. Диапазон частот видеоусилителя значительно шире, чем диапазон частот усилителя звуковой частоты. Он занимает полосу частот от нескольких герц до 5 или 6 мегагерц. Например, для передачи телевизионного сигнала требуется полоса частот от 60 герц до 4 мегагерц. Радиолокаторы используют полосу частот от 30 герц до 2 мегагерц. В цепях, использующих пилообразное или импульсное напряжение, необходим частотный диапазон от одной десятой наименьшей частоты сигнала до десятикратно увеличенной наибольшей частоты.

Такой широкий диапазон частот необходим потому, что несинусоидальное напряжение содержит в своем составе много гармоник и все они должны быть одинаково усилены.

Так как видеоусилители должны иметь однородную амплитудно-частотную характеристику, в них используется только гальваническая или RC связь между каскадами.

Гальваническая связь обеспечивает наилучшую амплитудно-частотную характеристику, тогда как RC связь имеет экономические преимущества. Усилитель с RC связями имеет плоскую амплитудно-частотную характеристику в области средних частот диапазона, подходящую для видеоусилителей. Плоская амплитудно-частотная характеристика — это термин, показывающий, что усиление усилителя только незначительно меняется в пределах заданного частотного диапазона. Амплитудно-частотная характеристика такого усилителя представляет собой почти прямую линию; отсюда и термин — плоская амплитудно-частотная характеристика.

Фактор, ограничивающий усиление транзисторного усилителя на высоких частотах — это шунтирование транзистора паразитной емкостью цепи. Между переходами транзистора существует небольшая емкость, ее величина определяется размером перехода и расстоянием между выводами транзистора, а также смещением, приложенным к переходу. Переход база-эмиттер, смещенный в прямом направлении имеет большую емкость, чем переход коллектор-база, смещенный в обратном направлении.

Для того, чтобы уменьшить влияние шунтирующей емкости и увеличить усиление на высоких частотах, в транзисторных видеоусилителях используются корректирующие катушки индуктивности. На рис. 28–32 изображен метод параллельной коррекции.

Рис. 28–32. Параллельная коррекция.

Небольшая индуктивность включается последовательно с резистором нагрузки. В диапазоне низких и средних частот корректирующая индуктивность почти не влияет на амплитудно-частотную характеристику. На высоких частотах катушка индуктивности резонирует с емкостью цепи, что приводит к увеличению выходного импеданса и поднимает усиление.

Другим методом является включение небольшой индуктивности последовательно с конденсатором межкаскадной связи. Этот метод называется последовательной коррекцией (рис. 28–33).

Рис. 28–33. Последовательная коррекция.

Корректирующая индуктивность эффективно отделяет входные и выходные емкости двух каскадов. Часто параллельная и последовательная коррекции комбинируются для того, чтобы усилить преимущества обоих методов (рис. 28–34). Это комбинирование может расширить полосу пропускания усилителя до частот, превышающих 5 мегагерц.

Рис. 28–34. Последовательно-параллельная коррекция.

Чаще всего видеоусилители используются в телевизионных приемниках (рис. 28–35).

Рис. 28–35. Видеоусилитель телевизионного приемника.

Транзистор Q1 включен, как эмиттерный повторитель. Сигнал на транзистор Q1 подается с видеодетектора. Видеодетектор получает видеосигнал с усилителя промежуточной частоты. В цепи коллектора Q2 транзистора включена параллельная корректирующая индуктивность (L1). На пути выходного сигнала включена последовательная корректирующая индуктивность (L2). После этого видеосигнал подается на электронно-лучевую трубку через конденсатор связи С5.

28-6. Вопросы

1. Что такое видеоусилитель?

2. Каков диапазон частот видеоусилителя?

3. Какими способами соединяются каскады видеоусилителей?

4. Дайте определения следующих понятий:

а.  Параллельная коррекция.

б.  Последовательная коррекция.

5. Где используются видеоусилители?

28-7. УСИЛИТЕЛИ РАДИОЧАСТОТЫ И ПРОМЕЖУТОЧНОЙ ЧАСТОТЫ

Усилители радиочастоты похожи на другие усилители. Они отличаются, главным образом, диапазоном рабочих частот, занимающим область от 10 до 30 мегагерц. Существуют два класса усилителей радиочастоты: перестраиваемые и неперестраиваемые. Основной функцией неперестраиваемого усилителя является усиление, а его амплитудно-частотная характеристика должна занимать как можно более широкий диапазон радиочастот. В перестраиваемом усилителе высокое усиление должно достигаться в узкой области частот или на отдельной частоте. Обычно, когда говорят об усилителях радиочастоты, подразумевают, что они являются перестраиваемыми, если не оговорено другое.

В радиоприемных устройствах усилители радиочастоты служат для усиления сигнала и выделения сигнала, соответствующей частоты. В передающих устройствах усилители радиочастоты служат для усиления сигнала на определенной частоте перед его подачей в антенну. В основном, приемные усилители радиочастоты являются усилителями напряжения, а передающие усилители радиочастоты являются усилителями мощности.

В приемных цепях усилитель радиочастоты должен обеспечивать достаточное усиление приемного сигнала, обладать низким собственным шумом, обеспечивать хорошую избирательность и иметь плоскую амплитудно-частотную характеристику на выбранных частотах.

На рис. 28–36 изображен усилитель радиочастоты, используемый в радиоприемнике с амплитудной модуляцией.

Рис. 28–36. Усилитель радиочастоты в радиоприемнике сигналов с амплитудной модуляцией.

Конденсаторы C1 и С4 настраивают антенну и выходной трансформатор T1 на одну и ту же частоту. Входной сигнал с помощью индуктивной связи подается на базу транзистора Q1. Транзистор работает, как усилитель класса А. Конденсатор С4 и трансформатор T1 обеспечивают высокое усиление по напряжению на резонансной частоте для цепи коллекторной нагрузки. Трансформатор T1 имеет отвод для обеспечения хорошего согласования импедансов с транзистором.

На рис. 28–37 изображен усилитель радиочастоты, используемый в телевизионном высокочастотном тюнере.

Рис. 28–37. Усилитель радиочастоты в телевизионном высокочастотном тюнере.

Цепь настраивается катушками индуктивности L1A; L1B и L1C. При повороте ручки переключателя каналов в цепь включается новый набор катушек. Это обеспечивает усиление в необходимой полосе частот для каждого канала. Входной сигнал попадает в перестраиваемую цепь, состоящую из L1A, C1 и С2. Транзистор Q1 работает, как усилитель класса А. Выходная коллекторная цепь представляет собой двойной перестраиваемый трансформатор. Катушка L1B настраивается конденсатором С4, а катушка — L1C конденсатором С7. Резистор R2 и конденсатор С6 образуют развязывающий фильтр, предотвращающий попадание радиочастот в блок питания и их взаимодействие с другими цепями.

В радиоприемниках с амплитудной модуляцией входной радиосигнал преобразуется в сигнал постоянной промежуточной частоты. После этого используется усилитель промежуточной частоты с фиксированной настройкой для увеличения уровня сигнала до необходимой величины.

Усилитель промежуточной частоты — это одночастотный (узкополосный) усилитель. Обычно для усиления сигнала до необходимого уровня используются два или три каскада усиления промежуточной частоты. Чувствительность приемника определяется усилением усилителя промежуточной частоты. Чем выше усиление, тем выше чувствительность. На рис. 28–38 показан типичный усилитель промежуточной частоты радиоприемника амплитудно-модулированных сигналов. Промежуточная частота равна 455000 герц. На рис. 28–39 изображен усилитель промежуточной частоты телевизионного приемника.

Рис. 28–38. Усилитель промежуточной частоты в радиоприемнике сигналов с амплитудной модуляцией.

Рис. 28–39. Усилитель промежуточной частоты в телевизионном приемнике.

На рис. 28–40 приведена таблица, в которой сравниваются частоты радио и телевизионных приемников.

Рис. 28–40. Сравнение радио и телевизионных частот.

28-7. Вопросы

1. Чем усилители радиочастоты отличаются от других усилителей?

2. Какие два типа усилителей радиочастоты вы знаете?

3. Где используются усилители радиочастоты?

4. Что такое усилитель промежуточной частоты?

5. Что самое главное в усилителе промежуточной частоты?

28-8. ОПЕРАЦИОННЫЕ УСИЛИТЕЛИ

Операционный усилитель — это усилитель постоянного тока с очень высоким усилением. Обычно операционные усилители имеют коэффициент усиления от 20 000 до 1000000.

На рис. 28–41 изображено схематическое обозначение операционного усилителя. Вход, помеченный знаком (-), называется инвертирующим входом, а вход, помеченный знаком (+) — неинвертирующим входом.

Рис. 28–41. Схематическое обозначение операционного усилителя.

На рис. 28–42 изображена блок-схема операционного усилителя.

Рис. 28–42. Блок-схема операционного усилителя.

Операционный усилитель состоит из трех каскадов. Каждый каскад является усилителем со своими характерными особенностями.

Входной каскад — это дифференциальный усилитель. Он позволяет операционному усилителю реагировать только на разность входных сигналов. Кроме того, дифференциальный усилитель усиливает сигнал, пропорциональный разности входных напряжений, и не реагирует на одинаковые сигналы на обоих входах. Это называется ослаблением синфазного сигнала. Ослабление синфазного сигнала полезно при измерении слабых сигналов на фоне шума с частотой 60 герц. Шум с частотой 60 герц является общим для обоих входов и поэтому он ослабляется, а операционный усилитель усиливает только малую разность сигналов на обоих входах. Амплитудно-частотная характеристика дифференциального усилителя обеспечивает усиление от области низких частот до постоянного тока. Это означает, что дифференциальный усилитель может усиливать не только низкочастотные сигналы переменного тока, но и сигналы постоянного тока.

Второй каскад — это усилитель напряжения с высоким коэффициентом усиления. Этот каскад состоит из нескольких пар транзисторов, соединенных по схеме Дарлингтона, достигает усиления по напряжению в 200000 раз и более, обеспечивая большую часть усиления операционного усилителя.

Последний каскад — это выходной усилитель. Обычно это эмиттерный повторитель на комплементарных транзисторах. Он используется для того, чтобы операционный усилитель имел низкий выходной импеданс. Операционный усилитель может обеспечить несколько миллиампер тока нагрузки.

Операционные усилители рассчитаны на питание от двухполярного источника напряжения от ±5 до ±15 вольт. Положительный вывод источника питания должен обеспечивать от +5 до +15 вольт по отношению к земле, а отрицательный от -5 до -15 вольт по отношению к земле. Это позволяет выходному напряжению изменяться в сторону положительных и отрицательных значений по отношению к земле. Однако в некоторых случаях операционные усилители могут работать и от однополярного источника питания.

Принципиальная схема типичного операционного усилителя изображена на рис. 28–43.

Рис. 28–43. Схема операционного усилителя.

Изображенный усилитель называется LM741 (отечественный аналог К140УД7). Этот операционный усилитель не требует частотной коррекции, защищен от короткого замыкания, не имеет проблем с запиранием. Хорошие эксплуатационные качества при низкой цене обеспечивают его широкое использование.

Устройство, содержащее в одном корпусе два операционных усилителя LM741, называется LM747 (наш аналог КР140УД20). Благодаря отсутствию конденсаторов связи эти операционные усилители могут усиливать сигналы переменного и постоянного токов.

Нормальный режим работы операционного усилителя — это режим работы с обратной связью. В нем используется отрицательная обратная связь, что уменьшает общее усиление операционного усилителя, но обеспечивает лучшую стабильность.

При работе операционного усилителя с обратной связью, выходной сигнал подается на один из входов в качестве сигнала обратной связи. Этот сигнал обратной связи противодействует входному сигналу, так как находится в противофазе. Существуют две основные цепи с обратной связью: инвертирующая и неинвертирующая. Инвертирующая конфигурация более популярна.

На рис. 28–44 изображен операционный усилитель с инвертирующей обратной связью: входной сигнал подается на инвертирующий вход (-) через резистор R1. Обратная связь обеспечивается с помощью резистора R2.

Рис. 28–44. Операционный усилитель в качестве инвертирующего усилителя.

Величина сигнала на инвертирующем входе определяется как входным, так и выходным напряжением. Знак минус указывает на то, что выходной сигнал отрицателен, когда входной сигнал положителен. Знак плюс указывает на то, что выходной сигнал положителен, когда входной сигнал отрицателен. Выходной сигнал сдвинут по фазе на 180 градусов по отношению ко входному. В зависимости от отношения резисторов R2 и R1 усиление инвертирующего усилителя может быть меньше, равно или больше 1. Когда усиление равно 1, его называют усилителем с единичным усилением, и используют для инвертирования полярности входного сигнала.

На рис. 28–45 изображен операционный усилитель с неинвертирующей обратной связью: выходной сигнал находится в фазе со входным.

Рис. 28–45. Операционный усилитель в качестве неинвертирующего усилителя.

Входной сигнал подается на неинвертирующий вход операционного усилителя. Выходное напряжение делится с помощью резисторов R2 и R1 для того, чтобы подать напряжение обратной связи на инвертирующий (-) вход. Усиление по напряжению по неинвертирующему входу всегда больше 1.

Коэффициент усиления операционного усилителя зависит от частоты. Обычно усиление, указываемое в справочных данных — это усиление по постоянному току. При увеличении частоты усиление уменьшается. Без использования методов увеличения полосы пропускания, операционный усилитель хорош только для усиления сигналов постоянного тока. Для расширения полосы пропускания используется обратная связь, уменьшающая усиление. Насколько уменьшается усиление, настолько увеличивается полоса пропускания. С помощью этого способа полоса пропускания операционного усилителя 741 может быть увеличена до 1 мегагерца.

Операционные усилители применяются для сравнения, инвертирования или неинвертирования сигналов, они также могут использоваться для сложения сигналов, как показано на рис. 28–46. Такой усилитель называется суммирующим усилителем.

Рис. 28–46. Операционный усилитель в качестве суммирующего усилителя.

Отрицательная обратная связь удерживает потенциал инвертирующего входа близким к потенциалу земли. Следовательно, все входные сигналы электрически изолированы друг от друга. На выходе усилителя получается инвертированная сумма входных сигналов.

В суммирующем усилителе резистор, соединяющий неинвертирующий вход с землей, выбран равным полному сопротивлению параллельно включенных входному сопротивлению и сопротивлению обратной связи. Если сопротивление обратной связи увеличить, то цепь может обеспечить и усиление. Если используются различные входные сопротивления, сигналы могут быть сложены с различным усилением.

Суммирующие усилители используются при смешивании сигналов звуковой частоты. В качестве входных сопротивлений используются потенциометры для регулирования уровня каждого из входных сигналов.

Операционные усилители также могут использоваться в качестве активных фильтров. Фильтры, использующие резисторы, катушки индуктивности и конденсаторы, называются пассивными. Активные фильтры — это безындуктивные фильтры, использующие интегральные микросхемы. Преимущество активных фильтров в отсутствии катушек индуктивности, имеющих большие размеры.

При использовании операционных усилителей в качестве активных фильтров недостатком является то, что они требуют источника питания, могут создавать шум и превращаться в генератор (возбуждаться) вследствие температурного дрейфа или старения компонентов.

На рис. 28–47 изображен фильтр верхних частот, использующий операционный усилитель. Фильтр верхних частот подавляет низкие частоты и пропускает частоты, расположенные выше частоты среза.

Рис. 28–47. Операционный усилитель в качестве фильтра верхних частот.

На рис. 28–48 изображен фильтр нижних частот, использующий операционный усилитель. Фильтр нижних частот пропускает низкие частоты и не пропускает частоты, расположенные выше частоты среза.

Рис. 28–48. Операционный усилитель в качестве фильтра нижних частот.

На рис. 28–49 изображен полосовой фильтр, использующий операционный усилитель. Полосовой фильтр пропускает частоты, расположенные вблизи некоторой центральной частоты, и ослабляет более высокие и более низкие частоты.

Рис. 28–49. Операционный усилитель в качестве полосового фильтра.

Разностный усилитель вычитает один сигнал из другого. На рис. 28–50 изображен стандартный разностный усилитель. Эта цепь называется вычитающим устройством, поскольку она вычитает значение Е2 из значения E1.

Рис. 28–50. Операционный усилитель в качестве разностного усилителя.

28-8. Вопросы

1. Что такое операционный усилитель?

2. Нарисуйте блок-схему операционного усилителя.

3. Кратко объясните, как работает операционный усилитель.

4. Что такое нормальный режим работы операционного усилителя?

5. Какое усиление может быть получено с помощью операционного усилителя?

6. Нарисуйте схемы следующих цепей:

а.  Инвертирующий усилитель;

б.  Суммирующий усилитель;

в.  Фильтр верхних частот;

г.  Фильтр нижних частот;

д.  Разностный усилитель.

РЕЗЮМЕ

• Усилители — это электронные цепи, используемые для увеличения амплитуды электрического сигнала.

• Транзистор используется, главным образом, в качестве усилительного устройства.

• Транзисторные усилители могут быть трех типов: усилитель с общей базой, с общим коллектором и с общим эмиттером.

• Усилители с общим коллектором используются для согласования импедансов.

• Усилители с общим эмиттером обеспечивают обращение фазы выходного сигнала по отношению к входному.

• Все транзисторные усилители требуют двух напряжений для правильной подачи напряжения смещения.

• Один источник питания может обеспечить необходимые напряжения прямого и обратного смещения с помощью делителя напряжения.

• Цепь обратной связи с делителем напряжения является наиболее широко используемой цепью для напряжения смещения.

• Транзисторный усилитель может быть смещен таким образом, что на выходе будет усиливаться весь период входного сигнала или только его часть.

• Усилители класса А смещены таким образом, что выходной ток течет в течение всего периода.

• Усилители класса АВ смещены таким образом, что выходной ток течет в течение промежутка времени, большего, чем половина периода входного сигнала, но меньшего, чем период.

• Усилители класса В смещены таким образом, что выходной ток течет в течение только половины периода входного сигнала.

• Усилители класса С смещены таким образом, что выходной ток течет в течение промежутка меньшего половины периода входного сигнала.

• Для соединения одного транзистора с другим используют резистивно-емкостную, импедансную, трансформаторную и непосредственную (гальваническую) связи.

• Усилители с гальванической связью используются для получения высокого усиления на низких частотах или для усиления сигнала постояннного тока.

• Усилители с гальванической связью используются, главным образом, в качестве усилителей напряжения.

• Дифференциальный усилитель имеет два отдельных входа и может обеспечивать или один, или два выхода.

• Усилители звуковой частоты усиливают сигналы переменного тока в диапазоне частот от 20 до 20000 герц.

• Усилители звуковой частоты делятся на усилители напряжения и усилители мощности.

• Видеоусилители — это широкополосные усилители, используемые для усиления видеосигналов.

• Видеочастоты занимают полосу от нескольких герц до 5 или б мегагерц.

• Усилители радиочастоты работают в диапазоне от 10 до 30 мегагерц.

• Усилители радиочастоты делятся на перестраиваемые и неперестраиваемые.

• Операционные усилители — это усилители с гальванической связью и очень высоким коэффициентом усиления.

• Операционные усилители могут иметь коэффициент усиления от 20000 до 1000000.

• Операционные усилители обычно работают в режиме с обратной связью.

• Существуют два режима работы с обратной связью — инвертирующий и неинвертирующий.

Глава 28. САМОПРОВЕРКА

1. Кратко опишите, как используется транзистор для усиления сигналов.

2. Почему схема усилителя с общим эмиттером применяется наиболее широко?

3. Какие факторы влияют на усиление транзистора, и что может быть сделано для их компенсации?

4. Как поданное напряжение смещения влияет на класс работы усилителя?

5. Какой фактор необходимо учесть при соединении одного усилителя с другим?

6. Как метод связи, используемый для соединения усилителей, влияет на его рабочий диапазон частот?

7. При каких условиях могут использоваться усилители постоянного тока?

8. Как решается проблема температурной стабильности в усилителях постоянного тока с большим коэффициентом усиления?

9. В чем основные отличия между усилителями напряжения звуковой частоты и усилителями мощности звуковой частоты?

10. Каковы практические преимущества использования квазикомплементарного усилителя мощности перед комплементарным двухтактным усилителем?

11. Чем видеоусилитель отличается от усилителя звуковой частоты?

12. Какой фактор ограничивает усиление видеоусилителя на высоких частотах?

13. Для чего предназначен усилитель радиочастоты?

14. Для чего используются усилители промежуточной частоты?

15. Перечислите три каскада операционного усилителя и опишите их функции.

16. Где используются операционные усилители?

 

Глава 29. Генераторы

ЦЕЛИ:

После изучения этой главы студент должен быть в состоянии:

• Описать генератор и его назначение.

• Перечислить основные требования к генератору.

• Объяснить, как работает колебательный контур и как он связан с генератором.

• Нарисовать блок-схему генератора.

• Знать схемы LC, RC и кварцевого генераторов синусоидальных колебаний.

• Знать схемы генераторов несинусоидальных релаксационных (затухающих) колебаний.

• Нарисовать примеры генераторов синусоидальных и несинусоидальных колебаний.

Генератор — это невращающееся устройство, вырабатывающее переменный ток. Генераторы интенсивно используются в электронике: в радиоприем никах и телевизорах, в системах связи, в компьютерах, в промышленных системах управления и в устройствах точного измерения времени. Без генераторов не существовали бы очень многие электронные устройства.

29-1. ОСНОВЫ ГЕНЕРАТОРОВ

Генератор — это электрическая цепь, генерирующая периодический сигнал переменного тока. Частота сигнала может изменяться от нескольких герц до многих миллионов герц. Электронный генератор является альтернативой механическому генератору, используемому для получения электроэнергии. Преимуществом электронного генератора является отсутствие движущихся частей и значительно большая ширина диапазона, в котором может генерироваться сигнал. Выходное напряжение генератора может быть синусоидальным, прямоугольным или пилообразным, в зависимости от типа генератора. Основным требованием к генератору является постоянство частоты и амплитуды генерируемого напряжения.

Когда катушку индуктивности и конденсатор соединяют параллельно, они образуют цепь, называемую колебательным контуром. При возбуждении колебательного контура внешним источником постоянного тока, в нем возникают колебания; это означает, что в нем начинает течь переменный ток. Вследствие большого сопротивления цепи, колебания в колебательном контуре могут не возникнуть, так как сопротивление колебательного контура поглощает энергию тока и колебания в цепи затухают.

Для поддерживания колебаний в колебательном контуре рассеянную энергию необходимо восполнить. Это восполнение энергии осуществляется с помощью положительной обратной связи. Положительная обратная связь — это подача в колебательный контур части выходного сигнала для поддержки колебаний. Сигнал обратной связи должен быть в фазе с сигналом в колебательном контуре.

На рис. 29-1 изображена блок-схема генератора.

Рис. 29-1. Блок-схема генератора.

Структурное устройство генератора можно разбить на три части. Частотозадающей цепью генератора обычно является LC колебательный контур. Усилитель увеличивает амплитуду выходного сигнала колебательного контура. Цепь обратной связи подает необходимое количество энергии в колебательный контур для поддержки колебаний. Генератор — это схема с обратной связью, использующая постоянный ток для получения колебаний переменного тока.

29-1. Вопросы

1. Что такое генератор?

2. Как работает колебательный контур?

3. Что надо сделать для поддержания колебаний в колебательном контуре?

4. Нарисуйте блок-схему генератора.

5. Каковы функции основных частей генератора?

29-2. ГЕНЕРАТОРЫ СИНУСОИДАЛЬНЫХ КОЛЕБАНИЙ

Генераторы синусоидальных колебаний — это генераторы, вырабатывающие напряжение синусоидальной формы. Они классифицируются согласно их частотозадающим компонентам. Тремя основными типами генераторов синусоидальных колебаний являются LC генераторы, кварцевые генераторы и RC генераторы.

LC генераторы используют колебательный контур из конденсатора и катушки индуктивности, соединенных либо параллельно, либо последовательно, параметры контура определяют частоту колебаний. Кварцевые генераторы подобны LC генераторам, но обеспечивают более высокую стабильность колебаний. LC генераторы и кварцевые генераторы используются в диапазоне радиочастот. Они не подходят для применения на низких частотах. Для применения на этих частотах используются RC генераторы, имеющие резистивно-емкостную цепь для задания частоты колебаний.

Тремя основными типами LC генераторов являются генератор Хартли, генератор Колпитца и генератор Клаппа.

На рис. 29-2 и 29-3 изображены два основных типа генератора Хартли. Катушка с отводом в колебательном контуре указывает, что эти цепи являются генераторами Хартли. Недостатком генератора Хартли с последовательной обратной связью (рис. 29-2) является то, что через часть колебательного контура течет постоянный ток. В генераторе Хартли с параллельной обратной связью постоянный ток в колебательный контур не поступает, так как в цепь обратной связи включен конденсатор.

Рис. 29-2. Генератор Хартли с последовательной обратной связью.

Рис. 29-3. Генератор Хартли с параллельной обратной связью.

Генератор Колпитца (рис. 29-4) похож на генератор Хартли с параллельной обратной связью, за исключением того, что катушка с отводом заменена двумя конденсаторами. Генератор Колпитца стабильнее, чем генератор Хартли и чаще используется.

Рис. 29-4. Генератор Колпитца .

Генератор Клаппа (рис. 29-5) является разновидностью генератора Колпитца. Основным отличием является добавление конденсатора, включенного последовательно с индуктивностью в колебательный контур. Этот конденсатор позволяет изменять частоту генератора.

Рис. 29-5. Генератор Клаппа .

Изменения температуры, старение компонентов и изменение требований к нагрузке служит причиной нестабильности генераторов. Если требуется высокая стабильность параметров генерируемого сигнала, используются кварцевые генераторы.

Кварц — это материал, преобразовывающий механическую энергию в электрическую, когда к нему прикладывают давление, и электрическую энергию в механическую, под воздействием напряжения. Когда к кристаллу кварца приложено переменное напряжение, кристалл начинает растягиваться и сжиматься, создавая механические колебания, частота которых соответствует частоте переменного напряжения.

Кварцы обладают собственной частотой колебаний, обусловленной их структурой. Если частота приложенного переменного напряжения совпадает с собственной частотой, колебания кристалла ярко выражены. Если частота приложенного переменного напряжения отличается от собственной частоты кварца, кристалл колеблется слабо.

Частота механических колебаний кристалла кварца является величиной постоянной, что делает его идеальным для использования в генераторах.

В качестве генераторных кристаллов кроме кварца используются также турмалин и сегнетова соль. Сегнетова соль наиболее электрически активна, но легко разрушается. Турмалин имеет наименьшую электрическую активность, но большую прочность. Кварц лучше всего подходит для использования в генераторах: он имеет хорошую электрическую активность, достаточно прочен и поэтому чаще всего используется в качестве генераторного кристалла.

Кристаллическая пластинка размещается между двумя металлическими пластинами, которые прижимаются пружинами для того, чтобы обеспечить электрический контакт этих пластин с кристаллом. После этого кристалл помещается в металлический корпус. На рис. 29-6 изображено схематическое обозначение кристалла. На схемах кристаллы обозначаются буквами Y и XTAL.

Рис. 29-6. Схематическое обозначение кварца.

На рис. 29-7 изображена схема генератора Хартли с параллельной обратной связью с добавлением кварца. Кварц включен последовательно в цепь обратной связи. Если частота колебательного контура отклоняется от частоты кварца, импеданс кварца увеличивается, уменьшая глубину обратной связи. Это приводит к изменению частоты колебательного контура.

Рис. 29-7. Генератор Хартли с параллельной обратной связью, включающей кварц.

На рис. 29-8 изображен генератор Колпитца с кварцем, включенным так же как и в генераторе Хартли. Кварц управляет величиной обратной связи. Колебательный LC контур может быть настроен на частоту кварца.

Рис. 29-8. Кварцевый генератор Колпитца .

На рис. 29-9 изображен генератор Пирса. Эта схема подобна генератору Колпитца, за исключением того, что катушка индуктивности в колебательном контуре заменена кварцем. Кварц управляет импедансом колебательного контура, что определяет величину обратной связи и стабилизирует генератор.

Рис. 29-9. Генератор Пирса .

На рис. 29–10 изображен генератор Батлера. Схема собрана на двух транзисторах, использует колебательный контур и кварц для определения и стабилизации частоты колебаний. Колебательный контур должен быть настроен на частоту кварца, в противном случае генератор не будет работать. Преимущество генератора Батлера в том, что к кварцу приложено небольшое напряжение, уменьшающее его механические деформации. Заменив элементы колебательного контура, генератор можно заставить работать на частоте одной из гармоник кварца.

Рис. 29–10. Генератор Батлера .

RC генераторы используют для задания частоты резистивно-емкостную цепь. Существуют два основных типа RC генераторов синусоидальных колебаний: генератор с фазосдвигающей цепью и генератор на основе моста Вина.

Генератор с фазосдвигающей цепью — это обычный усилитель с фазосдвигающей RC цепью обратной связи (рис. 29–11).

Рис. 29–11. Генератор с фазосдвигающей цепью.

Обратная связь должна сдвигать фазу сигнала на 180 градусов. Так как емкостное сопротивление изменяется при изменении частоты, то эта компонента чувствительна к частоте. Стабильность улучшается при уменьшении величины фазового сдвига на каждой RC цепочке. Однако, на комбинации RC цепочек имеют место потери мощности. Транзистор должен иметь достаточно высокий коэффициент усиления для компенсации этих потерь.

Генератор на основе моста Вина — это двухкаскадный усилитель с цепью опережения-запаздывания и делителем напряжения (рис. 29–12).

Рис. 29–12. Генератор на основе моста Вина .

Цепь опережения-запаздывания состоит из последовательной (R1C1) цепочки и параллельной (R2C2) цепочки. Схема называется цепью опережения запаздывания потому, что выходное напряжение на некоторых частотах опережает входное напряжение по фазе, а на некоторых частотах отстает от него. На резонансной частоте сдвиг фаз равен нулю и выходное напряжение максимально. Резисторы R3 и R4 образуют цепь делителя напряжения, используемого для отрицательной обратной связи. Положительная обратная связь подается на базу, а отрицательная обратная связь на эмиттер генераторного транзистора Q1. Выход транзистора Q1 через емкость связан с базой транзистора Q2, который усиливает напряжение и сдвигает его по фазе на 180 градусов. Выход транзистора Q2 связан с мостовой цепью.

На рис. 29–13 изображен мостовой генератор Вина на интегральной микросхеме. Инвертирующий и неинвертирующий входы операционного усилителя идеальны для использования в генераторе на основе моста Вина. Усиление операционного усилителя высокое, что компенсирует все потери в цепи.

Рис. 29–13. Генератор на основе моста Вина на интегральной микросхеме .

29-2. Вопросы

1. Каковы три типа генераторов синусоидальных колебаний?

2. Нарисуйте схемы трех типов LC генератора.

3. Чем отличается генератор Колпитца от генератора Хартли?

4. Как можно улучшить стабильность LC генератора?

5. Каковы два типа RC генераторов, используемых для получения синусоидальных колебаний?

29-3. ГЕНЕРАТОРЫ НЕСИНУСОИДАЛЬНЫХ КОЛЕБАНИЙ

Генераторы несинусоидальных колебаний генерируют несинусоидальные колебания. Это не какая-то особая форма колебаний. Несинусоидальные колебания могут иметь прямоугольную, пилообразную или треугольную форму или комбинацию этих форм. Общей характеристикой для всех генераторов несинусоидальных колебаний является то, что все они — релаксационные генераторы. Релаксационный генератор запасает энергию в реактивной компоненте в течение одной фазы цикла колебаний и постепенно отдает ее в течение релаксационной фазы цикла.

Релаксационными генераторами являются блокинг-генераторы и мультивибраторы. На рис. 29–14 изображена схема блокинг-генератора.

Рис 29–14. Блокинг-генератор.

Причиной названия является то, что транзистор легко переводится в режим блокирования (запирания). Условие блокирования определяется разрядом конденсатора C1. Конденсатор C1 заряжается через переход эмиттер-база транзистора Q1. Однако когда конденсатор C1 заряжен, у него есть только один путь разряда — через резистор R1. Величина постоянной времени RC цепочки из резистора и конденсатора С1, устанавливает, как долго транзистор будет заперт (блокирован), а также определяет частоту колебаний. Большая постоянная времени соответствует низкой частоте, а маленькая постоянная времени — высокой частоте.

Если выходное напряжение взять с RC цепочки в эмиттерной цепи транзистора, то оно будет иметь пилообразную форму (рис. 29–15).

Рис. 29–15. Напряжение пилообразной формы, генерируемое блокинг-генератором.

RC цепочка определяет частоту колебаний и создает пилообразное напряжение. На транзистор подано напряжение смещения в прямом направлении через резистор R1. Как только транзистор Q1 начинает проводить, конденсатор С1 быстро заряжается. Положительный потенциал на верхней обкладке конденсатора С1 смещает эмиттерный переход в обратном направлении, запирая транзистор Q1. Конденсатор С1 разряжается через резистор R2, образуя задний фронт пилообразного импульса. Когда конденсатор С1 разряжается, транзистор опять смещается в прямом направлении и начинает проводить, повторяя процесс.

Конденсатор С1 и резистор R2 определяют частоту колебаний. Сделав резистор R2 переменным, можно изменять частоту колебаний. Если резистор R2 имеет высокое сопротивление, постоянная времени RC цепочки велика и частота колебаний низка. Если резистор R2 имеет низкое сопротивление, постоянная времени RC цепочки уменьшится и частота колебаний возрастет.

Мультивибратор — это релаксационный генератор, который может находиться в одном из двух временно стабильных состояний, и быстро переключаться из одного состояния в другое.

На рис. 29–16 изображена основная схема автоколебательного мультивибратора.

Рис. 29–16. Автоколебательный мультивибратор.

Основой генератора являются два каскада, связанные между собой таким образом, что на вход каждого каскада подается сигнал с выхода другого каскада. Когда один каскад открыт, другой заперт до тех пор, пока эти условия не поменяются местами. Цепь самовозбуждается благодаря наличию положительной обратной связи.

Частота колебаний определяется параметрами цепи связи.

Астабильный мультивибратор является разновидностью автоколебательных мультивибраторов. Астабильный мультивибратор вырабатывает прямоугольные импульсы. Изменением постоянной времени RC цепочки цепей связи можно получить прямоугольные импульсы любой желаемой ширины. Изменением значений резистора и конденсатора может быть изменена рабочая частота. Стабильность частоты мультивибратора выше, чем у типового блокинг-генератора.

Интегральной микросхемой, которая может быть использована в качестве астабильного мультивибратора является таймер 555 (рис. 29–17). Эта интегральная микросхема может выполнять много функций. Она состоит из двух компараторов, триггера, выходного каскада и разрядного транзистора.

Рис. 29–17. Блок-схема интегральной микросхемы таймера 555 .

На рис. 29–18 изображена схема, в которой таймер 555 используется в качестве астабильного мультивибратора. Частота колебаний определяется резисторами RА и RB и конденсатором С1. Эта цепь находит широкое применение в промышленности.

Рис. 29–18. Астабильный мультивибратор на основе таймера 555 .

29-3. Вопросы

1. Нарисуйте наиболее часто встречающиеся виды несинусоидальных колебаний.

2. Что такое релаксационный генератор?

3. Приведите два примера релаксационных генераторов.

4. Нарисуйте схему блокинг-генератора.

5. Нарисуйте схему астабильного мультивибратора на основе таймера 555.

РЕЗЮМЕ

• Генератор — это невращающееся устройство, вырабатывающее переменный ток.

• Выходное напряжение генератора может быть синусоидальным, прямоугольным или пилообразным.

• Основное требование к генератору — его выходное напряжение должно иметь постоянную частоту или амплитуду.

• Когда конденсатор и катушка индуктивности соединяются параллельно, образуется колебательный контур.

• Когда к колебательному контуру прикладывается напряжение от внешнего источника, в нем возникают колебания.

• Колебания в колебательном контуре затухают из-за потерь, обусловленных наличием сопротивления.

• Для поддержания колебаний в колебательном контуре требуется положительная обратная связь.

• Генератор состоит из трех основных частей: частотоопределяющего устройства, усилителя и цепи обратной связи.

• Тремя основными типами генераторов синусоидальных колебаний являются LC генераторы, кварцевые генераторы и RC генераторы.

• Тремя основными типами LC генераторов являются генератор Хартли, генератор Колпитца и генератор Клаппа.

• Кварцевые генераторы обеспечивают большую стабильность частоты выходного сигнала, чем LC генераторы.

• RC генераторы используют резистивно-емкостные цепи для задания частоты генератора.

• Генераторы несинусоидальных колебаний вырабатывают несинусоидальные колебания.

• Генераторы несинусоидальных колебаний генерируют колебания прямоугольной, пилообразной или треугольной формы или комбинацию этих форм.

• Релаксационный генератор — это основа всех генераторов несинусоидальных колебаний.

• Релаксационный генератор запасает энергию в реактивной компоненте в течение части цикла колебаний.

• Примерами релаксационных генераторов являются блокинг-генераторы и мультивибраторы.

Глава 29. САМОПРОВЕРКА

1. Перечислите части генератора и объясните, какой вклад в работу генератора вносит каждая часть.

2. Объясните, как можно поддерживать колебания в колебательном контуре?

3. Каковы главные типы генераторов синусоидальных колебаний?

4. Как используются кварцы в схемах генераторов?

5. Чем генератор несинусоидальных колебаний отличается от генератора синусоидальных колебаний?

6. Из каких компонентов состоят генераторы несинусоидальных колебаний?

 

Глава 30. Цепи формирования сигнала

ЦЕЛИ

После изучения этой главы студент должен быть в состоянии:

• Перечислить способы, с помощью которых можно изменить форму сигнала.

• Объяснить зависимость формы сигнала от вида частотных характеристик формирующих цепей.

• Дать определения длительности импульса, скважности, времени нарастания и времени спада амплитуды сигнала, отрицательного и положительного выбросов , а также «звона».

• Объяснить, как работают дифференцирующие и интегрирующие цепи.

• Описать цепи фиксации и ограничения.

• Описать различия между моностабильным и бистабильным мультивибраторами.

• Нарисовать схемы цепей формирования сигналов.

В электронике иногда бывает нужно изменить форму сигнала. Синусоидальный сигнал превратить в прямоугольный, прямоугольный в импульсный, а импульсный в прямоугольный. Форму сигнала можно проанализировать с помощью двух методов. Анализ формы сигнала посредством анализа его амплитуды в каждый момент времени, называется анализом временных характеристик. Анализ формы сигнала посредством разложения его на составляющие синусоиды, называется анализом частотных характеристик. Частотный анализ предполагает, что все периодические сигналы могут быть разложены на сумму синусоид.

30-1. НЕСИНУСОИДАЛЬНЫЕ СИГНАЛЫ

На рис. 30-1 изображены три основные формы сигналов, представленные в виде функций времени. Этими тремя формами являются: синусоидальная, прямоугольная и пилообразная. Хотя все эти три формы различны, они имеют одинаковый период или частоту. С помощью различных электронных цепей эти формы могут быть превращены одна в другую.

Рис. 30-1. Три основные формы периодического сигнала: ( А ) синусоидальная, ( Б ) прямоугольная, ( В ) пилообразная.

Периодичность — это главное свойство всех колебаний. Согласно концепции частотных характеристик все периодические сигналы состоят из синусоид. Другими словами, любой периодический сигнал может быть сформирован путем сложения некоторого количества синусоид, имеющих различные амплитуды, фазы и частоты. Важность синусоид в том, что только они не могут быть искажены RC, RL и LC цепями.

Частота синусоиды, равная частоте периодического сигнала, называется частотой основной гармоники. Частоту основной гармоники также называют первой гармоникой.

Частоты высших гармоник кратны частоте основной гармоники. Частота второй гармоники вдвое выше частоты основной гармоники, частота третьей гармоники втрое выше частоты основной гармоники и т. д. На рис. 30-2 приведена основная частота 1000 герц и несколько ее гармоник.

Рис. 30-2. Основная частота 1000 герц и некоторые ее гармоники.

Гармоники могут комбинироваться бесконечным числом способов и составлять любое периодическое колебание. Тип и число гармоник, необходимых для составления сигнала, зависит от формы этого сигнала. Например, на рис. 30-3 изображен сигнал прямоугольной формы.

Рис. 30-3. Сигнал прямоугольной формы.

Рис. 30-4 показывает, как прямоугольный сигнал может быть сформирован из комбинации основной гармоники и бесконечного числа нечетных гармоник, пересекающих ось координат в фазе с основной частотой.

Рис. 30-4. Формирование сигнала прямоугольной формы методом сложения его частотных составляющих.

Рис. 30-5 показывает формирование пилообразного сигнала. Он состоит из основной частоты и четных и нечетных гармоник, пересекающих ось координат со сдвигом по фазе на 180 градусов относительно основной частоты.

Рис. 30-5. Формирование сигнала пилообразной формы методом сложения его частотных составляющих.

Осциллограф выводит на экран временные характеристики сигналов. Анализатор спектра (рис. 30-6) выводит на экран частотные характеристики сигнала. Анализ частотных характеристик может быть использован для определения влияния цепей на форму сигнала.

Рис. 30-6. Анализатор спектра.

Периодические сигналы — это сигналы, повторяющиеся через определенные промежутки времени. Период сигнала измеряется интервалом времени от любой точки цикла до такой же точки следующего цикла (рис. 30-7).

Рис. 30-7. Период сигнала.

Длительность импульса — это длина импульса по оси времени.

Рис. 30-8. Длительность импульса сигнала.

Скважность — это отношение длительности импульса к его периоду. Скважность может быть представлена как процентное отношение времени существования импульса в течение каждого периода к периоду.

Все импульсы имеют время нарастания и время спада. Время нарастания — это время, требуемое для увеличения импульса от 10 % до 90 % от величины максимальной амплитуды. Время спада — это время, за которое импульс уменьшается от 90 % до 10 % от величины максимальной амплитуды (рис. 30-9).

Рис. 30-9. Время нарастания импульса и время спада импульса измеряются на уровнях 10 % и 90 % от максимальной амплитуды сигнала.

Форма отрицательных и положительных выбросов и «звон», т. е. возникновение высокочастотных затухающих колебаний, показаны на рис. 30–10.

Рис. 30–10. Положительный выброс, отрицательный выброс и «звон».

Положительный выброс наблюдается, когда передний фронт импульса превышает его максимальное значение. Отрицательный выброс имеет место, когда задний фронт импульса превышает его минимальное значение. Оба эти явления наблюдаются при возникновении затухающих колебаний (при ударном возбуждении), и известны, как «звон». Явления эти нежелательны, но существуют вследствие несовершенства цепей.

30-1. Вопросы

1. Дайте определение концепции частотных характеристик .

2. Как конструируются следующие колебания согласно концепции частотных характеристик?

а.  Прямоугольные колебания

б.  Пилообразные колебания.

3. Что такое периодическое колебание?

4. Что такое скважность?

5. Нарисуйте примеры положительного выброса, отрицательного выброса и «звона» в применении к реальному сигналу.

30-2. ЦЕПИ ФОРМИРОВАНИЯ СИГНАЛА

RC цепь может изменять форму сложных сигналов так, что выходная форма будет совсем не похожа на входную. Величина искажения определяется постоянной времени RC цепи. Тип искажения определяется выходной компонентой, включенной параллельно выходу. Если параллельно выходу включен резистор, то цепь называется дифференцирующей. Дифференцирующая цепь используется в цепях синхронизации, для получения узких импульсов из прямоугольных, а также для получения переключающих импульсов и меток. Если параллельно выходу включен конденсатор, то цепь называется интегрирующей. Интегрирующая цепь используется в цепях формирования сигналов в радио, телевидении, радиолокаторах и в компьютерах.

На рис. 30–11 изображена дифференцирующая цепь.

Рис. 30–11. Дифференцирующая цепь.

Напомним, что сложные сигналы состоят из основной частоты и большого числа гармоник. Когда сложный сигнал поступает на дифференцирующую цепь, она влияет на каждую частоту по разному. Отношение емкостного сопротивления (Хс) к R для каждой гармоники различно. Это приводит к тому, что каждая гармоника сдвигается по фазе и уменьшается по амплитуде в разной степени. В результате исходная форма сигнала искажается. На рис. 30–12 показано, что происходит с сигналом прямоугольной фор- мы, прошедшим дифференцирующую цепь. На рис. 30–13 показано влияние различных постоянных времени RC цепи.

Рис. 30–12. Преобразование сигнала прямоугольной формы на выходе дифференцирующей цепи.

Рис. 30–13. Влияние различных постоянных времени на форму выходного сигнала дифференцирующей цепи.

Интегрирующая цепь подобна дифференцирующей, за исключением того, что параллельно выходу включен конденсатор (рис. 30–14). На рис. 30–15 показано, как изменяется форма прямоугольного сигнала, прошедшего интегрирующую цепь. Интегрирующая цепь искажает сигнал не так, как дифференцирующая.

Рис. 30–14. Интегрирующая цепь.

Рис. 30–15. Преобразование сигнала прямоугольной формы на выходе интегрирующей цепи.

На рис. 30–16 показано влияние различных постоянных времени RC цепи.

Рис. 30–16. Влияние различных постоянных времени на форму выходного сигнала интегрирующей цепи.

Другим типом цепи, изменяющим форму сигнала, является ограничитель сигнала (рис. 30–17). Цепь ограничения может быть использована для обрезания пиков приложенного сигнала, для получения прямоугольного сигнала из синусоидального, для удаления положительных или отрицательных частей сигнала или для поддержания амплитуды входного сигнала на постоянном уровне. Диод смещен в прямом направлении и проводит ток в течение положительного полупериода входного сигнала. В течение отрицательного полупериода входного сигнала диод смещен в обратном направлении и ток не проводит. На рис. 30–17 показана форма сигнала на входе ограничителя: отрицательная часть входного сигнала обрезана. Цепь является, по существу, однополупериодным выпрямителем.

Рис. 30–17. Последовательный диодный ограничитель.

Рис. 30–18. Выходной сигнал при перемене полярности диода в цепи ограничителя.

Используя напряжение смещения можно регулировать величину обрезаемого сигнала. На рис. 30–19 изображен последовательный ограничитель со смещением. Диод не может проводить до тех пор, пока входной сигнал не превысит напряжение смещения.

Рис. 30–19. Последовательный диодный ограничитель со смещением.

На рис. 30–20 показан выходной сигнал, полученный в результате перемены полярности диода и напряжения смещения в последовательном ограничителе.

Рис. 30–20. Выходной сигнал при перемене полярности диода и источника смещения в смещенном последовательном диодном ограничителе.

Цепь параллельного ограничения выполняет те же функции, что и последовательный ограничитель (рис. 30–21). Разница состоит в том, что диод включен параллельно выходу. Эта цепь обрезает отрицательную часть входного сигнала.

Рис. 30–21. Параллельный диодный ограничитель.

На рис. 30–22 показано влияние перемены полярности диода. Параллельный ограничитель может быть смещен для изменения уровня ограничения сигнала, как показано на рис. 30–23 и рис. 30–24.

Рис. 30–22. Перемена полярности диода в параллельном диодном ограничителе.

Рис. 30–23. Параллельный диодный ограничитель со смещением.

Рис. 30–24. Перемена полярности диода и источника смещения в смещенном параллельном диодном ограничителе.

Если необходимо ограничить сигнал и с положительной, и с отрицательной сторон, используются два смещенных диода, включенных параллельно выходу (рис. 30–25). Это позволяет получить выходной сигнал с амплитудой, не превышающей заранее определенный положительный и отрицательный уровень. При таком преобразовании выходной сигнал приобретает форму, близкую к прямоугольной. Следовательно, эта цепь называется генератором прямоугольных колебаний.

Рис. 30–25. Ограничитель, используемый для ограничения сигнала и с положительной, и с отрицательной сторон.

На рис. 30–26 изображена другая схема ограничителя, ограничивающего сигнал как с положительной стороны, так и с отрицательной с помощью двух стабилитронов. Выходной сигнал ограничен с двух сторон напряжениями стабилизации стабилитронов. Между этими пределами ни один стабилитрон не проводит и входной сигнал проходит на выход.

Рис. 30–26. Другая схема ограничителя, ограничивающая амплитуду сигнала как с положительной стороны, так и с отрицательной.

Иногда желательно изменить уровень отсчета постоянного тока для сигнала переменного тока. Уровень отсчета постоянного тока — это уровень, относительно которого измеряется сигнал переменного тока. Фиксатор может использоваться для фиксации верхнего или нижнего значения сигнала при заданном постоянном напряжении. В отличие от ограничителя сигнала, фиксатор не изменяет форму сигнала. Диодный фиксатор (рис. 30–27) называют восстановителем постоянной составляющей. Эта цепь обычно используется в радиолокаторах, телевидении, телекоммуникациях и в компьютерах. В изображенной цепи на вход подан сигнал прямоугольной формы. Назначение цепи — ограничить максимальное значение сигнала напряжением 0 вольт без изменения формы сигнала.

Рис. 30–27. Диодный фиксатор.

30-2. Вопросы

1. Нарисуйте схемы следующих RC цепей:

а.  Дифференцирующей;

б.  Интегрирующей.

2. Каковы функции дифференцирующей и интегрирующей цепей?

3. Нарисуйте схемы следующих цепей:

а.  Ограничителя;

б.  Фиксатора.

4. Каковы функции ограничителя и фиксатора?

5. Для чего применяются следующие цепи:

а.  Дифференцирующая;

б.  Интегрирующая;

в.  Ограничитель;

г.  Фиксатор.

30-3. ЦЕПИ СПЕЦИАЛЬНОГО НАЗНАЧЕНИЯ

Префикс моно- означает одно. Моностабильный мультивибратор имеет только одно стабильное состояние. Его иначе называют ждущим мультивибратором, так как он выдает только один выходной импульс для каждого входного импульса. Выходной импульс обычно длиннее входного. Следовательно, эта цепь может также называться расширителем импульсов. Обычно схема используется, как логический элемент в компьютерах, электронных схемах управления и в коммуникационном оборудовании.

На рис. 30–28 изображена схема моностабильного мультивибратора.

Рис. 30–28. Моностабильный мультивибратор.

Цепь обычно находится в стабильном состоянии. Под воздействием входного пускового сигнала, она переключается в нестабильное состояние. Время нахождения схемы в нестабильном состоянии определяется постоянной времени RC цепочки, состоящей из резистора R2 и конденсатора С1. Конденсатор С2 и резистор R5 образуют дифференцирующую цепь, преобразующую входной импульс в положительный и отрицательный пики. Диод D1 позволяет пройти только отрицательному пику, включающему цепь.

Бистабильный мультивибратор — это мультивибратор, имеющий два стабильных состояния (би- означает два). Эта цепь требует двух входов для завершения полного цикла.

Импульс, поданный на один вход устанавливает цепь в одно из стабильных состояний. Импульс на другом входе переустанавливает цепь в другое стабильное состояние. Эта цепь часто называется триггером из-за своего режима работы.

Основная триггерная схема генерирует прямоугольные колебания для использования в качестве стробирующих или синхронизирующих сигналов для операций переключения в схемах двоичных счетчиков (рис. 30–29).

Рис. 30–29. Основная схема триггера.

В сущности, это два транзисторных усилителя, у которых выход каждого транзистора связан со входом другого. Когда на вход установки подается входной сигнал, транзистор Q1 открывается и запирает транзистор Q2. Когда транзистор Q2 закрыт, он подает положительный потенциал на базу транзистора Q1,удерживая его в открытом состоянии. Если теперь подать импульс на вход сброс, транзистор Q2 откроется, запирая транзистор Q1. Запертый транзистор Q1 удерживает транзистор Q2 открытым.

Триггеры, собранные из дискретных компонентов, в настоящее время применяются редко. Однако интегральные микросхемы триггеров находят широкое применение. Это, возможно, наиболее важная цепь в цифровой электронике, используемая для деления частоты, хранения данных, их счета и обработки.

Другую бистабильную цепь представляет собой триггер Шмитта (рис. 30–30).

Рис. 30–30. Основная схема триггера Шмитта .

Одним из применений триггера Шмитта является преобразование синусоидальных, пилообразных и других колебаний в колебания прямоугольной формы. Эта цепь отличается от обычного бистабильного мультивибратора тем, что одна из цепей связи заменена резистором (R3), общим для обоих эмиттеров, и это обеспечивает дополнительное восстановление сигналов для ускорения работы цепи и спрямляет передний и задний фронты выходных импульсов.

30-3. Вопросы

1. Что такое моностабильный мультивибратор?

2. Нарисуйте схему ждущего мультивибратора.

3. Что такое бистабильный мультивибратор?

4. Нарисуйте схему триггера.

5. Чем триггер Шмитта отличается от стандартного бистабильного мультивибратора?

РЕЗЮМЕ

• Форма сигналов может быть изменена с помощью различных электронных цепей.

• Частотный анализ показывает, что все периодические сигналы состоят из синусоид.

• Периодические сигналы имеют одинаковую форму во всех циклах.

• Только синусоиды не искажаются RC, RL и LC цепями.

• Частотный анализ показывает, что несинусоидальные периодические сигналы состоят из синусоид основной частоты и комбинации четных и нечетных гармоник.

• Прямоугольные периодические колебания состоят из основной частоты и бесконечного количества нечетных гармоник.

• Пилообразные периодические колебания состоят из основной частоты и четных и нечетных гармоник, пересекающих ось координат со сдвигом по фазе на 180 градусов по отношению к основной частоте.

• Период сигнала измеряется интервалом времени от любой точки цикла до такой же точки следующего цикла.

• Длительность импульса — это длина импульса по оси времени.

• Скважность — это отношение длительности импульса к его периоду.

• Время нарастания импульса — это время, необходимое для увеличения импульса от 10 % до 90 % от величины максимальной амплитуды.

• Время спада импульса — это время, за которое импульс уменьшается от 90 % до 10 % от величины максимальной амплитуды.

• Положительный выброс, отрицательный выброс и «звон» нежелательны в цепи и существуют вследствие несовершенства цепей.

• RC цепь может быть использована для изменения формы сложного колебания.

• Если параллельно выходу RC цепи подключен резистор, то цепь называется дифференцирующей.

• Если параллельно выходу RC цепи подключен конденсатор, то цепь называется интегрирующей.

• Цепи ограничения используются для обрезания пиков приложенного сигнала или для поддержания постоянной амплитуды.

• Цепи фиксации используются для фиксации верхнего или нижнего значения сигнала при заданном постоянном напряжении.

• Моностабильный мультивибратор (ждущий мультивибратор) выдает только один выходной импульс для каждого входного импульса.

• Бистабильные мультивибраторы имеют два стабильных состояния и называются триггерами.

• Триггер Шмитта — это бистабильный мультивибратор специального назначения.

Глава 30. САМОПРОВЕРКА

1. Опишите принципы частотного анализа формы периодических сигналов.

2. Почему в цепях формирования сигналов имеют место такие проблемы, как положительный выброс, отрицательный выброс и «звон*?

3. Опишите, где используются интегрирующие и дифференцирующие цепи.

4. Как можно изменить уровень постоянной составляющей сигнала?

5. Объясните разницу между функциями моностабильной и бистабильной цепи.

6. Каково значение триггера?