Альтернативные источники энергии и энергосбережение

Германович В.

Турилин А.

Глава 2

ИСПОЛЬЗУЕМ СОЛНЕЧНОЕ ТЕПЛО ДЛЯ НАГРЕВА ВОДЫ

 

 

2.1. Солнечные коллекторы промышленного изготовления

Разновидности солнечных коллекторов

Простейшим способом утилизации солнечной энергии является использование ее для нагрева. Все знают, как нагреваются на солнце различные предметы. И чем темнее поверхность, тем больше нагрев. Именно на этом и основан принцип работы солнечного коллектора — солнечное тепло поглощается темной поверхностью (абсорбером) и передается теплоносителю. Далее полученное тепло либо накапливается:

♦ либо в специальном теплоаккумуляторе;

♦ либо сразу используется для нагрева.

#o.jpg_1   Определение.

Солнечный коллектор — установка для прямого преобразования энергии Солнца в тепловую энергию.

Принципы солнечного отопления известны на протяжении тысячелетий. Люди нагревали воду при помощи Солнца до того, как ископаемое топливо заняло лидирующее место в мировой энергетике. Солнечный коллектор — наиболее известное приспособление, непосредственно использующее энергию Солнца, они были разработаны около двухсот лет назад.

Немного истории. Самый известный из коллекторов — плоский — был изготовлен в 1767 году швейцарским ученым по имени Гораций де Соссюр. Позднее им воспользовался для приготовления пищи сэр Джон Гершель во время своей экспедиции в Южную Африку в 30-х годах XIX века.

#c.jpg_5   Совет.

Чтобы коллектор отдавал основную часть поглощенного тепла теплоносителю, его надо, по возможности, изолировать от окружающей среды.

Можно выделить несколько основных типов солнечных коллекторов: плоские, вакуумные, концентраторы.

В плоских солнечных коллекторах за плоским абсорбером (чаще всего это металлическая пластина с темным поглощающим покрытием) находится система трубок, по которым пропускается теплоноситель. Чтобы предотвратить потери энергии в окружающую среду обратная сторона и торцы такого коллектора закрываются теплоизолирующим материалом.

Фронтальная часть накрывается стеклом. Солнечный свет практически беспрепятственно проходит через стекло, а вот инфракрасное излучение от нагретого абсорбера назад не проникает. Тепло как бы запирается внутри коллектора, работает парниковый эффект. Фронтальное стекло также в некоторой степени препятствует охлаждению коллектора за счет тепловой конвекции воздуха.

#v.jpg_14   Примечание.

Изредка в плоских коллекторах применяют двойное остекление (как в оконных рамах), что еще больше увеличивает КПД (двойное остекление лучше «держит» тепло), но и несколько утяжеляет и удорожает конструкцию.

Самые качественные плоские солнечные коллекторы могут нагревать теплоноситель до температуры более 150 °C, но в большинстве конструкций температура не поднимается выше точки кипения воды. Поэтому считается, что плоские коллекторы можно оставлять на долгое время без присмотра.

Вакуумные коллекторы обязаны своим названием способу накопления тепла. В них теплопоглощающие элементы запаяны в стеклянные трубки, в которых создан вакуум. Стекло препятствует выходу инфракрасного излучения от нагретых элементов, а вакуум идеальная среда для теплоизоляции, т. к. в нем охлаждение из-за конвекции просто отсутствует.

Вакуумные коллекторы эффективно работают даже в сильные морозы и в пасмурную погоду, а на солнце они способны нагревать теплоноситель до 300 градусов. Именно из-за этого системы с вакуумным коллектором обычно гораздо сложнее. Они включают в себя специальные контроллеры и клапаны, обеспечивающие сброс избыточного тепла при перегреве.

И, наконец, коллекторы-концентраторы представляют собой отдельный класс устройств, которые чаще всего используют, когда необходимо получить очень высокую температуру. Простейшим примером концентратора может служить обычная линза. Наверное, все мы, будучи детьми, выжигали с ее помощью узоры на лавочках во дворе. Правда, в современных концентраторах линзы практически не используются. Там, в основном, применяют зеркала. Принцип тот же — солнечные лучи сводятся в одну точку параболическим зеркалом. В фокусе концентратора температура составляет несколько сотен градусов. Нагретый до такой высокой температуры теплоноситель используется для получения пара, который вырабатывает энергию уже в паровой турбине.

Плоский солнечный коллектор промышленного изготовления

Плоский солнечный коллектор — самый распространенный вид солнечных коллекторов, используемых в бытовых водонагревательных и отопительных системах. Этот коллектор представляет собой теплоизолированную остекленную панель, в которую помещена пластина поглотителя. Пластина поглотителя изготовлена из металла, хорошо проводящего тепло (чаще всего меди или алюминия). Чаще всего используют медь, т. к. она лучше проводит тепло и меньше подвержена коррозии, чем алюминий. Пластина поглотителя обработана специальным высокоселективным покрытием, которое лучше удерживает поглощенный солнечный свет ().

Это покрытие состоит из очень прочного тонкого слоя аморфного полупроводника, нанесенного на металлическое основание, и отличается высокой поглощающей способностью в видимой области спектра и низким коэффициентом излучения в длинноволновой инфракрасной области.

Благодаря остеклению (в плоских коллекторах обычно используется матовое, пропускающее только свет, стекло с низким содержанием железа) снижаются потери тепла. Дно и боковые стенки коллектора покрывают теплоизолирующим материалом, что еще больше сокращает тепловые потери. Устройство плоского солнечного коллектора показано на рис. 2.1.

Рис. 2.7. Устройство плоского солнечного коллектора

Рассмотрим принцип действия. Солнечный свет проходит через остекление и попадает на поглощающую пластину, которая нагревается, превращая солнечную радиацию в тепловую энергию. Это тепло передается теплоносителю — воде или антифризу, циркулирующему через солнечный коллектор. Теплоноситель нагревается и отдает затем тепловую энергию через теплообменник воде в емкостном водонагревателе. В нем горячая вода находится до момента ее использования.

#c.jpg_6   Совет.

Также в емкостном водонагревателе можно установить электрическую вставку, чтобы в случае понижения температуры ниже установленной (например, из-за продолжительной пасмурной погоды) она догревала воду до заданной температуры.

Прямоточный вакуумированный трубчатый солнечный коллектор

Рассмотрим устройство коллектора. В каждую вакуумированную трубку встроен медный поглотитель с гелиотитановым покрытием, гарантирующим высокий уровень поглощения солнечной энергии и малую эмиссию теплового излучения.

Вакуумированное пространство позволяет практически полностью устранить теплопотери. На поглотителе установлен коаксиальный трубчатый прямоточный теплообменник, выходящий в коллектор. Протекающий через него теплоноситель забирает тепло от поглотителя.

К преимуществам этой системы можно отнести непосредственную передачу тепла воде, что позволяет сократить теплопотери. Так как полный коэффициент потерь в вакуумном коллекторе мал, теплоноситель в нем можно нагреть до температур 120–160 °C.

Принцип действия таков. Солнечная радиация проходит сквозь вакуумированную стеклянную трубку, попадает на поглотитель и превращается в тепловую энергию. Тепло передается жидкости, протекающей по коаксиальному трубчатому прямоточному теплообменнику. Каждая трубка теплообменника соединена с накопительным баком так называемым «коллектором» системой из 2 медных труб. По одной из них нагретая вода передается в бак-накопитель, по другой — холодная вода из бака-накопителя поступает на нагрев в вакуумированные трубки.

Рис. 2.2. Устройство прямоточного вакуумированного трубчатого солнечного коллектора

Вакуумированный трубчатый солнечный коллектор с тепловой трубкой

Конструкция вакуумированного трубчатого коллектора с тепловой трубкой похожа на конструкцию термоса: одна стеклянная/металлическая трубка вставлена в другую большего диаметра (рис. 2.3). Между ними — вакуум.

Рис. 2.3. Устройство вакуумированного трубчатого солнечного коллектора с тепловой трубкой

На самом деле вакуум — отличный теплоизолятор, но не меняет излучающую способность нагретого тела, вакуум препятствует конвекционной передаче тепла. ИК-излучение задерживается стеклом трубки.

В каждую вакуумированную трубку встроена медная пластина поглотителя с гелиотитановым покрытием, гарантирующим высокий уровень поглощения солнечной энергии и малую эмиссию теплового излучения. Под поглотителем установлена тепловая труба, заполненная испаряющейся жидкостью.

С помощью гибкого соединительного элемента тепловая труба подсоединена к конденсатору, находящемуся в теплообменнике типа «труба в трубе». Соединение относится к так называемому «сухому» типу, что позволяет поворачивать или заменять трубки и при заполненной установке, находящейся под давлением.

#v.jpg_15   Примечание.

Наиболее важное преимущество вакуумированного коллектора с тепловой трубкой заключается в том, что он способен работать при температурах до -30 °C (коллекторы со стеклянными тепловыми трубками) или даже до -45 °C (коллекторы с металлическими тепловыми трубками).

Принцип действия вакуумированного солнечного коллектора с тепловой трубкой такой. Это более сложный и более дорогой тип коллектора. Тепловая трубка — это закрытая медная/стеклянная трубка с небольшим содержанием легкокипящей жидкости. Под воздействием тепла жидкость испаряется и забирает тепло вакуумной трубки. Пары поднимаются в верхнюю часть, где конденсируются и передают тепло теплоносителю основного контура водопотребления или незамерзающей жидкости отопительного контура. Конденсат стекает вниз, и все повторяется снова.

Приемник солнечного коллектора медный с теплоизоляцией. Передача тепла происходит через медную «гильзу» приемника, благодаря этому отопительный контур отделен от трубок, и при повреждении одной трубки коллектор продолжает работать. Отдельную трубку можно заменить в случае необходимости, коллектор при этом продолжает функционировать. Процедура замены трубок очень проста, при этом нет необходимости сливать незамерзающую жидкость из контура тепообменника.

Назначение и структурная схема гелиосистемы

Задачи, решаемые гелиосистемой:

♦ получение альтернативного источника неограниченной, экологически чистой бесплатной энергии;

♦ обеспечение потребностей в горячей воде для бытовых нужд (даже в местах отсутствия магистрального водопровода);

♦ полное или частичное обеспечение потребностей отопления (осенне-весенний период — до 80 %, а зимний — до 50 %);

♦ снижение уровня потребления традиционных энергоресурсов, а, следовательно, и финансовых затрат.

Гелиосистемы состоят из солнечного коллектора, системы управления с насосами и бака-аккумулятора (рис. 2.4).

Рис. 2.4. Устройство гелиоустановки

В коллекторе (лат. накопитель) медная пластина аккумулирует солнечную энергию. Они рассмотрены выше. Под пластиной приварены медные трубы, по которым течет коллекторная жидкость. Она транспортирует тепло. Система управления с насосом обеспечивает циркуляцию коллекторной жидкости внутри установки. В хорошо изолированном баке-аккумуляторе тепло жидкости передается воде (теплообменник). Таким образом, в доме будет нагретая вода и ночью, и в дождливые дни.

Важной частью гелиоустановки является поддерживающая конструкция для солнечных коллекторов. Она обеспечивает правильный угол наклона, а также необходимую жесткость конструкции. Комбинация поддерживающей конструкции с солнечными модулями должна выдерживать порывы ветра и другие неблагоприятные воздействия окружающей среды.

Варианты монтажа установки:

♦ наклонный (на крышу с любым углом наклона ската);

♦ горизонтальный (на плоскую крышу);

♦ свободностоящий (солнечный коллектор с опорной конструкцией).

Классификация гелиосистем

Гелиосистемы подразделяются на два типа (активные и пассивные) в зависимости от способа циркуляции нагреваемой жидкости и имеют два варианта исполнения (прямые и косвенные) в зависимости от наличия или отсутствия теплоносителя. Рассмотрим эти гелиосистемы.

Пассивные гелиосистемы — циркуляция жидкости осуществляется за счет конвективных потоков. В основе этого процесса лежит явление естественной конвекции — стремление теплых масс воды вверх. При нагреве воды ее объем несколько увеличивается, а плотность и удельная масса снижаются — вода становиться легче и восходящими потоками поднимается по коллектору в верхнюю часть бака.

В свою очередь, холодная вода постепенно перетекает в коллектор, где также нагревается. Так происходит циркуляция водных масс в системе. С этим явлением мы сталкиваемся в жаркую погоду, когда влага испаряется с поверхности Земли, достигая верхних слоев тропосферы, водные массы собираются в облака, охлаждаются и выпадают в виде дождя. Достоинства и недостатки пассивных систем приведены с табл. 2.1.

Таблица 2.1. Достоинства и недостатки пассивных систем

Достоинства

1. Меньшая стоимость и затраты при эксплуатации и обслуживании.

2. Независимость от наличия электрической энергии, используемой для работы циркуляционного насоса и контроллера.

3. Надежность, долговечность и легкость в эксплуатации

Недостатки

1. Меньшая производительность за счет пассивной циркуляции жидкости.

2. Бак имеет строгое размещение — выше коллектора и непосредственно примыкает к нему

Активные гелиосистемы для циркуляции жидкости через коллектор используют электрический насос, дополнительным оборудованием является контроллер и клапаны. При этом насос используется в случае необходимости интенсификации производства горячей воды, часто достаточно только естественной конвекции. Достоинства и недостатки активных систем приведены с табл. 2.2.

Таблица 2.2. Достоинства и недостатки активных систем

Достоинства

1. Большая производительность за счет активной циркуляции жидкости.

2. Расположение бака не требует строгого размещения, поэтому системы легче модифицируются, чем пассивные

Недостатки

1. Большая стоимость и затраты при эксплуатации и обслуживании.

2. Зависимость от наличия электрической энергии, используемой для работы циркуляционного насоса и контроллера.

3. Более требовательны в эксплуатации

Прямые и косвенные гелиосистемы

Прямые — в системе циркулирует вода, используемая непосредственно для горячего водоснабжения (открытый контур). Косвенные — в системе циркулирует теплоноситель (вода или антифриз), который через теплообменник нагревает воду, используемую для горячего водоснабжения (закрытый контур).

Комплектация гелиосистем, изготовленных промышленностью

Гелиоустановка состоит из трех обязательных элементов: вакуумный коллектор, накопительный резервуар и центр управления (рис. 2.5).

Рис. 2.5. Устройство гелиоустановки

Вакуумный коллектор — комплекс вакуумных трубок, преобразующих поток солнечного излучения в тепловую энергию, где осуществляется первичная передача полученного тепла в накопительный резервуар через циркулирующий в системе теплоноситель (незамерзающая жидкость).

Вакуумный коллектор комплектуется 10–30 вакуумными трубками, располагающимися параллельно друг другу. Количество коллекторов зависит от потребностей, но обычно достаточно 1–2, в отдельных случаях — 4–6 и более (в зависимости от направления использования тепла и нагрузки).

Элементарной единицей преобразования энергии солнечного излучения в тепло являются вакуумные трубки. Они улавливают наиболее ценное с точки зрения получения тепла излучение, а полученное тепло — передают воде, которая непосредственно используется в быту или теплоносителю, посредством которого осуществляется нагрев воды для горячего водоснабжения или отопления.

Накопительный резервуар — бак заданного объема (как правило, 100–500 л) в котором накапливается теплая вода, полученная от вакуумных коллекторов. Конструктивно выполнен в виде электрического бойлера с одним или двумя внутренними теплообменными спиралями. Функции накопительного резервуара:

♦ накопление горячей воды:

♦ сохранение полученного тепла;

♦ дополнительный подогрев воды (при необходимости).

#v.jpg_16   Примечание.

По умолчанию резервуар комплектуется электронагревателем, но дополнительный подогрев (в случае необходимости) может осуществляться за счет любой системы энергогенерирования (газ, дизель, уголь, дрова и т. д.).

Центр управления (рабочая станция) — комплекс автоматического контроля функционирования вакуумного коллектора и накопительного резервуара, включающий контроллер, датчики температуры и давления, насос и запорные элементы.

Она позволяет полностью автоматизировать процесс и установить наиболее эффективный режим работы системы в течение суток в зависимости от заданных потребителей параметров. Это реализуется при помощи микропроцессорного контроллера обеспечивающего следующие функции:

♦ индикация температуры коллектора, резервуара, обратного потока теплоносителя

♦ выбор температуры активации принудительной циркуляции теплоносителя и дополнительного подогрева;

♦ выбор временных параметров включения-выключения системы отопления и дополнительного подогрева;

♦ выбор температуры режима антизамерзания;

♦ индикация повреждения датчиков.

Принцип работы такого коллектора представлен на рис. 2.6. В основу функционирования солнечного вакуумного коллектора положено четыре базовых процесса:

♦ улавливание солнечного излучения;

♦ теплообмен;

♦ консервация полученного тепла;

♦ автоматизированный контроль системы.

При этом инженерное решение по реализации этих процессов четко распределяется в соответствии с элементами солнечного вакуумного коллектора. Так, солнечное излучение, попадая на коллектор (рис. 2.6), проходит через его вакуумную зону и достигает специального покрытия, которое улавливает те волны солнечного излучения, которые несут наибольшую энергию — в первую очередь инфракрасный спектр.

Рис. 2.6. Принцип работы солнечного вакуумного коллектора

В результате этого происходит интенсивный разогрев вакуумного коллектора. В зависимости от типа вакуумных трубок коллектора, полученная энергия передается: воде (непосредственно используемой), теплоносителю (вода или антифриз) или металлической пластине. В первом случае полученное тепло непосредственно передается воде для ее нагрева. Во втором и третьем — используется теплоноситель или теплопередатчик.

В качестве теплоносителя может использоваться обычная вода или антифриз (как правило, водный раствор гликоля), а в качестве теплопередатчика медная трубка или алюминиевая пластина.

Далее теплоноситель или теплопередатчик отдает полученное тепло воде, используемой для бытовых нужд (горячая вода и/или отопление). Обычно, теплоноситель или теплопередатчик пространственно соприкасаются с медной трубкой (спиральной, U-образной или головчатого типа), которая характеризуется повышенным коэффициентом теплообмена.

Именно через медную трубку и осуществляется процесс теплообмена между теплоносителем (теплопередатчиком) и нагреваемой водой. В наиболее простых системах медные трубки отсутствуют, в таком случае процесс теплообмена происходит непосредственно между теплоносителем и нагреваемой водой.

С целью сохранения полученного тепла в солнечном вакуумном коллекторе используются баки-резервуары, имеющие изоляционный слой, который обеспечивает как можно более продолжительное поддержание внутренней температуры.

Для более эффективной координации функционирования наиболее сложные (и одновременно наиболее производительные) солнечные вакуумные коллекторы комплектуются системой автоматического управления.

Эта система управления осуществляется контроль работы всей установки в соответствии с заданными параметрами, включая выбор оптимального режима работы системы в течение суток, при этом контроллер регулирует поток теплоносителя и определяет направление подачи тепла (горячее водоснабжение и/или отопление).

Для бесперебойного функционирования системы солнечного вакуумного коллектора могут комплектоваться дополнительными источниками энергии. Например, традиционный водонагреватель, работающий на электричестве, газе, жидком (дизель) или твердом (уголь) виде топлива. Это обеспечивает наиболее высокую эффективность использования в зимнее время, когда нагрузки наиболее высоки, а также ночное время или облачную погоду, при этом альтернативный источник энергии используется лишь для поддержания заданных параметров.

#v.jpg_17   Примечание.

Наибольшее количество энергии воспринимается панелью коллектора при расположении его плоскости под прямым углом к направлению на Солнце.

Установка гелиосистемы

Количество тепловой энергии, вырабатываемой солнечным коллектором, зависит от целого ряда факторов. К поддающимся изменению относят угол наклона и ориентацию установки. Критерием ориентации является азимут.

Угол наклона — это угол между горизонталью и батареей. При установке на скатной крыше угол наклона задается скатом кровли.

Поскольку угол инсоляции зависит от времени суток и года, ориентацию плоскости коллектора следует выполнять в соответствии с высотой Солнца в период поступления наибольшего количества солнечной энергии.

На практике идеальными для широты, например, Ленинградской области оказались углы наклона между 30 и 45°.

Азимут описывает отклонение плоскости коллектора от направления на юг; если плоскость коллектора ориентирована на юг, то азимут = 0°. Для широты Ленинградской области приемлемы отклонения от направления на юг до 45° на юго-восток или юго-запад.

Итак, самого высокого коэффициента энергоотдачи (КПД) солнечной установки в Санкт-Петербурге и Ленинградской области можно добиться при ее расположении в южном направлении с наклоном 30–35° к горизонтали. Но даже при значительном отклонении от этих условий (от юго-запада до юго-востока, с наклоном от 25 до 55°) монтаж гелиоустановки целесообразен.

Установка солнечного коллектора и определение его размеров должны быть выполнены таким образом, чтобы незначительным было воздействие дающих тень соседних зданий, деревьев, линий электропередач и т. п.

Солнечное вакуумные коллекторы могут устанавливаться на любом более или менее освещенном пространстве: как горизонтальном — крыши зданий, техплощадки, так и вертикальном — балконы. При этом экспозиция (север-юг) и угол наклона (0—90°) оказывают значение на эффективность работы всей системы.

#v.jpg_17   Примечание.

Следует учесть, что функционирование системы возможно в любое время года и погоду, однако наибольшая производительность системы приходится на период весна-осень. Поэтому при комплектации системы необходимо учитывать их минимальную производительность, рассчитанную на холодный период года, когда количество солнечной энергии снижается, а потребность в тепловой энергии — возрастает.

Системы могут работать в открытом автономном режиме, осуществляя, например, прямой подогрев воды для пассивного горячего водоснабжения. Но наиболее распространенные и эффективные закрытые, двухконтурные типы установок, функционирующие при магистральном давлении водопровода и имеющие дополнительный источник энергообеспечения.

Первый вариант — так называемые сезонные установки, функционирующие в теплый период года, они популярны для применения в дачных поселках. Второй вариант — всесезонные установки, обеспечивающие круглогодичное обеспечение теплом.

Прикидочный расчет гелиосистем

Для расчета вам необходимо пройти несколько шагов (рис. 2.7).

Рис. 2.7. Таблица примерного расчета гелиосистемы с сайта

Шаг 1. Определиться с количеством потребителей горячей воды.

Шаг 2. Определить примерное количество воды, потребляемой каждым членом вашей семьи в сутки.

Шаг 3. После этих двух шагов вы получите рекомендованный объем накопительного бака.

Шаг 4. Выберите желаемую степень замещения ваших потребностей в тепле энергией Солнца.

Шаг 5. Выберите южный или северный регион, где планируется размещение системы.

Шаг 6. Выберите планируемую ориентацию устанавливаемых коллекторов.

Шаг 7. Выберите угол наклона устанавливаемых коллекторов.

Шаг 8. После выполнения последнего шага вы получите примерное необходимое количество коллекторов.

После выполнение вышеуказанных шагов вы получили необходимую емкость бака-накопителя и примерное количество коллекторов. Далее вам необходимо решить, будете ли вы использовать солнечную энергию как дополнительный источник тепла в системе отопления.

От вашего решения зависит выбор бака-накопителя с одним или двумя теплообменниками. Для отбора тепла в основную систему отопления вам будет бак с двумя теплообменниками. С помощью одного тепло будет передаваться в бак с водой, с помощью второго (верхнего) вы будете иметь возможность передавать излишки тепла в основную систему отопления.

Далее к получившемуся комплекту вам необходимо добавить рабочую станцию с контроллером, датчиками температуры и другой автоматикой. Таким образом, имея комплект оборудования, состоящий из бака-накопителя, необходимого количества вакуумных солнечных коллекторов и рабочей станции с контроллером, вы сможете рассчитать стоимость вашей системы.

Для «грубого расчета» к стоимости оборудования обычно добавляется 30 % на работы по монтажу и дополнительные трубы, фитинги, изоляцию и т. д. Остается только рассчитать сроки окупаемости системы.

В ряде случаем примерные расчеты можно произвести, заполнив калькулятор на сайтах компаний, занимающихся этим оборудованием, например, .

Приобретаем дачный душ

После целого дня проведенного на садовом участке, неизбежно возникает вопрос о том, каким образом смыть с себя всю грязь перед возвращением в город. А жаркие дни бывает охота и просто освежиться в перерыве между работой. Если на вашем участке отсутствует полностью благоустроенный всеми удобствами дом, то сделать это бывает довольно сложно.

Поэтому многие дачники испытывают дискомфорт. Чтобы избежать подобных ситуаций и не мучить себя — можно воспользоваться последней технической новинкой, разработанной специально для любителей садоводства — дачным душем.

Обливание из ковша — дело хлопотное и малоприятное, тем более оно никогда не станет полноценной заменой настоящему душу. Каждый раз топить баню, если вам повезло и на вашем участке она имеется — также неудобно, так как на это тратится очень много времени и средств. Поэтому дачный душ станет для вас идеальным вариантом при решении этой проблемы.

При покупке душа необходимо обратить внимание на несколько немаловажных факторов. Во-первых — на материал, из которого сделан бак для воды. Если он сделан некачественно, то в скором времени из него может начать литься вода со ржавчиной, а вам это, конечно же, не нужно.

Во-вторых — необходимо убедиться в качестве материала, из которого сделан пол душевой кабины — не начнет ли он гнить.

#v.jpg_18   Примечание.

Если вы вовремя не обратите внимания на эти детали, то можете просто потратить свои деньги зря.

Приобретаем солнечный водонагреватель

А купить можно, например, отечественный солнечный коллектор «Сокол» с оптическим, многослойным, селективным покрытием, нанесенным в вакуумной установке. Это покрытие поглощает 95 % солнечного света, а излучает только 5 % тепла. Данный метод был разработан специалистами НПО машиностроения и был отмечен серебряными Медалями на международных выставках в Брюсселе (1999 г.) и Женеве (2000 г.). Этот слой, в отличие от «псевдо селективных» покрытий других производителей, обладает высокой степенью поглощения как видимых солнечных лучей, так и солнечной радиации в облачную погоду.

Из-за низкого коэффициента черноты обратное излучение тепла минимально (до 5 %). Благодаря этому солнечная энергия эффективно используется в системах нагрева воды и отопления, а не излучается с поверхности коллектора. Получается «солнечная ловушка» с высокими показателями эффективности в условиях низких температур и малой солнечной инсоляции. Все части коллектора алюминиевые, что значительно увеличивает срок службы коллектора. Средний КПД коллектора — 75 %.

Варианты дачных душей

На сегодняшний день производители предлагают садоводам большое количество различных вариантов дачных душей — разнообразных по своим свойствам, качеству и цене:

♦ во-первых, души, в которых вода нагревается естественным путем — под воздействием солнечных лучей — чрезвычайно популярны, так как занимают очень немного места на участке и удобны в использовании;

♦ во-вторых, душ педальный. Или топтун, топтышка. Для тех, кто постоянно ездит на дачный участок или проводит время в походах на природе, наилучшим вариантом будет педальный душ — благодаря простоте конструкции, он может быть помещен в обычный пакет. Он состоит из педалей, при нажатии на которые из шланга начинает литься вода и душевой лейки. Он настолько просто в обращении, что использовать его самостоятельно смогут даже маленькие дети. Самые простые в использовании дачные души. Один конец шланга опускается в емкость с водой, на втором конце душевая лейка, переминаясь на специальных педалях вы перекачиваете воду снизу вверх;

♦ в-третьих, души, в которых вода нагревается электронагревателем. Он состоит из бака, объем которого может достигать 200 л, а также кабины, оснащенной специальным местом, где можно раздеться и повесить свои вещи. Встроенный терморегулятор поддерживает заданный уровень температуры воды, поэтому таким душем можно пользоваться в любую погоду. Каркас душа обычно покрывают краской, препятствующей появлению ржавчины, поэтому он с легкостью переживет зимний период на вашем участке. Такие души очень надежны, прослужат вам долгий срок, их очень просто установить самостоятельно в любом месте вашего участка.

♦ в-четвертых, бочка с электроподогревом. Если у вас уже есть конструкция душа, или вы хотите использовать уже готовое помещение для душевой, например, сарай или бытовку, то вам необходима бочка с электроподогревом, вы устанавливаете бак на крыше, а душевую лейку выводите над местом помывки. Наличие в бочке с электроподогревом терморегулятора позволяет получать воду именно той температуры, которая вам необходима.

 

2.2. Создаем гелиосистемы своими руками

Воздушный солнечный коллектор своими руками

Так как же простому самодельщику использовать даровое солнечное тепло? Для начала, давайте вспомним самую распространенную установку по использованию солнечного тепла — теплицу. Это фактически большой солнечный коллектор. Роль абсорбера в нем выполняют растения и поверхность грунта, роль защитного стекла — стеклянное или полиэтиленовое покрытие. Там работает тот же парниковый эффект. Цель такого коллектора в нагреве самого себя, чтобы растения чувствовали себя комфортнее.

А если мы начнем «забирать» теплый воздух из теплицы? Теплица превратиться в… воздушный солнечный коллектор.

Это, наверное, одна из самых простых конструкций, которая совершенно не требовательна ни к материалам, ни к технологии изготовления (рис. 2.8).

Рис. 2.8. Самодельный воздушный солнечный коллектор

Теплоизолированная снизу зачерненная поверхность является дном плоского ящика. Ящик можно сделать из любого подручного материала — доски, фанера и т. д. Сверху этот ящик закрыт стеклом или другим прозрачным материалом. Очень хорошие результаты дает покрытие из сотового поликарбоната. Получается легкое двухслойное пластиковое покрытие с хорошим светопропусканием и теплоизоляцией.

Видимый свет поглощается зачерненной поверхностью, нагревает ее, а она, в свою очередь, нагревает воздух в коллекторе. Нагретый воздух в такой системе сам является теплоносителем, он забирается из обогреваемого помещения, нагревается в коллекторе и подается обратно. Все воздуховоды (подводящие и отводящие воздух от коллектора) должны быть теплоизолированы.

Для увеличения длины пути, проходимого воздухом, внутри ящика можно установить переборки. Воздух через коллектор прогоняется вентилятором.

В специальных контроллерах применяются дифференциальные датчики, сравнивающие температуру в помещении и внутри коллектора. Они включают вентиляторы только, когда воздух в коллекторе достаточно прогреется.

Но в домашних условиях место датчиков температуры проще применить небольшую солнечную батарею, от которой будет питаться вентилятор. Напряжение и мощность этой солнечной батареи надо подбирать так, чтобы вентилятор, прогоняющий воздух через коллектор, начинал работать, только если на него падает достаточное количество света, при котором нагревается коллектор.

Например, в пасмурную погоду воздушный солнечный коллектор работать практически не будет, а, значит, и вентилятор при таком освещении вращаться не должен. А вот если на улице светит яркое солнце, коллектор нагревается очень быстро, значит и вентилятор должен работать «на всю катушку». Собрав такую систему, вы получите пассивное отопление вашего дома или дачи в солнечные дни.

Преимущества воздушных солнечных коллекторов:

♦ воздушные системы выглядят привлекательнее жидкостных, так как требуют меньше трубопроводов и деталей и поэтому менее дороги;

♦ в воздушных солнечных коллекторах отсутствует опасность протечек и замерзания теплоносителя;

♦ изготовление воздушных солнечных коллекторов и связанных с ними узлов и систем сравнительно просто;

♦ сравнительная простота воздушных систем притягательна для людей, желающих построить свою собственную систему.

К недостаткам воздушных солнечных коллекторов можно отнести узкий спектр их применения. Теплый воздух обычно необходим в холодное время года для обогрева, но зимой солнечные дни — редкость, да и их продолжительность недостаточна.

А вот летом, когда солнечного тепла в избытке, получаемое тепло можно использовать только для сушки кормов или древесины, например. Никому не придет в голову обогревать дом в летний зной. Вот и получается, что воздушный солнечный коллектор будет большую часть года просто простаивать.

Именно поэтому большее распространение получили солнечные коллекторы с жидким теплоносителем (водяные).

#c.jpg_7   Совет.

Подобную систему необходимо снабжать датчиками температуры, чтобы отключать вентиляторы, когда на коллектор не падает солнечный свет. Иначе в пасмурную погоду и ночью вы вместо нагрева получите эффективное охлаждение помещения.

Солнечный коллектор типа «бочка»

Наверняка многие из вас видели, а некоторые возможно и применяют этот тип солнечного коллектора. Конструкция весьма простая — железная бочка, окрашенная в черный цвет и заполненная водой. Вода в такой бочке за день нагревается на солнце, а вечером можно принять теплый душ (рис. 2.9).

Рис. 2.9. Солнечный коллектор типа «бочка»

Проблем у такой конструкции множество.

Нагревание происходит медленно из-за малой площади, на которую падает солнечный свет. Из-за отсутствия теплоизоляции такая бочка очень «быстро остывает. Так что если захотите принять душ поздним вечером или утром, то только холодный.

Если у кого-то уже имеется такая бочка, вы можете ее усовершенствовать. Бочка заключается в стеклянный ящик, который не будет препятствовать ее нагреванию, но будет существенно замедлять остывание. Северную сторону бочки, на которую никогда не попадает солнце, можно утеплить более основательно, например, минеральной ватой. Такое простейшее усовершенствование также значительно ускоряет нагрев воды и существенно повышает максимальную температуру. Не обожгитесь!

Солнечный коллектор из металлических труб

Эта гелиосистема была сконструирована болгарским инженером С. Станиловым и публиковалась в журналах «Направи сам» (НРБ) и «Моделист-Конструктор» (1989, № 10). В конструкцию гелиосистемы входят (рис. 2.10):

♦ солнечный коллектор, состоящий из двух одинаковых блоков (при необходимости количество блоков можно увеличить);

♦ накопитель горячей воды;

♦ аванкамера.

Рис. 2.10. Гелиосистема в сборе

При проектировании солнечного водонагревателя использовалось несколько хорошо известных принципов. Так, например, для самого нагревателя — «парниковый эффект», то есть свойство солнечных лучей беспрепятственно проходить сквозь прозрачную среду в замкнутое пространство и превращаться в тепловую энергию, уже не способную преодолеть обратно прозрачную «крышу» установки.

А в гидравлической системе служит термосифонный эффект, то есть свойство жидкости при нагревании подниматься вверх, вытесняя при этом более холодную воду и заставляя ее перемещаться к месту нагрева.

Следует также отметить, что при разработке учитывался и эффект накопления и сохранения тепловой энергии: в установке «уловленная» солнечная энергия, преобразованная в тепловую, аккумулируется и сохраняется длительное время.

Все составные элементы водонагревателя должны быть доступны для изготовления своими силами и из таких полуфабрикатов или сырья, материалов, которые можно приобрести в открытой продаже либо подобрать из металлолома.

Рассмотрим принципы работы гелиосистемы (рис. 2.11 и рис. 2.12).

Рис. 2.11. Гидравлическая схема гелиосистемы

Рис. 2.12. Устройство солнечного коллектора

Теплоотражатель (оцинкованное кровельное железо или белая жесть) Теплоизолятор (пенопласт, стекло- или шлаковата) Усиление днища (деревянный брусок сечением 30x50 мм)

Коллектор — это трубчатый радиатор, заключенный в короб, одна из сторон которого застеклена. Радиатор сварен из стальных труб:

♦ для подводящей и отводной используются водопроводные трубы на 1 или на 3/4 дюйма;

♦ для решетки — тонкостенные трубы меньшего диаметра, например, труба 016x1,5 мм. Всего для одной решетки требуются 15 таких труб длиной около 1600 мм.

Короб коллектора — деревянный, собран из досок толщиной 25–30 мм и шириной 120 мм. Днище короба — из фанеры или же оргалита, оно усилено рейками сечением 30x50 мм. Короб рекомендуется тщательно теплоизолировать!

Сделать это можно с помощью упаковочного или строительного пенопласта: он укладывается на дно, поверх него закрепляется лист белой жести или оцинкованного кровельного железа, и сверху укладывается радиатор. Закрепляется радиатор в коробе хомутами из стальной полосы.

Трубы радиатора и металлический лист на дне короба окрашиваются черной матовой краской.

#c.jpg_8   Совет.

Покровное стекло желательно герметизировать, с тем, чтобы потери тепла за счет конвекции были минимальными. С внешней стороны короб желательно окрасить серебрянкой, с тем, чтобы уменьшить потери на теплоизлучение.

Все соединения — как сварные, так и резьбовые — должны быть строго герметичными. Соединение труб — стандартное, с помощью муфт, тройников и уголков с герметизацией пенькой и краской.

Накопителем теплоносителя может служить бак емкостью 200–300 л. В принципе для этой цели годится и любая подходящая бочка.

#c.jpg_9   Совет.

Если невозможно подобрать емкость нужной вместимости, используйте две-три, соединив их с помощью труб в единую систему.

Накопитель также желательно теплоизолировать. Идеальным вариантом будет размещение емкости (или емкостей) в дощатом или же фанерном коробе с заполнением межстеночного пространства любым теплоизолятором — строительным пенопластом, шлаковатой, сухими опилками или даже рубленой соломой или сеном. С той же целью саму бочку (или бочки) желательно окрасить изнутри и снаружи серебрянкой. Ею же следует окрасить короб и снаружи.

Аванкамера предназначена для создания в гидросистеме постоянного, не слишком высокого давления — 800… 1000 мм водного столба.

#v.jpg_19   Примечание.

Если провести аналогию с системой охлаждения автомобиля, то можно сказать, что аванкамера играет здесь роль расширительного бачка.

Изготовить ее можно из любого подходящего сосуда емкостью 30–40 л, например, большого бидона или даже алюминиевой кастрюли той же вместимости. Аванкамера оснащается подпитывающим устройством, позволяющим ей работать в автоматическом режиме.

Его основа — поплавковый клапан, который применяется в быту для сливных бачков: его можно приобрести в магазинах сантехнических изделий.

Сборка гелиосистемы начинается с размещения на чердаке дома накопителя в теплоизолирующем коробе и аванкамере. Масса заполненного водой накопителя получается значительной, поэтому следует убедиться, что перекрытия потолка в выбранном месте достаточно прочны и выдержат вес массивного бака.

Аванкамера размещается поблизости от накопителя таким образом, чтобы уровень воды в ней превышал уровень воды в накопителе на 0,8–1 м.

Солнечные коллекторы располагаются с южной стороны дома под углом от 35 до 45° к горизонту. Размещать их лучше всего так, чтобы эти панели стали естественной кровлей дома или небольшой веранды.

Для того чтобы соединить все элементы солнечного водонагревателя в единую систему, понадобятся трубы двух сортаментов: «дюймовые» и «полудюймовые». С помощью последних монтируется высоконапорная часть системы — от водопроводного ввода до аванкамеры, а также вывод нагретой воды из накопителя: «дюймовые» используются для низконапорной части нагревателя.

#v.jpg_19   Примечание.

Следует отметить, что работоспособность системы в значительной степени зависит от ее герметичности и от отсутствия воздушных пробок, поэтому к монтажу трубопроводов следует отнестись особенно аккуратно.

Все трубы желательно также окрасить серебрянкой и тщательно теплоизолировать — например, с помощью поролона и полиэтиленовой ленты, которой полосы поролона прибинтовываются к трубе. Завершив эту операцию, лучше покрыть «забинтованную трубу серебрянкой.

Заполнение системы водой осуществляется через дренажные вентили в нижней части радиаторов — в этом случае будет гарантия от появления в системе воздушных пробок. Процесс заполнения заканчивается, когда из дренажной трубы аванкамеры польется вода.

Теперь подсоединяем аванкамеру к водопроводному вводу и открываем расходный вентиль. При этом уровень воды в аванкамере начнет снижаться до тех пор, пока не сработает поплавковый клапан. Подгибая держатель поплавка, можно добиться оптимального уровня воды в аванкамере.

После заполнения системы водой радиаторы тут же начнут нагревать ее — это происходит даже в облачную погоду. Теплая вода станет подниматься вверх, заполняя собой накопитель и вытесняя при этом холодную, которая поступит в радиатор.

Процесс происходив непрерывно — до тех пор, пока температура воды, поступающей в радиатор, не сравняется с температурой воды, поступающей из радиатора. При расходовании воды из накопителя уровень ее в аванкамере понизится; тогда сработает поплавковый клапан и дольет воду в аванкамеру.

Холодная вода из аванкамеры поступит в нижнюю часть накопительной емкости, поэтому перемешивания воды практически не происходит. Теплая же вода забирается из самой верхней части накопителя.

Следует помнить, что в ночное время, когда температура на улице меньше, чем температура нагретой воды, солнечный водонагреватель с помощью радиатора начнет отапливать улицу — термосифонный эффект работает и в этом случае, перекачивая тепло в обратном направлении.

#c.jpg_10   Совет.

В гидросистеме должен быть предусмотрен вентиль, препятствующий обратной циркуляции воды из радиаторов в накопитель, который имеет смысл перекрывать в вечернее и ночное время.

Подводку воды к мойке или к душу можно произвести с помощью стандартных смесителей. Мера эта отнюдь не лишняя: в солнечную погоду температура воды может достигать 80°, и пользоваться такой водой затруднительно. К тому же смесители позволят существенно экономить горячую воду.

В случае если производительность солнечного водонагревателя не устраивает, ее можно значительно увеличить, вводя в тепловую цепь дополнительные секции солнечных коллекторов — блочная конструкция установки вполне позволяет сделать это.

Солнечный коллектор из медных трубок

В этом разделе рассмотрена конструкция и методика изготовления летнего душа с солнечным коллектором из медных трубок. Установка рассчитана ее автором Е. Карповым на изготовление в домашних условиях и использование только широкодоступных материалов.

Солнечный коллектор — это основной элемент гелиоустановки. Решено было использовать медную трубу для систем отопления. Причина выбора — высокая коррозионная стойкость, простота сборки (пайка), разумно сделанные фитинги — практически без скачков проходного сечения. Конструкция солнечного коллектора показа на рис. 2.13.

Рис. 2.13. Конструкция солнечного коллектора

Трубы гидравлических коллекторов холодной и горячей воды изготовлены из отрезков трубы диаметром 18 мм и тройников, нагревательные трубки имеют диаметр 15 мм. Для подключения к системе используются переходы на резьбу 3/4 дюйма, два других конца заглушены.

К нагревательным трубкам припаян стальной лист толщиной 0,8 мм. На изготовление солнечного коллектора ушло 20 тройников, 5 м трубы диаметром 15 мм, 1,5 м трубы диаметром 18 мм, две заглушки и две переходные муфты. Кроме этих материалов понадобится роликовый труборез, припой с флюсом и самая дешевая газовая горелка.

Изготовление нагревательной панели начинается с нарезки нужного количества трубок, после этого в два тройника впаивается первая нагревательная трубка и промежуточные трубки, далее на промежуточные трубки надеваются следующие два тройника с вставленной (но не припаянной) нагревательной трубкой, и все соединения пропаиваются, и так далее. В последнюю очередь впаиваются заглушки и переходные муфты.

#c.jpg_11   Совет.

Сборку следует вести на ровной плоскости, то есть после установки очередной пары тройников, всю конструкцию следует уложить на плоскость и выровнять, а потом уже паять (лучше паять прямо на плоскости, если она это выдержит).

Пайка производится следующим образом:

♦ на конец трубы наносится тонким слоем поясок флюс-припоя шириной 10–15 мм;

♦ труба вставляется в тройник (муфту);

♦ место спая прогревается горелкой до расплавления припоя.

После этого к нагревательным трубкам припаивается металлический лист, это самая сложная и неприятная часть работы. Во-первых, следует запастись достаточным количеством обычного припоя. Во-вторых, наложив теплообменник на лист, следует отметить места, где проходят нагревательные трубки, и их облудить.

#c.jpg_11   Совет.

Удобно паять, поставив всю конструкцию под углом и одновременно орудуя мощным (90 ватт) паяльником и газовой горелкой.

Перед пайкой, лист надо прижать к трубкам. Автор Е. Карпов использовал несколько струбцин, переставляя их по мере надобности. Можно просверлить в листе отверстия диаметром 1–1,5 мм и притянуть их проволокой. Трубки надо припаять по всей длине с обеих сторон, не жалея припоя.

Завершив пайку, следует провести гидравлические испытания, например, заглушив один выход, а второй подключив к водопроводу. Нигде и ничего не должно течь и капать. Готовую нагревательную панель окрашивают черной матовой термостойкой краской в два слоя, краска продается в аэрозольной упаковке. В последнюю очередь устанавливают тройник и переход. Готовую панель помещают в деревянный ящик (рис. 2.14).

Рис. 2.14. Сборка деревянного корпуса

Ящик собран в шип из четырех досок толщиной 25 мм. Перед сборкой вдоль длинных сторон досок с обеих сторон выбирают рубанком паз глубиной 6 мм и шириной 6–8 мм. Для повышения жесткости коробки заподлицо с нижним краем пазов в углы коробки вклеиваются деревянные бруски 30x30 мм, два таких же бруска длиной 300–400 мм приклеивают (приблизительно по центру) изнутри вдоль длинной стороны коробки со стороны установки задней крышки. Они служат для крепления задней крышки ящика, изготовленной из куска фанеры толщиной 6 мм. Для прохода входного и выходного патрубков, в ящике вырезают пазы.

#c.jpg_11   Совет.

Делать это лучше по месту, закрепив предварительно нагревательную панель. Для склеивания ящика следует использовать хороший водостойкий клей, вполне подходят «Жидкие гвозди».

После изготовления и подгонки всех частей ящика их следует пропитать водоотталкивающим составом (торговое название «Полифлюид») и окрасить синтетической эмалью два раза. Сборку коллектора производят в таком порядке.

Шаг 1. На задней крышке крепят шурупами четыре деревянных проставки толщиной 50 мм (следует следить, чтобы проставка не попала под нагревательную трубку).

Шаг 2. На крышку укладывают слой стекловаты с припуском 90—100 мм, напротив проставок стекловату раздвигают.

Шаг 3. Устанавливают нагревательную панель на проставки, и крепят ее к ним шурупами.

Шаг 4. Вставляют заднюю крышку в ящик, и крепят крышку шурупами к брускам.

Шаг 5. Расправляют стекловату вдоль стенок ящика, и закрепляют ее в нескольких местах тонкими гвоздями с широкими шайбами.

Шаг 6. Устанавливают на силиконовом герметике защитное стекло.

Шаг 7. Задувают строительной пеной места прохода патрубков.

Эквивалентная площадь нагрева солнечного коллектора примерно составляет 0,5 м2.

Сборка гелиоустановки. Полная схема гелиоустановки показана на рис. 2.15. Гелиоустановка одноконтурная, термосифонного типа и рассчитана на постоянное подключение к магистрали питающей воды.

Рис 2.15. Полная схема гелиоустановки

Такая схема многократно описана, и поэтому не будем повторяться, а основное внимание уделим ее техническому воплощению.

Бак-накопитель — это алюминиевая бочка, которая после переделки имеет емкость приблизительно 0,3 м3. Для теплоизоляции бак обернут двумя слоями минеральной ваты толщиной 50 мм. Поверх ваты уложено два слоя гидроизоляционной ткани, ткань закреплена тонкой вязальной проволокой. Сверху положен кружок рубероида (в виде юбочки) и тоже закреплен вязальной проволокой. Конечно, алюминиевая бочка — это роскошь (просто повезло), вполне подойдет и стальная емкость, окрашенная изнутри водостойкой краской.

Можно попробовать и полиэтиленовую емкость, но при постоянном нахождении на улице их долговечность не очень велика. Общее требование к любому типу бака: он должен быть узким и высоким.

Штуцера в баке изготовлены из оцинкованных сгонов длиной 100–150 мм. Для подключения солнечного коллектора используются сгоны на % дюйма, для штуцера подачи питающей воды — 1/2 дюйма. Конструкция штуцера показана на рис. 2.16. Отверстия в баке сначала сверлятся, а потом доводятся до необходимого диаметра напильником.

Рис. 2.16. Конструкция штуцера

Трубопроводы изготовлены из металлопластиковой трубы. Работа с ней не вызывает каких-либо проблем и не требуется какой-то специальный инструмент. Она прекрасно режется роликовым труборезом. При больших радиусах сгиба можно обойтись и без гибочной пружины. Еще одно ее положительное свойство: малое гидравлическое сопротивление. Для теплоизоляции труб используется стандартный теплоизоляционный рукав.

В качестве автоматического клапана питающей воды используется поплавковый клапан от сливного бачка унитаза. При выборе клапана не стоит экономить:

♦ во-первых, клапан должен быть надежным, чтобы не лазить каждую неделю наверх;

♦ во-вторых, при его открывании вода должна вытекать преимущественно из выходного отверстия, а не лететь во все стороны.

На выходной патрубок клапана надета пластиковая трубка, достающая до дна бака. При отборе воды, холодная вода поступает на дно бака и вытесняет горячую воду наверх.

Выходной патрубок изготовлен из куска оцинкованной трубы с нарезанной на одном его конце резьбой 1/2 дюйма длиной 150 мм. Труба уплотняется в днище бака аналогично уплотнению штуцеров, на оставшийся конец резьбы накручивается стандартный шаровой клапан (желательно с длинной ручкой).

Соответственно, в клапан вворачивается лейка. По-видимому, лучшим решением было бы использование плавающего водозаборника и отбор воды из верхних слоев. Выяснилось, что в жаркий день температура воды для мытья слишком высока, поэтому выпускной патрубок был слегка модифицирован. Между выпускным патрубком и клапаном был установлен тройник. В него от дополнительного штуцера, установленного в днище бака, через гибкий шланг и кран подается более холодная вода. Получилось некое подобие смесителя.

Солнечный коллектор установлен под углом 45° и направлен точно на юг. Конструкция душевой кабинки — произвольная, но она должна выдержать суммарный вес полного бака и ваш. Автор (Е. Карпов) сварил каркас кабинки из трубы диаметром 40 мм и угольника 40x40 мм, пол и крыша сделаны из доски толщиной 40 мм. Конструкция имеет значительный излишний запас прочности, но у меня есть дальнейшие виды на перспективы ее использования.

Чтобы система хорошо работала надо выполнить три главных условия:

♦ обеспечить хорошую теплоизоляцию всех частей установки;

♦ обеспечить минимальные гидравлические сопротивления;

♦ обеспечить максимальный перепад высот между входным патрубком солнечного коллектора и штуцером горячей воды, установленном на баке (отмечает Е. Карпов на ).

Проточно-накопительный водонагреватель из пластиковых бутылок

Эти материалы любезно предоставлены К. Тимошенко (. delaysam.ru/).

Для солнечного коллектора подойдут любые прозрачные бутылки объемом 2 л из-под газированной воды. А чтобы прилично принять душ, надо хотя бы литров 50–60, лучше больше 100.

#v.jpg_20   Примечание.

Основная проблема создания солнечного водонагревателя состоит в соединении многих пластиковых бутылок в единую емкость и организацию их некоей проточности! Чтобы холодная вода могла в них втекать, а теплая — вытекать. Решив эту задачу, мы просто получаем небольшой прозрачный резервуар, который прекрасно нагревает воду за счет солнечной энергии.

Взяв, например 100 таких мини-резервуаров, т. е. бутылок, мы получим уже 200 литров теплой воды!

Сначала предполагалось организовать проточность бутылки через создание специальной пробки. Например, с соосными трубками. В одну — втекает, в другую — вытекает. Но изготовление массы таких трубок (например, 100 или 200) ничуть не проще, чем создание нормального классического солнечного коллектора. Поэтому было принято решение пойти другим путем — соединением бутылок и созданием из них своеобразной прозрачной трубы (рис. 2.17), которая будет одновременно и резервуаром, и собственно коллектором. Ну как бочка, только плоская и прозрачная.

Рис. 2.17. Принцип соединения бутылок

Измерив диаметр резьбы на горлышке бутылки, автор подобрал сверло, которым в донышке другой бутылке сверлится отверстие. Лучше всего подошло сверло — кольцевая пилка для сверления отверстий большого диаметра по дереву на 26 мм (наборы таких пилок в изобилии имеются в продаже и стоят 70—100 руб.).

При таком диаметре, горлышко бутылки достаточно туго вкручивается в отверстие в донышке другой. Иногда приходится поработать круглым крупным напильником. Да, и предварительно желательно просверлить отверстие строго по центру бутылки обычным сверлом 6–8 мм. Скажу, что сделать это непросто, т. к. именно в центре донышка имеется очень твердый и гладкий прилив — пупырышек.

#c.jpg_12   Совет.

Поэтому для массового точного сверления будет лучше сделать простенький шаблон, чтобы сверло не рыскало.

Следующей проблемой был вопрос с герметизацией. Вообще говоря, к ПЭТ как бы ничего и не пристает и не приклеивается. Но оказалось, не совсем так. Даже с просверленным отверстием, донышко бутылки сохранило абсолютную жесткость, и это давало надежду на применение силиконовых герметиков. Следует тщательно обезжирить поверхности ацетоном, намазать резьбу бутылки и ввинтить ее в донышко. А потом обильно замазать стык герметиком снаружи. Для надежности рекомендуется оставить бутылки неподвижными на 3 дня (скорость ферментации герметика 3–4 мм/сутки, как сказано в инструкции).

Можно ограничится последовательным соединением всего 3 бутылок. Герметичность стыков получилась абсолютная! Кстати, силикон так прилип к ПЭТ — ножом не отковырнешь!

За день на солнце (вернее, всего за несколько часов) вода великолепно нагревалась даже без всяких дополнительных ухищрений. Таким образом, была получена некая условная ячейка коллектора — водонагревателя, с размерами 0,1 метра (диаметр бутылки) на 1 метр (длина бутылки 35 см). Т. е. площадь коллектора составила 0,1 м2, а емкость — 6 л. Нетрудно подсчитать, что на 1 м2 уместится примерно 10 таких модулей, емкость которых составит 60 литров воды. На эти 60 литров воды солнце ежечасно будет изливать почти по киловатту энергии! Да эту воду не только нагреть — вскипятить можно! Ну конечно она никогда не вскипит, хотя бы из-за теплопотерь. Но нагреть 60 литров воды до 40–45 градусов можно 2–3 раза точно. Что более чем достаточно для дачных нужд.

Возвращаемся к проекту водонагревателя. Например, делаем 10–20 таких модулей и длиной не по 3, а по 5–6 бутылок (вообще, сколько позволяет площадь крыши, обращенная на юг). Можно, конечно, при помощи шлангов организовать полную проточность всех модулей, но я думаю, это бессмысленно. Поскольку все равно вся вода греется одновременно и получает одинаковое количество тепла в любой точке коллектора. Поэтому соединим наши модули параллельно! И будем использовать их в режиме бочки: налил — нагрел — использовал (или слил в термоизолированный накопитель).

Чтобы подключить все модули параллельно, потребуется труба, достаточно большого диаметра (миллиметров 50, а лучше 100, например, полипропиленовая). Все модули врезаются в нее, так же как и стыкуются бутылки между собой в модуле (рис. 2.18). Вентиль 1)

Модули, разумеется, должны располагаться под наклоном (нижняя сторона обращена в сторону юга, общая труба в самой нижней точке коллектора). В самой верхней бутылке модуля необходимо просверлить небольшое отверстие, 2–3 мм. С обеих сторон трубы установить по вентилю. К одному из них подвести воду (например, от насоса или водонапорного бака, на рис. 2.18 Вентиль 2).

Рис. 2.18. Конструкция нагревателя, размещенного на крыше

#c.jpg_13   Совет.

Возможно, удастся поступить и проще. Приклеив или привинтив саморезом к трубе пробку от бутылки и обеспечив герметичность, просверлить в пробке (и трубе, заодно) отверстие, просто ввинтить модуль в пробку.

А другой вентиль будет разборный, через него будет сливаться теплая вода (на

Работает солнечный водонагреватель коллектор следующим образом. Вентиль 1 закрыт, и мы начинаем заполнять коллектор водой, открыв вентиль 2. Вода заполняет бутылки «снизу вверх». Воздух при этом выходит из отверстий вверху модулей. Разумеется, как в сообщающихся сосудах, уровень воды в модулях одинаковый. Визуально определив, что бутылки наполнились, мы закрываем вентиль 2, и водонагреватель начинает свою работу.

Если нам требуется теплая вода, мы открываем вентиль 1, и нагревшаяся вода начинает стекать из разборной трубы.

Вот собственно и все. Все точно так же как в бочке, только воду такой коллектор будет греть на порядок эффективнее, чем бочка, ввиду своей большой площади.

Немного о конструкции. Разумеется, модули желательно уложить в «ящик», для придания жесткости конструкции. Дно ящика желательно сделать из темного материала, поглощающего солнечные лучи. Например, закоптить лист железа. Под лист неплохо бы поместить теплоизолятор, например тонкий пенопласт или вспененный полиэтилен («пеноплекс»). Верх ящика желательно затянуть полиэтиленовой пленкой или стеклом, чтобы ветер не охлаждал бутылки.

Угол наклона — минимальный, градусов 10–20—30, не более. Во-первых, летом это наиболее оптимальный угол наклона по отношению к Солнцу (почти перпендикулярно), а зимой этим коллектором не пользуются. Во-вторых, это обеспечит минимальный перепад давления воды (высоту водяного столба), что немаловажно при наличии многих стыков бутылок.

#v.jpg_21   Примечание.

Хотя при испытаниях автор ставил свой трвхбутылочный модуль даже вертикально и он «держал» давление в 0,7 атм., при работе он бы рисковать не рекомендовал.

Размер всего водонагревателя — на вкус создателя. Для 200 л потребуется около 110 бутылок, которые займут площадь 3 м2. Правда, и мощность такого нагревателя будет уже примерно 3 кВт!

Можно использовать нагреватель в режиме «налил — вылил». А можно и устроить рядом с ним термоизолированный бак-накопитель для теплой воды. В хороший солнечный день, 2-метровый, простите, 2-х киловатный водонагреватель нагреет вам и полтонны воды!

Заморозков такой водонагреватель не боится (кроме водозапорной арматуры), Солнце ему тоже не страшно (ПЭТ плохо разлагается на Солнце).

Разумеется, у такого солнечного водонагревателя есть и недостатки (например, плохая автоматизируемость), однако многое окупается его практически бесплатностью. Посудите сами, на что тут потратятся деньги: труба, пара вентилей и 2–3 тюбика силиконового герметика по 45–50 руб./шт. А бутылки из-под воды достанутся вам в качестве бонуса при покупке воды в магазине. Подключив к их сбору и знакомых, вы к следующему сезону соберете несколько десятков, а то и сотен бутылок, и сможете сделать себе очень достойный и производительный солнечный водонагреватель. Итого: 300–500 рублей максимум (!!!), и вы с горячей водой весь сезон!

Единственный недостаток — температура нагреваемой им воды не должна превышать 50–55 градусов. Иначе — солнечный коллектор разрушится. Проблему термоклея можно решить путем изготовления штуцеров. Например, взять трубку (алюминиевую ил медную), и нарезать на ее внешней стороне резьбу. И парой гаек закрепить крышку бутылке на коллекторе подводящем воду. А бутылку просто вкрутить в собственную пробку.

В принципе такая температура воды (50 градусов) достаточна для бытовых нужд. Возможно, в самые жаркие месяца лета не стоит повышать эффективность солнечного водонагревателя. Пусть лучше немного недогревает, чем плавится. А в демисезонные месяцы — стоит коллектор прикрыть стеклом.

Потенциал у солнечного коллектора-водонагревателя даже в средней полосе России есть! И потенциал огромный! С апреля по сентябрь (фактически весь дачный сезон) солнечный коллектор-водонагреватель должного размера и конструкции может обеспечивать горячей водой обычную семью, экономя при этом сотни (а может и тысячи) рублей семейного бюджета, которые тратятся на электроводонагреватели и их работу.

Разумеется, следует придумать что-то более надежное и термоустойчивое, чем ПЭТ-бутылки для применения в солнечном коллекторе — водонагревателе. И разумеется — бюджетное. Например, алюминиевые банки….

Солнечный водонагреватель из алюминиевых пивных банок

Можно использовать пивные алюминиевые банки в качестве корпуса солнечного коллектора и силиконовый герметик в качестве герметизирующего и соединяющего материала. И для банок и для силикона температура в 60–70 градусов (при которых разрушился ПЭТ-бутылочный солнечный коллектор) просто семечки (отмечает К. Тимошенко на ).

Было приготовлено 40 однолитровых пивных банок. При этом емкость водонагревателя осталась прежней — около 40 л, и площадь облучаемой поверхности — около 0,6 м2.

4 банки пришлось вскрывать не как обычно, дернув за рычажок на крышке, а с помощью консервного ножа со стороны дна, чтобы «крышка» осталась неповрежденной. У остальных консервным ножом следует вырезать и дно, и крышку, превратив банки в трубы. Кроме того, у тех 8-ми банок, что будут на торце солнечного коллектора пришлось в боку вырезать узкие отверстия, чтобы вода могла беспрепятственно заполнять «трубы» солнечного коллектора. И в одной банке сделано отверстие для штуцера, к которому присоединен шланг.

Совет № 1. Перед тем, как начать клеить банки, следует испытать силиконовый герметик на адгезию к банкам! Оказалось, не любой силикон одинаково прилипчив. Например, силикон марки «Krass» — пристает хорошо. Разумеется, банки все обезжириваются перед склейкой.

Совет № 2. Берем плоскость (фанера, ДСП, столешница, доска) Фиксируем на ней любым способом «первую» банку (термоклей, скотч, хомут…). Смазав силиконом место стыка, присоединяем к ней вторую банку с торца и еще одну — сбоку. Оставляем на сутки. На следующий день приклеиваем 3–5 очередных банок и т. д. Так можно получить идеально ровный и герметичный солнечный коллектор. Т. е. главное — не спешить!

Полученный в итоге единый блок нужно проверить на герметичность и уложить в корпус коллектора, т. е. в ящик из досок, на дне которого лежит кусок пенополистирола (50 мм), покрытого фольгой. К штуцеру подсоединяем шланг для заполнения солнечного водонагревателя холодной водой и слива нагретой. Блок банок нужно расположить так, чтобы штуцер оказался в самой нижней точке ящика. А в той банке, что оказалась выше всех, протките небольшую дырочку для выхода и входа воздуха.

Еще раз проверьте блок банок на герметичность и покрасьте банки черной матовой краской, а сам ящик закройте стеклом. Щели между стеклами заклейте скотчем. Сам солнечный коллектор автор сориентировал строго на восток, с наклоном примерно градусов 15–20. Не самая оптимальная ориентация, конечно, но уж так расположена крыша у автора. Реально солнце начинало освещать солнечный коллектор примерно с 9 утра и уходило практически на «нулевой» угол в 17 часов.

Солнечный проточный водонагреватель из пенополистирола

Рассмотренные ранее солнечные водонагреватели-коллекторы из пластиковых бутылок и алюминиевых банок, конечно просты и работоспособны. Однако они имеют один очень существенный недостаток — это именно накопительные водонагреватели. И работают по принципу «залил воду — нагрел — используй». А он хорошо действует только в условиях, когда солнца много. Если вода уже немного нагрета и солнце исчезает в облаках (соответственно прекращается и нагрев), то вода в водонагревателе начинает остывать (отмечает К Тимошенко на , любезно предоставив этот материал для книги).

#v.jpg_22   Примечание.

Иными словами, накопительный солнечный водонагреватель плохо работает в условиях переменной облачности.

Однако сделать проточный водонагреватель от солнца с достаточно большой плоскостью облучения (и, соответственно, мощностью) не так просто. Необходимо каким-то образом устроить достаточно большую плоскость, облучаемую солнцем с одной стороны и омываемую водой с другой.

Обычно используют всяческие трубки из достаточно дорогих цветных металлов (медь, алюминий), спаянные в частую решетку и т. п. Такие солнечные коллекторы конечно эффективны, но очень трудоемки в изготовлении и дороги. Это делает бессмысленной саму идею использования солнечного водонагревателя, так как вместо «бесплатного» солнечного тепла мы получаем большие материальные затраты, которые неизвестно когда окупятся.

В процессе обсуждения возможных конструкций солнечного водонагревателя на форуме, у К. Тимошенко родилась идея сделать солнечный коллектор на основе экструдированного пенополистирола (ЭППС). Это очень технологичный материал. Он достаточно прочный, водостойкий, выдерживает довольно высокую температуру, легко обрабатывается, выпускается листами, которые можно состыковать друг с другом, прекрасный теплоизолятор, относительно не дорог.

Немного теории. Проточный водонагреватель отличается от накопительного тем, что в каждый момент времени нагреву подвергается очень маленькая порция воды, находящаяся в солнечном коллекторе. А основная масса воды находится в баке-накопителе, как правило, хорошо утепленном.

В солнечном проточном водонагревателе используется тот эффект, что теплая, нагретая вода немного легче холодной. Поэтому она стремится подняться вверх (в общей массе воды). И если организовать эту циркуляцию, то самая теплая (нагретая) вода будет постепенно скапливаться в термосе (в его верхней части), а общая масса воды в системе повышать свою температуру.

А чтобы организовать такую циркуляцию, необходимо поместить солнечный коллектор ниже бака-термоса, в самом коллекторе сделать ввод более холодной воды внизу, а выход нагретой немного выше. Для нормальной работы и организации циркуляции воды достаточно незначительного перепада высот.

Изготовление солнечного водяного коллектора. Лист ЭППС имеет размер примерно 60x120 см (0,7 м2), что более чем достаточно для эксперимента. Во время облучения солнцем на такую площадь будет падать около 500–600 Вт тепловой энергии (или около 2000 кДж).

Теоретически, этого тепла должно хватать, чтобы нагревать до 60 °C примерно 10 л воды в час (при непрерывном солнечном облучении).

Чтобы превратить лист ЭППС-а в солнечный водонагреватель, в пенополистироле необходимо устроить зигзагообразную канавку для течения воды. А собственно теплоприемником будет выступать лист металла, наклеенный на пенопласт.

#v.jpg_23   Примечание.

Хорошо бы, конечно использовать лист алюминия, но это уже не будет «бюджетно», поэтому можно обойтись листом тонкой оцинкованной стали.

Прежде всего, размечаем лист пенопласта. Для наиболее эффективной работы солнечного коллектора необходимо, чтобы объем воды находящийся в нем был минимальным. Тогда она будет быстро прогреваться, даже если солнце вышло всего на несколько минут, а циркуляция будет быстрой. С другой стороны, площадь контакта воды с металлом коллектора должна быть максимальной. Т. е. перегородки между канавками должны быть как можно уже.

Следует также учитывать, что чем меньше сечение каналов, тем больше будет гидродинамическое сопротивление, которое затрудняет циркуляцию. И наконец, исходя из предполагаемой конструкции солнечного водонагревателя, следует определить, как будут расположены вход и выход в коллекторе. Если с разных сторон, то число каналов должно быть нечетным. А если с одной стороны — то четным.

Решив все эти задачи, можно нарисовать схему расположения каналов на листе ЭППС и прорезать каналы.

#c.jpg_14   Совет.

Для облегчения циркуляции воды в коллекторе, каналы лучше делать с небольшим, 2–3 %, наклоном снизу-вверх.

Прорезать каналы в листе пенополистирола лучше всего электрическим резаком. Резак представляет собой небольшой отрезок толстой нихромовой проволоки, изогнутой по форме сечения канала. Можно сделать такой резак из небольшого бруска, прибинтовав липкой лентой по его краям толстые алюминиевые провода. Зажав с одной стороны пассатижами нихромовую проволоку, с другой прикрепите провода идущие к трансформатору.

На торцах листа пенополистирола с помощью герметика вклейте трубки для входа и выхода воды. Затем вырежьте с помощью электролобзика необходимый по размерам лист оцинкованной стали.

#c.jpg_14   Совет.

Использовать ножницы по металлу не рекомендуется, так как они дадут заусенцы на краях.

Смажьте все плоскости листа полистирола герметиком (по периметру и промежутки между каналами) и обезжирьте оцинковку ацетоном, уложите ее на место и прижмите гнетом. Сушить следует пару дней. После этого для проверки герметичности и измерения объема солнечного коллектора залейте его водой. Оцинковку покройте черной матовой краской.

Красок, способных прочно пристать к оцинкованному покрытию не так много. В основном — это акриловые краски. Обычно это т. н. фасадные, светлые краски.

Можно обойтись и обычной грунтовкой. Она пристает к цинку, но не прочно. Однако учитывая, что солнечный коллектор будет эксплуатироваться «под стеклом», такой прочности достаточно.

Солнечный водонагреватель своими руками

Если на вашей даче еще нет электричества и газа, то нагрев воды представляет определенную трудность. Решение может быть одно — сделать солнечный водонагреватель для душа, который предложил С. Каверин, г. Самара.

Посмотрите на рис. 2.19, на нем приведена принципиальная схема водонагревателя.

Рис. 2.19. Конструкция солнечного водонагревателя для душа

Солнечный коллектор площадью около квадратного метра (он обязательно окрашен в черный цвет для лучшего поглощения солнечной энергии) поглощает солнечное тепло и нагревает воду в змеевике. Плотность теплой воды меньше, чем холодной. Поэтому она поднимается вверх и переливается в бак емкостью 100 л.

#v.jpg_24   Примечание.

Единственное условие— не допустить образования воздушных пробок и пузырей в системе, где циркулирует вода, для этого достаточно залить бак до горловины.

Рассмотрим, как сделать такой водонагреватель. Бак можно сварить из листового железа или использовать готовую емкость — металлическую бочку, вварив в нее трубы. Змеевик можно собрать из стальных труб с наружным диаметром 15–18 мм. Собранный змеевик приваривается к листу железа для лучшей теплоотдачи. Кожух водонагревателя может быть собран из многослойной фанеры толщиной не менее 10 мм. Для надежной теплоизоляции бака внутри кожух должен быть заполнен листовым пенопластом толщиной не менее 10 мм.

#c.jpg_15  Совет.

Для наилучшего нагрева солнечные лучи должны падать на поверхность коллектора под прямым углом. Поэтому завершает работу крепление опорных элементов конструкции.

Благодаря тому, что задний опорный элемент может перемещаться, упрощается регулировка угла наклона водонагревателя по отношению к Солнцу.